Skip to main content

Robust and Convergent Curvature and Normal Estimators with Digital Integral Invariants

  • Chapter
  • First Online:
Modern Approaches to Discrete Curvature

Part of the book series: Lecture Notes in Mathematics ((LNM,volume 2184))

Abstract

We present, in details, a generic tool to estimate differential geometric quantities on digital shapes, which are subsets of \(\mathbb{Z}^{d}\). This tool, called digital integral invariant, simply places a ball at the point of interest, and then examines the intersection of this ball with input data to infer local geometric information. Just counting the number of input points within the intersection provides curvature estimation in 2D and mean curvature estimation in 3D. The covariance matrix of the same point set allows to recover principal curvatures, principal directions and normal direction estimates in 3D. We show the multigrid convergence of all these estimators, which means that their estimations tend toward the exact geometric quantities on—smooth enough—Euclidean shapes digitized with finer and finer gridsteps. During the course of the chapter, we establish several multigrid convergence results of digital volume and moments estimators in arbitrary dimensions. Afterwards, we show how to set automatically the radius parameter while keeping multigrid convergence properties. Our estimators are then demonstrated to be accurate in practice, with extensive comparisons with state-of-the-art methods. To conclude the exposition, we discuss their robustness to perturbations and noise in input data and we show how such estimators can detect features using scale-space arguments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 84.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    ⊗ denotes the usual tensor product in vector spaces.

  2. 2.

    There is a typographic error in the λ1 expression in [ 48].

  3. 3.

    B R +(x) denotes the x-positive half ball of center x and radius R. Remember that x i is the i−th component of x.

  4. 4.

    The DGtal library is available at http://dgtal.org.

  5. 5.

    For an implementation, we refer to the CGAL library available at http://www.cgal.org.

References

  1. Alliez, P., Cohen-Steiner, D., Tong, Y., Desbrun, M.: Voronoi-based variational reconstruction of unoriented point sets. In: Proceedings of the Eurographics Symposium on Geometry Processing, vol. 7, pp. 39–48 (2007)

    Google Scholar 

  2. Amenta, N., Bern, M., Kamvysselis, M.: A new Voronoi-based surface reconstruction algorithm. In: Proceedings of the 25th Annual Conference on Computer Graphics and Interactive Techniques, pp. 415–421. ACM (1998)

    Google Scholar 

  3. Bauer, F., Fike, C.: Norms and exclusion theorems. Numer. Math. 2(1), 137–141 (1960). http://dx.doi.org/10.1007/BF01386217

    Article  MathSciNet  MATH  Google Scholar 

  4. Bhatia, R.: Matrix Analysis, vol. 169. Springer, New York (1997)

    MATH  Google Scholar 

  5. Bobenko, A.I., Suris, Y.B.: Discrete Differential Geometry. Integrable Structure.Graduate Studies in Mathematics, vol. 98. AMS, Providence (2008). http://dx.doi.org/10.1090/gsm/098

  6. Boulch, A., Marlet, R.: Fast and robust normal estimation for point clouds with sharp features. Comput. Graph. Forum 31(5), 1765–1774 (2012)

    Article  Google Scholar 

  7. Buet, B.: Approximation de surfaces par des varifolds discrets: représentation, courbure, rectifiabilité. Ph.D. Thesis, Université Claude Bernard-Lyon I, France (2014)

    Google Scholar 

  8. Buet, B., Leonardi, G.P., Masnou, S.: Discrete varifolds: A unified framework for discrete approximations of surfaces and mean curvature. In: Aujol, J.F., et al. (eds.) Proceedings of the Third International Conference on Scale Space and Variational Methods in Computer Vision. LNCS, vol. 9087, pp. 513–524. Springer (2015)

    Google Scholar 

  9. Bullard, J.W., Garboczi, E.J., Carter, W.C., Fullet, E.R.: Numerical methods for computing interfacial mean curvature. Comput. Mater. Sci. 4, 103–116 (1995)

    Article  Google Scholar 

  10. Cazals, F., Pouget, M.: Estimating differential quantities using polynomial fitting of osculating jets. Comput. Aided Geom, Des. 22(2), 121–146 (2005)

    Google Scholar 

  11. Coeurjolly, D., Klette, R.: A comparative evaluation of length estimators of digital curves. IEEE Trans. Pattern Anal. Mach. Intell. 26(2), 252–258 (2004)

    Article  Google Scholar 

  12. Coeurjolly, D., Lachaud, J.O., Roussillon, T.: Multigrid convergence of discrete geometric estimators. In: Digital Geometry Algorithms, Theoretical Foundations and Applications of Computational Imaging. LNCVB, vol. 2, pp. 395–424. Springer, New York (2012)

    Google Scholar 

  13. Coeurjolly, D., Miguet, S., Tougne, L.: Discrete curvature based on osculating circle estimation. In: 4th International Workshop on Visual Form, Lecture Notes in Computer Science, vol. 2059, pp. 303–312 (2001)

    Article  MATH  Google Scholar 

  14. Coeurjolly, D., Lachaud, J.O., Levallois, J.: Integral based curvature estimators in digital geometry. In: Discrete Geometry for Computer Imagery. LNCS, vol. 7749, pp. 215–227. Springer, New York (2013)

    Google Scholar 

  15. Coeurjolly, D., Lachaud, J.O., Levallois, J.: Multigrid convergent principal curvature estimators in digital geometry. Comput. Vis. Image Underst. 129, 27–41 (2014)

    Article  MATH  Google Scholar 

  16. Cohen-Steiner, D., Morvan, J.M.: Restricted Delaunay triangulations and normal cycle. In: Proceedings of the Nineteenth Annual Symposium on Computational Geometry, SCG’03, pp. 312–321. ACM, New York (2003). doi:http://doi.acm.org/10.1145/777792.777839

  17. Cohen-Steiner, D., Morvan, J.M.: Second fundamental measure of geometric sets and local approximation of curvatures. J. Differ. Geom. 74(3), 363–394 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  18. Cuel, L., Lachaud, J.O., Thibert, B.: Voronoi-based geometry estimator for 3d digital surfaces. In: Discrete Geometry for Computer Imagery, pp. 134–149. Springer, New York (2014)

    Google Scholar 

  19. Davis, C.: The rotation of eigenvectors by a perturbation. J. Math. Anal. Appl. 6(2), 159–173 (1963). doi:http://dx.doi.org/10.1016/0022-247X(63)90001-5http://www.sciencedirect.com/science/article/pii/0022247X63900015

  20. Desbrun, M., Hirani, A.N., Leok, M., Marsden, J.E.: Discrete exterior calculus (2005). Preprint, arXiv:math/0508341, Version 2: arXiv:math/0508341v2

    Google Scholar 

  21. Digne, J., Morel, J.M.: Numerical analysis of differential operators on raw point clouds. Numer. Math. 127(2), 255–289 (2014). doi:10.1007/s00211-013-0584-y. https://hal.archives-ouvertes.fr/hal-01135993

    Article  MathSciNet  MATH  Google Scholar 

  22. Esbelin, H.A., Malgouyres, R., Cartade, C.: Convergence of binomial-based derivative estimation for 2 noisy discretized curves. Theor. Comput. Sci. 412(36), 4805–4813 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  23. Fourey, S., Malgouyres, R.: Normals and curvature estimation for digital surfaces based on convolutions. In: Discrete Geometry for Computer Imagery. LNCS, pp. 287–298. Springer, New York (2008)

    Google Scholar 

  24. Gatzke, T.D., Grimm, C.M.: Estimating curvature on triangular meshes. Int. J. Shape Model. 12(01), 1–28 (2006). http://www.worldscientific.com/doi/abs/10.1142/S0218654306000810

    Article  MATH  Google Scholar 

  25. Guo, J.: On lattice points in large convex bodies (2010). arXiv:1010.4923v2

    Google Scholar 

  26. Huxley, M.N.: Exponential sums and lattice points. Proc. Lond. Math. Soc. 60, 471–502 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  27. Kanungo, T.: Document degradation models and a methodology for degradation model validation. Ph.D. Thesis, University of Washington (1996)

    Google Scholar 

  28. Kerautret, B., Lachaud, J.O.: Curvature estimation along noisy digital contours by approximate global optimization. Pattern Recogn. 42(10), 2265–2278 (2009). doi:10.1016/j.patcog.2008.11.013

    Article  MATH  Google Scholar 

  29. Klette, R., Rosenfeld, A.: Digital Geometry: Geometric Methods for Digital Picture Analysis. Series in Computer Graphics and Geometric Modelin. Morgan Kaufmann, San Francisco (2004)

    MATH  Google Scholar 

  30. Klette, R., Žunić, J.: Digital approximation of moments of convex regions. Graph. Models Image Process. 61(5), 274–298 (1999)

    Article  Google Scholar 

  31. Klette, R., Žunić, J.: Multigrid convergence of calculated features in image analysis. J. Math. Imaging Vision 13, 173–191 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  32. Klette, R., Žunić, J.: On discrete moments of unbounded order. In: Proceedings of the Discrete Geometry for Computer Imagery (DGCI’2006), pp. 367–378. Springer (2006)

    Google Scholar 

  33. Krätzel, E., Nowak, W.G.: Lattice points in large convex bodies. Monatshefte Math. 112, 61–72 (1991). doi:10.1007/BF01321717

    Article  MathSciNet  MATH  Google Scholar 

  34. Lachaud, J.O.: Espaces non-Euclidiens et analyse d’image : modèles déformables riemanniens et discrets, topologie et géométrie discrète. Habilitation à diriger des recherches, Université Bordeaux 1, Talence, France (2006)

    Google Scholar 

  35. Lachaud, J.O., Taton, B.: Deformable model with a complexity independent from image resolution. Comput. Vis. Image Underst. 99(3), 453–475 (2005). http://www.lama.univ-savoie.fr/~lachaud/Publications/LACHAUD-JO/publications.html#Lachaud05b

    Article  Google Scholar 

  36. Lachaud, J.O., Thibert, B.: Properties of Gauss digitized sets and digital surface integration. Technical Report, hal-01070289, Université de Savoie (2014)

    Google Scholar 

  37. Lachaud, J.O., Vialard, A., de Vieilleville, F.: Fast, accurate and convergent tangent estimation on digital contours. Image Vision Comput. 25(10), 1572–1587 (2007). http://www.lama.univ-savoie.fr/~lachaud/Publications/LACHAUD-JO/publications.html#Lachaud07a

    Article  Google Scholar 

  38. Lenoir, A.: Fast estimation of mean curvature on the surface of a 3d discrete object. In: Ahronovitz, E., Fiorio, C. (eds.) Proceedings of the Discrete Geometry for Computer Imagery (DGCI’97). Lecture Notes in Computer Science, vol. 1347, pp. 175–186. Springer, Berlin/Heidelberg (1997). http://dx.doi.org/10.1007/BFb0024839

    Chapter  Google Scholar 

  39. Levallois, J., Coeurjolly, D., Lachaud, J.O.: Parameter-free and Multigrid Convergent Digital Curvature Estimators. In: Barcucci, A.F.E., Rinaldi, S. (eds.) 18th International Conference on Discrete Geometry for Computer Imagery (DGCI 2014). Lecture Notes in Computer Science. Springer, New York (2014). http://liris.cnrs.fr/publis/?id=6703

    Google Scholar 

  40. Levallois, J., Coeurjolly, D., Lachaud, J.O.: Scale-space feature extraction on digital surfaces. Comput. Graph. 51, 177–189 (2015)

    Article  Google Scholar 

  41. Li, B., Schnabel, R., Klein, R., Cheng, Z., Dang, G., Jin, S.: Robust normal estimation for point clouds with sharp features. Comput. Graph. 34(2), 94–106 (2010). http://www.sciencedirect.com/science/article/pii/S009784931000021X

    Article  Google Scholar 

  42. Malgouyres, R., Brunet, F., Fourey, S.: Binomial convolutions and derivatives estimation from noisy discretizations. In: Discrete Geometry for Computer Imagery. LNCS, vol. 4992, pp. 370–379. Springer, New York (2008)

    Google Scholar 

  43. Mérigot, Q.: Geometric structure detection in point clouds. Theses, Université Nice Sophia Antipolis (2009). https://tel.archives-ouvertes.fr/tel-00443038

    Google Scholar 

  44. Mérigot, Q., Ovsjanikov, M., Guibas, L.: Robust Voronoi-based curvature and feature estimation. In: 2009 SIAM/ACM Joint Conference on Geometric and Physical Modeling, SPM’09, pp. 1–12. ACM, New York, NY, USA (2009). http://doi.acm.org/10.1145/1629255.1629257

  45. Mérigot, Q., Ovsjanikov, M., Guibas, L.: Voronoi-based curvature and feature estimation from point clouds. IEEE Trans. Vis. Comput. Graph. 17(6), 743–756 (2011)

    Article  Google Scholar 

  46. Müller, W.: Lattice points in large convex bodies. Monatshefte Math. 128, 315–330 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  47. Page, D.L., Sun, Y., Koschan, A.F., Paik, J., Abidi, M.A.: Normal vector voting: Crease detection and curvature estimation on large, noisy meshes. Graph. Models 64(3–4), 199–229 (2002)

    Article  MATH  Google Scholar 

  48. Pottmann, H., Wallner, J., Yang, Y., Lai, Y., Hu, S.: Principal curvatures from the integral invariant viewpoint. Comput. Aided Geom. Des. 24(8–9), 428–442 (2007). doi:10.1016/j.cagd.2007.07.004

    Article  MathSciNet  MATH  Google Scholar 

  49. Pottmann, H., Wallner, J., Huang, Q., Yang, Y.: Integral invariants for robust geometry processing. Comput. Aided Geom. Des. 26(1), 37–60 (2009). doi:10.1016/j.cagd.2008.01.002

    Article  MathSciNet  MATH  Google Scholar 

  50. Provot, L., Gérard, Y.: Estimation of the derivatives of a digital function with a convergent bounded error. In: Discrete Geometry for Computer Imagery. LNCS, pp. 284–295. Springer, New York (2011)

    Google Scholar 

  51. Reveillès, J.P.: Géométrie discrète, calcul en nombres entiers et algorithmique. Thèse d’état, Université Louis Pasteur, Strasbourg, France (1991). In French

    MATH  Google Scholar 

  52. Rieger, B., van Vliet, L.J.: Curvature of n-dimensional space curves in grey-value images. IEEE Trans. Image Process. 11(7), 738–745 (2002)

    Article  MathSciNet  Google Scholar 

  53. Roussillon, T., Lachaud, J.O.: Accurate curvature estimation along digital contours with maximal digital circular arcs. In: Combinatorial Image Analysis, vol. 6636, pp. 43–55. Springer, New York (2011)

    Google Scholar 

  54. Rusinkiewicz, S.: Estimating curvatures and their derivatives on triangle meshes. In: Proceedings of the 2nd International Symposium on 3D Data Processing, Visualization and Transmission, 2004. 3DPVT 2004, pp. 486–493 (2004)

    Google Scholar 

  55. Stewart, G.W., Sun, J.G.: Matrix Perturbation Theory. Academic, New York (1990)

    MATH  Google Scholar 

  56. Surazhsky, T., Magid, E., Soldea, O., Elber, G., Rivlin, E.: A comparison of Gaussian and mean curvatures estimation methods on triangular meshes. In: Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), vol. 1, pp. 1021–1026 (2003)

    Google Scholar 

  57. de Vieilleville, F., Lachaud, J.O., Feschet, F.: Maximal digital straight segments and convergence of discrete geometric estimators. J. Math. Image Vision 27(2), 471–502 (2007)

    Google Scholar 

  58. Xu, G.: Convergence analysis of a discretization scheme for Gaussian curvature over triangular surfaces. Comput. Aided Geom. Des. 23(2), 193–207 (2006). http://www.sciencedirect.com/science/article/pii/S0167839605000865

    Article  MathSciNet  MATH  Google Scholar 

  59. Zhang, J., Cao, J., Liu, X., Wang, J., Liu, J., Shi, X.: Point cloud normal estimation via low-rank subspace clustering. Comput. Graph. 37(6), 697–706 (2013). http://www.sciencedirect.com/science/article/pii/S0097849313000824

    Article  Google Scholar 

Download references

Acknowledgements

This work has been mainly funded by DigitalSnow ANR-11-BS02-009, KIDICO ANR-2010-BLAN-0205 and PRIMES Labex ANR-11-LABX-0063/ANR-11-IDEX-0007 research grants.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jacques-Olivier Lachaud .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 The Author(s)

About this chapter

Cite this chapter

Lachaud, JO., Coeurjolly, D., Levallois, J. (2017). Robust and Convergent Curvature and Normal Estimators with Digital Integral Invariants. In: Najman, L., Romon, P. (eds) Modern Approaches to Discrete Curvature. Lecture Notes in Mathematics, vol 2184. Springer, Cham. https://doi.org/10.1007/978-3-319-58002-9_9

Download citation

Publish with us

Policies and ethics