Skip to main content
Log in

Corrected Curvature Measures

  • Published:
Discrete & Computational Geometry Aims and scope Submit manuscript

Abstract

This paper proposes a new mathematical and computational tool for inferring the geometry of shapes known only through approximations such as triangulated or digital surfaces. The main idea is to decouple the position of the shape boundary from its normal vector field. To do so, we extend a classical tool of geometric measure theory, the normal cycle, so that it takes as input not only a surface but also a normal vector field. We formalize it as a current in the oriented Grassmann bundle \(\mathbb {R}^3 \times \mathbb {S}^2\). By choosing adequate differential forms, we define geometric measures like area, mean and Gaussian curvatures. We then show the stability of these measures when both position and normal input data are approximations of the underlying continuous shape. As a byproduct, our tool is able to correctly estimate curvatures over polyhedral approximations of shapes with explicit bounds, even when their natural normal are not correct, as long as an external convergent normal vector field is provided. Finally, the accuracy, convergence and stability under noise perturbation is evaluated experimentally onto digital surfaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

Notes

  1. See http://mathoverflow.net/questions/263452.

  2. So that \(\mathbf {e}_{ji}(p)=- \mathbf {e}_{ij}(p)\).

References

  1. Allard, W.K.: On the first variation of a varifold. Ann. Math. 95, 417–491 (1972)

    Article  MathSciNet  Google Scholar 

  2. Almgren, F.J., Jr.: Plateau’s Problem: An Invitation to Varifold Geometry. W.A. Benjamin, New York (1966)

    MATH  Google Scholar 

  3. Buet, B., Leonardi, G.P., Masnou, S.: A varifold approach to surface approximation. Arch. Ration. Mech. Anal. 226(2), 639–694 (2017)

    Article  MathSciNet  Google Scholar 

  4. Cazals, F., Pouget, M.: Estimating differential quantities using polynomial fitting of osculating jets. Comput. Aided Geom. Design 22(2), 121–146 (2005)

    Article  MathSciNet  Google Scholar 

  5. Chazal, F., Cohen-Steiner, D., Lieutier, A., Thibert, B.: Stability of curvature measures. Comput. Graph. Forum 28(5), 1485–1496 (2009)

    Article  Google Scholar 

  6. Coeurjolly, D., Foare, M., Gueth, P., Lachaud, J.-O.: Piecewise smooth reconstruction of normal vector field on digital data. Comput. Graph. Forum 35(7), 157–167 (2016)

    Article  Google Scholar 

  7. Coeurjolly, D., Lachaud, J.-O., Levallois, J.: Multigrid convergent principal curvature estimators in digital geometry. Comput. Vis. Image Underst. 129, 27–41 (2014)

    Article  Google Scholar 

  8. Cohen-Steiner, D., Morvan, J.-M.: Restricted Delaunay triangulations and normal cycle. In: 19th Annual Symposium on Computational Geometry (San Diego 2003), pp. 312–321. ACM, New York (2003)

  9. Cohen-Steiner, D., Morvan, J.-M.: Second fundamental measure of geometric sets and local approximation of curvatures. J. Differ. Geom. 74(3), 363–394 (2006)

    Article  MathSciNet  Google Scholar 

  10. Cuel, L., Lachaud, J.-O., Mérigot, Q., Thibert, B.: Robust geometry estimation using the generalized Voronoi covariance measure. SIAM J. Imaging Sci. 8(2), 1293–1314 (2015)

    Article  MathSciNet  Google Scholar 

  11. Cuel, L., Lachaud, J.-O., Thibert, B.: Voronoi-based geometry estimator for 3D digital surfaces. In: Discrete Geometry for Computer Imagery. Lecture Notes in Comput. Sci., vol. 8668, pp. 134–149. Springer, Cham (2014)

  12. Federer, H.: Curvature measures. Trans. Am. Math. Soc. 93, 418–491 (1959)

    Article  MathSciNet  Google Scholar 

  13. Federer, H.: Geometric Measure Theory. Classics in Mathematics. Springer, Berlin (1996)

    Book  Google Scholar 

  14. Fu, J.H.G.: Convergence of curvatures in secant approximations. J. Differ. Geom. 37(1), 177–190 (1993)

    Article  MathSciNet  Google Scholar 

  15. Fu, J.H.G.: Curvature measures of subanalytic sets. Am. J. Math. 116(4), 819–880 (1994)

    Article  MathSciNet  Google Scholar 

  16. Gonzalez-Diaz, R., Jimenez, M.-J., Medrano, B.: 3D well-composed polyhedral complexes. Discrete Appl. Math. 183, 59–77 (2015)

    Article  MathSciNet  Google Scholar 

  17. Hildebrandt, K., Polthier, K., Wardetzky, M.: On the convergence of metric and geometric properties of polyhedral surfaces. Geom. Dedicata. 123, 89–112 (2006)

    Article  MathSciNet  Google Scholar 

  18. Klette, R., Rosenfeld, A.: Digital Geometry. Elsevier, Amsterdam (2004)

    MATH  Google Scholar 

  19. Lachaud, J.-O., Coeurjolly, D., Levallois, J.: Robust and convergent curvature and normal estimators with digital integral invariants. In: Modern Approaches to Discrete Curvature. Lecture Notes in Math., vol. 2184, pp. 293–348. Springer, Cham (2017)

  20. Lachaud, J.-O., Provençal, X., Roussillon, T.: An output-sensitive algorithm to compute the normal vector of a digital plane. Theoret. Comput. Sci. 624, 73–88 (2016)

    Article  MathSciNet  Google Scholar 

  21. Lachaud, J.-O., Provençal, X., Roussillon, T.: Two plane-probing algorithms for the computation of the normal vector to a digital plane. J. Math. Imaging Vision 59(1), 23–39 (2017)

    Article  MathSciNet  Google Scholar 

  22. Lachaud, J.-O., Thibert, B.: Properties of Gauss digitized shapes and digital surface integration. J. Math. Imaging Vision 54(2), 162–180 (2016)

    Article  MathSciNet  Google Scholar 

  23. Lin, F., Yang, X.: Geometric Measure Theory–An Introduction. Advanced Mathematics (Beijing/Boston), vol. 1. International Press, Boston (2002)

  24. Mérigot, Q., Ovsjanikov, M., Guibas, L.: Voronoi-based curvature and feature estimation from point clouds. IEEE Trans. Visual Comput. Graphics 17(6), 743–756 (2011)

    Article  Google Scholar 

  25. Morgan, F.: Geometric Measure Theory. A Beginner’s Guide. Elsevier/Academic Press, Amsterdam (2016)

    MATH  Google Scholar 

  26. Morvan, J.-M.: Generalized Curvatures. Springer, Berlin (2008)

    Book  Google Scholar 

  27. Morvan, J.-M., Thibert, B.: Approximation of the normal vector field and the area of a smooth surface. Discrete Comput. Geom. 32(3), 383–400 (2004)

    Article  MathSciNet  Google Scholar 

  28. Pottmann, H., Wallner, J., Huang, Q.-X., Yang, Y.-L.: Integral invariants for robust geometry processing. Comput. Aided Geom. Design 26(1), 37–60 (2009)

    Article  MathSciNet  Google Scholar 

  29. Pottmann, H., Wallner, J., Yang, Y.-L., Lai, Y.-K., Hu, S.-M.: Principal curvatures from the integral invariant viewpoint. Comput. Aided Geom. Design 24(8–9), 428–442 (2007)

    Article  MathSciNet  Google Scholar 

  30. Siqueira, M., Latecki, L.J., Tustison, N., Gallier, J., Gee, J.: Topological repairing of 3D digital images. J. Math. Imaging Vision 30(3), 249–274 (2008)

    Article  MathSciNet  Google Scholar 

  31. Spivak, M.: Calculus on Manifolds. CRC Press, Boca Raton (2018)

    Book  Google Scholar 

  32. Stelldinger, P., Latecki, L.J., Siqueira, M.: Topological equivalence between a 3D object and the reconstruction of its digital image. IEEE Trans. Pattern Anal. Mach. Intell. 29(1), 126–140 (2007)

    Article  Google Scholar 

  33. Surazhsky, T., Magid, E., Soldea, O., Elber, G., Rivlin, E.: A comparison of Gaussian and mean curvatures estimation methods on triangular meshes. In: 2003 IEEE International Conference on Robotics and Automation (Taipei 2003), pp. 1021–1026. IEEE (2003)

  34. Wintgen, P.: Normal cycle and integral curvature for polyhedra in Riemannian manifolds. In: Differential Geometry (Budapest 1979). Colloq. Math. Soc. Janos Bolyai, vol. 31, pp. 805–816 (1982)

  35. Xu, G.: Convergence analysis of a discretization scheme for Gaussian curvature over triangular surfaces. Comput. Aided Geom. Design 23(2), 193–207 (2006)

    Article  MathSciNet  Google Scholar 

  36. Zähle, M.: Curvatures and currents for unions of sets with positive reach. Geom. Dedicata. 23(2), 155–171 (1987)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pascal Romon.

Additional information

Editor in Charge: Kenneth Clarkson

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work has been partly funded by CoMeDiC ANR-15-CE40-0006 research grant. The authors thank the anonymous reviewer for his thoughtful comments and suggestions.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lachaud, JO., Romon, P. & Thibert, B. Corrected Curvature Measures. Discrete Comput Geom 68, 477–524 (2022). https://doi.org/10.1007/s00454-022-00399-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00454-022-00399-4

Keywords

Mathematics Subject Classification

Navigation