Skip to main content

Production of Biopharmaceuticals Through Microbial Cell Immobilisation

  • Chapter
Applications of Cell Immobilisation Biotechnology

Part of the book series: Focus on Biotechnology ((FOBI,volume 8B))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Hattori, T. and Furusaka, C. (1960) Chemical activities of E. coli adsorbed on a resin. J. Biochem. 48: 831–837.

    CAS  Google Scholar 

  2. Franks, N.E (1971) Catabolism of L-arginine by entrapped cells of Streptococcus faecalis ATCC 8043. Biochim. Biophys. Acta 252: 246–254.

    PubMed  CAS  Google Scholar 

  3. Mosbach, K. and Larsson, P. (1970) Preparation and application of polymer entrapped enzymes and microorganisms in microbial transformation processes with special reference to steroid 11-b-hydroxylation and d1-dehydrogenation. Biotechnol. Bioeng. 12: 19–27.

    Article  PubMed  CAS  Google Scholar 

  4. Tosa, T.; Sato, T.; Mori, T. and Chibata, I. (1974) Immobilised aspartase containing microbial cells: preperation and enzymic properties. Appl. Microbiol. 27: 878–885.

    PubMed  Google Scholar 

  5. Chibata, I. and Tosa, T. (1977)Transformations of organic compounds by immobilized microbial cells. Adv. Appl. Microbiol. 22: 1–27.

    Article  PubMed  CAS  Google Scholar 

  6. Kierstan, M and Bucke, C. (1977) The immobilization of microbial cells, subcellular organelles, and enzymes in calcium alginate gels. Biotechnol. Bioeng. 19: 387–397.

    Article  PubMed  CAS  Google Scholar 

  7. Wada, M.; Kato, J. and Chibata, I. (1979) A new immobilization of microbial cells. European J. Appl. Microbiol. 8: 241–247.

    Article  CAS  Google Scholar 

  8. Shibatani, T. (1996) Industrial applications of immobilized biocatalysts in Japan. In: Wijffels, R.H.; Buitelaar, R.M.; Bucke, C. and Tramper, J. (Eds.) Immobilized Cells: Basics and Applications. Elsevier, Amsterdam (The Netherlands); pp. 585–591.

    Google Scholar 

  9. Champagne, C.P. (1996) Immobilized cell technology in food processing. In: Wijffels, R.H.; Buitelaar, R.M.; Bucke, C. and Tramper, J. (Eds.) Immobilized Cells: Basics and Applications. Elsevier, Amsterdam (The Netherlands); pp. 633–640.

    Google Scholar 

  10. Morikawa, Y.; Karubi, I. and Suzuki. S. (1979) Penicillin G production by immobilized whole cells of Penicillium chrysogenum. Biotechnol. Bioeng. 21: 261–270.

    Article  PubMed  CAS  Google Scholar 

  11. Kurzatkowski, W.; Kurylowicz, W. and Paszkiewicz, A. (1982) Penicillin G production by immobilized fungal vesicles. European J. Appl. Microbiol. Biotechnol. 15: 211–213.

    Article  CAS  Google Scholar 

  12. El-Saed, A.M.M. and Rehm, H. J. (1986) Morphology of Penicillium chrysogenum strains immobilized in calcium alginate beads and used in penicillin fermentation. Appl. Microbiol. Biotechnol. 24: 89–94.

    Google Scholar 

  13. El-Saed, A.M.M. and Rehm, H.J. (1987) Semicontinuous penicillin production by two Penicillium chrysogenum strains immobilized in calcium alginate beads. Appl. Microbiol. Biotechnol. 26: 211–214.

    Article  Google Scholar 

  14. El-Saed, A.M.M. and Rehm, H.J. (1987) Continuous penicillin production by Penicillium chrysogenum strains immobilized in calcium alginate beads. Appl. Microbiol. Biotechnol. 26: 215–218.

    Article  Google Scholar 

  15. Deo, Y.M. and Gaucher G.M. (1984) Semicontinuous and continuous production of penicillin G by Penicillium chrysogenum cells. Biotechnol. Bioeng. 26: 285–295.

    Article  CAS  Google Scholar 

  16. Mussenden, P.J.; Keshavarz, T. and Bucke, C. (1991) The effects of spore loading on the growth of Penicillium chrysogenum immobilized in κ-carrageenan. J. Chem. Tech. Biotechnol. 52: 275–282.

    CAS  Google Scholar 

  17. Mussenden, P.J.; Keshavarz, T.; Saunders, G. and Bucke, C. (1993) Physiological studies related to the immobilization of Penicillium chrysogenum and penicillin production. Enzyme Microb. Technol. 15: 2–7.

    Article  PubMed  CAS  Google Scholar 

  18. Karhoot, J.M.; Anderson, J.G. and Blain, J.A. (1987) Production of penicillin by immobilized films of Penicillium chrysogenum. Biotechnol. Lett. 9: 471–474.

    Article  CAS  Google Scholar 

  19. Wang, D.I.C.; Meier, J. and Yokoyama, K. (1984) Penicillin fermentation in a 200-litre tower fermentor using cels cofined to microbeads. Appl. Biochem. Biotechnol. 9: 105–116.

    PubMed  CAS  Google Scholar 

  20. Jones, A.; Wood, D.N.; Razniewska, T. Gaucher, M. and Behie, L.A. (1986); Continuous production of penicillin-G by Penicillium chrysogenum cells immobilized on Celite biocatalyst support particles. Can. J. Chem. Eng. 64: 547–552.

    Article  CAS  Google Scholar 

  21. Kim, J.H.; Oh, D.K.; Park, S.K. and Park, Y.H. (1986) Production of penicillin in a fluidised-bed bioreactor using a carrier-supported mycelial growth. Biotechnol. Bioeng. 28: 1838–1844.

    Article  CAS  Google Scholar 

  22. Keshavarz, T.; Walker, E.; Eglin, R.; Lilley, G.; Holt, G.; Bull, A.T. and Lilly, M.D. (1989) Immobilization of Penicillium chrysogenum: spore growth on Celite. Appl. Microbiol. Biotechnol. 30: 487–491.

    Article  CAS  Google Scholar 

  23. Keshavarz, T.; Eglin, R.; Walker, E.; Bucke, C.; Holt, G.; Bull, A.T. and Lilly, M.D. (1990) The largescale immobilization of Penicillium chrysogenum: batch and continuous operation in an air-lift reactor. Biotechnol. Bioeng. 36: 763–770.

    Article  CAS  Google Scholar 

  24. Lilly, M.D.; Keshavarz, T.; Bucke, C.; Bull, A.T. and Holt, G. (1990) Pilot-scale studies of immobilized Penicillium chrysogenum. In: de Bont, J.A.M.; Visser, B.; Mattiasson, B. and Tramper, J. (Eds.) Physiology of immobilized cells. Elsevier, Amsterdam (Netherlands); pp. 369–375.

    Google Scholar 

  25. Al-Qodah, Z. (2000) Continuous production of antibiotics in an airlift fermentor utilising a transverse magnetic field. Appl. Biochem. Biotechnol. 87: 37–55.

    Article  PubMed  CAS  Google Scholar 

  26. Keshavarz, T.; Bucke, C. and Lilly, T. (1996) Problems in scale-up of immobilized cell cultures. In: Wiffels, R.H.; Buitelaar, R.M.; Bucke, C. and Tramper, J. (Eds.) Immobilized Cells: Basics and Applications. Elsevier, Amsterdam (Netherlands); pp. 505–510.

    Google Scholar 

  27. Khang, Y.H.; Shanker, H. and Senatore, F. (1988) Comparison of free and immobilized Cephalosporium acreminium for β-lactam antibiotic production. Biotechnol. Lett. 10: 719–724.

    Article  CAS  Google Scholar 

  28. Khang, Y.H.; Shanker, H. and Senatore, F. (1988) Enhanced β-lactam antibiotic production by coimmobilization of fungus and alga. Biotechnol. Lett. 10: 867–872.

    Article  CAS  Google Scholar 

  29. Kundu, S.; Mahapatra, A.C.; Srivastava, P. and Kundu K. (1992) Studies on cephalosporin-C production using immobilized cells of Cephalosporium acreminium in a packed bed reactor. Process Biochem. 27:347–350.

    Article  CAS  Google Scholar 

  30. Srivastava, P. and Kundu, S. (1998) A comparative evaluation of cephalosporin C production using various immobilization modes. J. Gen. Appl. Microbiol. 44: 113–117.

    Article  PubMed  CAS  Google Scholar 

  31. Araujo, M.L.G.C.; Giordano, R.C. and Hokka, C.O. (1999) Studies on the respiration rate of free and immobilized cells of Cephalosporium acreminium in cephalosporin C production. Biotechnol. Bioeng. 63:593–600.

    Article  PubMed  CAS  Google Scholar 

  32. Araujo, M.L.G.C.; Oliviera, R.C. and Hokka, C.O. (1996) Comparative studies on cephalosporin C production process with free and immobilized cells of Cephalosporium acreminium ATCC 48272. Chem. Eng. Science. 51: 2835–2840.

    Article  CAS  Google Scholar 

  33. Khang, Y.H.; Shanker, H. and Senatore, F. (1988) Modelling the effect of oxygen mass transfer on β-lactam antibiotic production by immobilized Cephalosporium acreminium. Biotechnol. Lett. 10: 861–866.

    Article  CAS  Google Scholar 

  34. Freeman, A. and Aharonowitz, Y. (1981) Immobilization of microbial cells in crosslinked, prepolymerized, linear polyacrylamide gels: antibiotic production by immobilized Streptomyces clavuligerus cells. Biotechnol. Bioeng. 23: 2747–2759.

    Article  CAS  Google Scholar 

  35. Veelken, M. and Pape, H. (1982) Production of tylosin and nikkomycin by immobilized Streptomyces cells. Appl. Microbiol. Biotechnol. 15: 206–210.

    Article  CAS  Google Scholar 

  36. Trück, H.U.; Chmiel, H.; Hammes, W.P. and Trösch, W. (1990) Effects of oxygen supply on the production of nikkomycin with immobilized cells of Streptomyces tendae. Appl. Microbiol. Biotechnol. 34:1–4.

    PubMed  Google Scholar 

  37. Abu-Shady, M.R.; el-Diwany, A.I.; Farid, M.A. and el-Enshasy, H.A. (1995) Studies of rifamycin production by Amycolatopsis mediterranei cells immobilized on glass wool. J. Basic Microbiol. 35: 279–284.

    PubMed  CAS  Google Scholar 

  38. Chung, B.H.; Chang, H.N. and Kim, I.H. (1987) Rifamycin B production by Nocardia mediterranei immobilized in a dual hollow fibre bioreactor. Enzyme Microb. Technol. 9: 345–349.

    Article  CAS  Google Scholar 

  39. Arcuri, E.J.; Slaff, G. and Greasham, R. (1986) Continuous production of thienamycin in immobilized cell systems. Biotechnol. Bioeng. 28: 842–849.

    Article  CAS  Google Scholar 

  40. Dalili, M. and Chau, P.C. (1988) Production of actinomycin D ith immobilized Streptomyces parvullus under nitrogen and carbon starvation conditions. Biotechnol. Lett. 10: 331–336.

    Article  CAS  Google Scholar 

  41. Bandyopadhyay, A.; Das, A.K and Mandal, S.K. (1993) Erythromycin production by Streptomyces erythraeus entrapped in calcium alginate beads. Biotechnol. Lett. 15: 1003–1006.

    Article  CAS  Google Scholar 

  42. Robertson, C. and Kim, I.H. (1985) Dual aerobic hollow-fibre bioreactor of Streptomyces aureofaciens. Biotechnol. Bioeng. 27: 1012–1020.

    Article  CAS  Google Scholar 

  43. Farid, M.A.; el-Diwany, E.I. and el-Enshasy, H.A. (1994) Production of oxytetracycline by immobilized Streptomyces rimosus cells in calcium alginate gels. Acta Biotechnol. 14: 303–309.

    Article  CAS  Google Scholar 

  44. Yang, S. and Yueh, C.Y. (2001) Oxytetracycline production by immobilized Streptomyces rimosus. J. Microbial. Immunol. Infect. 34: 235–242.

    CAS  Google Scholar 

  45. el-Enshasy, H.A.; Farid, M.A. and el-Diwany, A.I. (1996) Oxytetracycline production by free and immobilized cells of Streptomyces rimosus in batch and repeated batch cultures. In: Wijffels, R.H.; Buitelaar, R.M.; Bucke, C. and Tramper, J. (Eds.) Immobilized Cells: Basics and Applications. Elsevier, Amsterdam (The Netherlands); pp. 437–443.

    Google Scholar 

  46. Terual, M.L.A.; Gontier, E.; Bienaime, C.; Saucedo, J.E.N. and Barbotin, J.N. (1997) Response surface analysis of chlortetracycline and tetracycline production with κ-carrageenan immobilized Streptomyces aureofaciens. Enzyme Microb. Technol. 21: 314–320.

    Article  Google Scholar 

  47. Devi, S. and Sridhar, P. (2000) Production of Cephamycin C in repeated batch operations from immobilized Streptomyces clavuligerus. Process Biochem. 36: 225–231.

    Article  CAS  Google Scholar 

  48. Kim, C.J.; Chang, Y, K.; Chun, G.T.; Jeong, Y.H. and Lee, S.J. (2001) Continuous culture of immobilized Streptomyces cells for kasugamycin production. Biotechnol. Progress 17: 453–461.

    Article  CAS  Google Scholar 

  49. Yamani, T.; Nakatani, H.; Sada, E.; Omata, T.; Tanaka, A. and Fukui, S. (1979) Steroid bioconversions in water insoluble organic solvents: Δ1-dehydrogenation by microbial cells and by cells entrapped in hydrophilic and lipophilic gels. Biotechnol. Bioeng. 21: 1887–1903.

    Article  Google Scholar 

  50. Hocknull, M.D. and Lilly, M.D. (1990) The use of free and immobilized Arthrobacter simplex in organic solvent/aqueous two-liquid-phase reactors. Appl. Microbiol. Biotechnol. 33: 148–153.

    Article  PubMed  CAS  Google Scholar 

  51. Pinheiro, H.M. and Cabral, J.M.S. (1992) Screening of whole-cell immobilization procedures for the Δ1-dehydrogenation of steroids in organic medium. Enzyme Microb. Technol. 14: 619–624.

    Article  PubMed  CAS  Google Scholar 

  52. Schlosser, D.; Irrang, S and Schmauder, H.-P. (1993) Steroid hydroxylation with free and immobilized cells of Penicillium raistrickii in the presence of β-cyclodextrrin. Appl. Microbiol. Biotechnol. 39: 16–20.

    Article  PubMed  CAS  Google Scholar 

  53. Houng, J.-Y.; Chiang, W.-P. and Chen K.-C. (1994) 11α hydroxylation of progestrone in biphasic media using alginate-entrapped Aspergillus ochraceus gel beads coated with polyurea. Enzyme Microb. Technol. 16: 485–491.

    Article  PubMed  CAS  Google Scholar 

  54. Chen K.-C.; Yin, W.-S. and Houng, J.Y. (1994) 11α hydroxylation of progesterone using modified alginate-immobilized cells. Enzyme Microb. Technol. 16: 551–555.

    Article  PubMed  CAS  Google Scholar 

  55. Dias, A.C.P.; Cabral, J.M.S. and Pinheiro, H.M. (1994) Sterol side-chain cleavage with immobilized Mycobacterium cells in water-immiscible organic solvents. Enzyme Microb. Technol. 16: 708–714.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer

About this chapter

Cite this chapter

Keshavarz, T. (2005). Production of Biopharmaceuticals Through Microbial Cell Immobilisation. In: Nedović, V., Willaert, R. (eds) Applications of Cell Immobilisation Biotechnology. Focus on Biotechnology, vol 8B. Springer, Dordrecht. https://doi.org/10.1007/1-4020-3363-X_23

Download citation

Publish with us

Policies and ethics