Skip to main content

Artificial Soft Tissue Fabrication from Cell-Contracted Biopolymers

  • Chapter
Functional Tissue Engineering

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Agoram B, Barocas VH. 2001. Coupled macroscopic and microscopic scale modeling of fibrillar tissues and tissue equivalents. J Biomech Eng 123(4):362–9.

    Article  PubMed  CAS  Google Scholar 

  • Allen TD, Schor SL, Schor AM. 1984. An ultrastructural review of collagen gels, a model system for cell-matrix, cell-basement membrane and cell-cell interactions. Scan. Electron Microsc. (Pt 1):375–390.

    Google Scholar 

  • Atala A, Mooney DJ, Vacanti JP, Langer RS, eds. 1997. Synthetic biodegradable polymer scaffolds. Birkhauser.

    Google Scholar 

  • Auger FA, Pouliot R, Tremblay, N, Guignard R, Noel P, Juhasz J, Germain L, Goulet F. 2000. Multistep production of bioengineered skin substitutes: sequential modulation of culture conditions. In Vitro Cell. Dev. Biol. Anim. 36:96–103.

    Article  PubMed  CAS  Google Scholar 

  • Awad HA, Butler DL, Harris MT, Ibrahim RE, Wu Y, Young RG, Kadiyala S, Boivin GP. 2000. In vitro characterization of mesenchymal stem cell-seeded collagen scaffolds for tendon repair: effects of initial seeding density on contraction kinetics. J. Biomed. Mater. Res. 51:233–240.

    Article  PubMed  CAS  Google Scholar 

  • Bader A, Steinhoff G, Strobl K, Schilling T, Brandes G, Mertsching H, Tsikas D, Froelich J, Haverich A. 2000. Engineering of human vascular aortic tissue based on a xenogeneic starter matrix. Transplantation 70:7–14.

    PubMed  CAS  Google Scholar 

  • Bale MD, Muller MF, Ferry JD. 1985. Rheological studies of creep and creep recovery of unligated fibrin clots: comparison of clots prepared with thrombin and ancrod. Biopolymers 24:461–482.

    Article  PubMed  CAS  Google Scholar 

  • Barocas VH, Tranquillo RT. 1997a. An anisotropic biphasic theory of tissue-equivalent mechanics: the interplay among cell traction, fibrillar network deformation, fibril alignment, and cell contact guidance. J. Biomech. Eng. 119:137–145.

    PubMed  CAS  Google Scholar 

  • Barocas VH, Tranquillo RT. 1997b. A finite element solution for the anisotropic biphasic theory of tissue-equivalent mechanics: the effect of contact guidance on isometric cell traction measurement. J. Biomech. Eng. 119:261–269.

    PubMed  CAS  Google Scholar 

  • Barocas VH, Moon AG, Tranquillo RT. 1995. The fibroblast-populated collagen microsphere assay of cell traction force-Part 2: Measurement of the cell traction parameter. J. Biomech. Eng. 117:161–170.

    PubMed  CAS  Google Scholar 

  • Barocas VH, Girton, TS, Tranquillo RT. 1998. Engineered alignment in media-equivalents: Magnetic prealignment and mandrel compaction. J. Biomech. Eng. 120:660–666.

    PubMed  CAS  Google Scholar 

  • Bell E, Ivarsson B, Merrill C. 1978. Production of a tissue-like structure by contraction of collagen lattices by human fibroblasts of different proliferative potential in vitro. Proc. Nat. Acad. Sci. U.S.A. 76:1274–1278.

    Google Scholar 

  • Bell E, Ivarsson B, Merrill C. 1979. Production of a tissue-like structure by contraction of collagen lattices by human fibroblasts of different proliferative potential in vitro. Proc. Nat. Acad. Sci. U.S.A. 76:1274–1278.

    CAS  Google Scholar 

  • Bell E, Ehrlich HP, Buttle DJ, Nakatsuji T. 1981. Living tissue formed in vitro and accepted as skinequivalent tissue of full thickness. Science 211: 1052–1054.

    PubMed  CAS  Google Scholar 

  • Birukov KG, Shirinsky, VP, Stepanova OV, Tkachuk VA, Hahn AWA, Resnick TJ, Smirnov VN. 1995. Stretch affects phenotype and proliferation of vascular smooth muscle cells. Mol. Cell. Biochem. 144:131–139.

    Article  PubMed  CAS  Google Scholar 

  • Birukov KG, Bardy N, Lehoux S, Merval R, Shirinsky VP, Tedgui A. 1998. Intraluminal pressure is essential for the maintenance of smooth muscle caldesmon and filamin content in aortic organ culture. Arterioscl. Thromb. Vasc. Biol. 18:922–927.

    PubMed  CAS  Google Scholar 

  • Bromberek BA, Enever PAJ, Caldwell MD, Tranquillo RT. 2002. Macrophages influence a competition of contact guidance and chemotaxis for fibroblast alignment in a fibrin gel coculture assay. Exp. Cell Res. 275:230–42.

    Article  PubMed  CAS  Google Scholar 

  • Butler DL, Awad HA. 1999. Perspectives on cell and collagen composites for tendon repair. Clin. Orthop. (367 Suppl.) S324–332.

    PubMed  Google Scholar 

  • Carver W, Nagpal ML, Nachtigal M, Borg TK, Terracio L. 1991. Collagen expression in mechanically stimulated cardiac fibroblasts. Circ. Res. 69:116–122.

    PubMed  CAS  Google Scholar 

  • Chiquet M, Matthisson M, Koch M, Tannheimer M, Chiquet-Ehrismann R. 1996. Regulation of extracellular matrix synthesis by mechanical stress. Biochem. Cell Biol. 74:737–744.

    PubMed  CAS  Google Scholar 

  • Clark RA, Nielsen LD, Welch MP, McPherson JM. 1995. Collagen matrices attenuate the collagen-synthetic response of cultured fibroblasts to TGFbeta. J. Cell Sci. 108:1251–1261.

    PubMed  CAS  Google Scholar 

  • Coulomb B, Friteau L, Baruch J, Guilbaud J, Chretien-Marquet B, Glicenstein J, Lebreton-Decoster C, Bell E, Dubertret L. 1998. Advantage of the presence of living dermal fibroblasts within in vitro reconstructed skin for grafting in humans. Plast. Reconstr. Surg. 101:1891–1903.

    PubMed  CAS  Google Scholar 

  • de Chalain T, Phillips JH, Hinek A. 1999. Bioengineering of elastic cartilage with aggregated porcine and human auricular chondrocytes and hydrogels containing alginate, collagen, and kappa-elastin. J. Biomed. Mater. Res. 44:280–288.

    PubMed  Google Scholar 

  • Dickinson RB, Guido S, Tranquillo RT. 1994. Biased cell migration of fibroblasts exhibiting contact guidance in oriented collagen gels. Ann. Biomed. Eng. 22:342–356.

    Article  PubMed  CAS  Google Scholar 

  • Dunn GA. 1982. Contact guidance of cultured tissue cells: a survey of potentially relevant properties of the substratum. In: Cell Behaviour. R. Bellairs, A. Curtis, G. Dunn, eds. Cambridge University Press, Cambridge pp. 247–280.

    Google Scholar 

  • Eaglstein WH, Falanga V. 1998. Tissue engineering and the development of Apligraf, a human skin equivalent. Cutis 62:1–8.

    PubMed  CAS  Google Scholar 

  • Ehrlich HP, Buttle DJ, Bernanke DH. 1989. Physiological variables affecting collagen lattice contraction by human dermal fibroblasts. Exp. Mol. Pathol. 50:220–229.

    Article  PubMed  CAS  Google Scholar 

  • Eschenhagen T, Fink C, Remmers U, Scholz H, Wattchow J, Weil J, Zimmermann W, Dohmen HH, Schafer H, Bishopric N, Wakatsuki T, Elson EL. 1997. Three-dimensional reconstitution of embryonic cardiomyocytes in a collagen matrix: a new heart muscle model system. FASEB J. 11:683–694.

    PubMed  CAS  Google Scholar 

  • Fung YC, Liu SQ, Zhou JB. 1993. Remodeling of the constitutive equation while a blood vessel remodels itself under stress. J. Biomech. Eng. 115:453–459.

    PubMed  CAS  Google Scholar 

  • Girton TS, Oegema TR, Tranquillo RT. 1999. Exploiting glycation to stiffen and strengthen tissueequivalents for tissue engineering. J. Biomed. Mater. Res. 46:87–92.

    Article  PubMed  CAS  Google Scholar 

  • Girton TS, Tranquillo RT. 2001. Confined compression of a tissue-equivalent: collagen fibril and cell alignment in response to anisotropic strain. J. Biomech. Eng. (accepted).

    Google Scholar 

  • Grassl ED, Oegema TR, Tranquillo RT. 2002. Fibrin as an alternative biopolymer to type I collagen for fabrication of a media-equivalent. J Biomed Mat Res 60(4):607–612.

    CAS  Google Scholar 

  • Grinnell F, Lamke CR. 1984. Reorganization of hydrated collagen lattices by human skin fibroblasts. J. Cell Sci. 66:51–63.

    PubMed  CAS  Google Scholar 

  • Guido S, Tranquillo RT. 1993. A methodology for the systematic and quantitative study of cell contact guidance in oriented collagen gels: correlation of fibroblast orientation and gel birefringence. J. Cell Sci. 105:317–331.

    PubMed  Google Scholar 

  • Guidry C, Grinnell F. 1985. Studies on the mechanism of hydrated collagen gel reorganization by human skin fibroblasts. J. Cell Sci. 79:67–81.

    PubMed  CAS  Google Scholar 

  • Guidry C, Grinnell F. 1986. Contraction of hydrated collagen gels by fibroblasts: evidence for two mechanisms by which collagen fibrils are stabilized. Collagen Rel. Res. 6:515–529.

    Google Scholar 

  • Harris AK, Stopak D, Wild P. 1981. Fibroblast traction as a mechanism for collagen morphogenesis. Nature 290:249–251.

    Article  PubMed  CAS  Google Scholar 

  • Haston WS, Shields JM, Wilkinson PC. 1983. The orientation of fibroblasts and neutrophils on elastic substrata. Exp. Cell Res. 146:117–126.

    Article  PubMed  CAS  Google Scholar 

  • Hirai J, Matsuda T. 1995. Self-organized, tubular hybrid vascular tissue composed of vascular cells and collagen for low-pressure-loaded venous system. Cell Transplant. 4:597–608.

    PubMed  CAS  Google Scholar 

  • Huang D, Chang TR, Aggarwal A, Lee RC, Ehrlich HP. 1993. Mechanisms and dynamics of mechanical strengthening in ligament-equivalent fibroblast-populated collagen matrices. Ann. Biomed. Eng. 21:289–305.

    Article  PubMed  CAS  Google Scholar 

  • Humphrey JD. 1999. Remodeling of a collagenous tissue at fixed lengths. J. Biomech. Eng. 121:591–597.

    PubMed  CAS  Google Scholar 

  • Kanda K, Matsuda T, Oka T. 1993. Mechanical stress induced cellular orientation and phenotypic modulation of 3-D cultured smooth muscle cells. ASAIO J. 39:M686–M690.

    PubMed  CAS  Google Scholar 

  • Kim B-S, Nikolovski J, Bonadio J, Mooney DJ. 1999. Cyclic mechanical strain regulates the development of engineered smooth muscle tissue. Nat. Biotechnol. 17:979–983.

    Article  PubMed  CAS  Google Scholar 

  • Klebe RJ, Caldwell H, Milam S. 1989. Cells transmit spatial information by orienting collagen fibers. Matrix 9:451–458.

    PubMed  CAS  Google Scholar 

  • Knapp DM, Barocas VH, Moon AG, Yoo K, Petzold LR, Tranquillo RT. 1997. Rheology of reconstituted type I collagen gel in confined compression. J. Rheol. 41:971–993.

    Article  CAS  Google Scholar 

  • Knapp DM, Barocas VB, Tower TT, Tranquillo RT. 1999. Estimation of cell traction and migration in an isometric cell traction assay. AIChE J 45:2628–2640.

    Article  CAS  Google Scholar 

  • Kobashi T, Matsuda T. 1999. Fabrication of branched hybrid vascular prostheses. Tissue Eng. 5:515–524.

    PubMed  CAS  Google Scholar 

  • Kolodney MS, Elson EL. 1993. Correlation of myosin light chain phosphorylation with isometric contraction of fibroblasts. J. Biol. Chem. 268:23850–23855.

    PubMed  CAS  Google Scholar 

  • L’Heureux N, Germain L, Labbe R, Auger FA. 1993. in vitro construction of a human blood vessel from cultured vascular cells: a morphologic study. J. Vasc. Surg. 17:499–509.

    PubMed  CAS  Google Scholar 

  • L’Heureux N, Paquet S, Labbe R, Germain L, Auger FA. 1998. A completely biological tissue-engineered human blood vessel. FASEB J. 12:47–56.

    PubMed  CAS  Google Scholar 

  • Langer R, Vacanti JP. 1993. Tissue engineering. Science 260:920–926.

    PubMed  CAS  Google Scholar 

  • Li Q, Muragaki Y, Hatamura I, Ueno H, Ooshima A. 1998. Stretch-induced collagen synthesis in cultured smooth muscle cells from rabit aortic media and a possible involvement of angiotensin II and transforming growth factor-β. J. Vasc. Res. 35:93–103.

    Article  PubMed  CAS  Google Scholar 

  • Lopez Valle CA, Auger FA, Rompre R, Bouvard V, Germain L. 1992. Peripheral anchorage of dermal equivalents. Br. J. Dermatol. 127:365–371.

    PubMed  CAS  Google Scholar 

  • Michel M, Germain L, Auger FA. 1993. Anchored skin equivalent cultured in vitro: a new tool for percutaneous absorption studies. In Vitro Cell. Dev. Biol. 29A:834–837.

    CAS  Google Scholar 

  • Moon AG, Tranquillo RT. 1993. The fibroblast-populated collagen microsphere assay of cell traction force-Part 1. Continuum Model. AIChE J 39:163–177.

    Article  CAS  Google Scholar 

  • Muller MF, Ris H, Ferry JD. 1984. Electron microscopy of fine fibrin clots and fine and coarse fibrin films. Observations of fibers in cross-section and in deformed states. J. Mol. Biol. 174:369–384.

    Article  PubMed  CAS  Google Scholar 

  • Neidert MR, Lee ES, Tower TT, Oegema TR, Tranquillo RT. 2002. Enhanced fibrin remodeling in vitro for improved tissue-equivalents. Biomaterials 23(17):3717–31.

    Article  PubMed  CAS  Google Scholar 

  • Niklason LE, Gao J, Abbot WM, Hirschi KK, Houser S, Marini R, Langer R. 1999. Functional arteries grown in vitro. Science 284:489–493.

    Article  PubMed  CAS  Google Scholar 

  • Ogle BM, Mooradian DL. 1999. The role of vascular smooth muscle cell integrins in the compaction and mechanical strengthening of a tissue-engineered blood vessel. Tissue Eng. 5:387–402.

    PubMed  CAS  Google Scholar 

  • Phillips CL, Tajima S, Pinnel SR. 1992. Ascorbic acid and transforming growth factor-β1 increase collagen biosynthesis via different mechanisms: coordinate regulation of Proα1(I) and Proα1(III) collagens. Arch. Biochem. Biophys. 295:397–403.

    Article  PubMed  CAS  Google Scholar 

  • Riser BL, Cortes P, Yee J, Sharba AK, Asano K, Rodriguez-Barbero A, Narins RG. 1998. Mechanical strain-and high glucose-induced alterations in mesangial cell collagen metabolism: role of TGF-β. J. Am. Soc. Nepphrol. 9:827–836.

    CAS  Google Scholar 

  • Schreiber RE, Ratcliffe A. 2000. Tissue engineering of cartilage. Methods Mol. Biol. 139:301–309.

    PubMed  CAS  Google Scholar 

  • Seliktar D, Black RA, Vito RP, Nerem RM. 2000. Dynamic mechanical conditioning of collagen-gel blood vessel constructs induces remodeling in vitro. Ann. Biomed. Eng. 28:351–362.

    Article  PubMed  CAS  Google Scholar 

  • Shansky J, Del Tatto M, Chromiak J, Vandenburgh H. 1997. A simplified method for tissue engineering skeletal muscle organoids in vitro [letter]. In Vitro Cell. Dev. Biol. Anim. 33:659–661.

    PubMed  CAS  Google Scholar 

  • Stopak D, Harris AK. 1982. Connective tissue morphogenesis by fibroblast traction. I. Tissue culture observations. Dev. Biol. 90:383–398.

    Article  PubMed  CAS  Google Scholar 

  • Sumpio BE, Banes AJ, Link WG, Johnson G. 1988. Enhanced collagen production by smooth muscle cells during repetitive mechanical stretching. Arch. Surg. 123:1233–1236.

    PubMed  CAS  Google Scholar 

  • Toolan BC, Frenkel SR, Pachence JM, Yalowitz L, Alexander H. 1996. Effects of growth-factorenhanced culture on a chondrocyte-collagen implant for cartilage repair. J. Biomed. Mater. Res. 31:273–280.

    Article  PubMed  CAS  Google Scholar 

  • Tower TT, Neidert MR, Tranquillo RT. accepted. Concurrent alignment imaging and mechanical testing of tissues.

    Google Scholar 

  • Tranquillo RT, Durrani MA, Moon AG. 1992. Tissue engineering science: consequences of cell traction force. Cytotechnology 10:225–250.

    Article  PubMed  CAS  Google Scholar 

  • Tuan TL, Song A, Chang S, Younai S, Nimni ME. 1996. in vitro fibroplasia: matrix contraction, cell growth, and collagen production of fibroblasts cultured in fibrin gels. Exp. Cell Res. 223:127–134.

    Article  PubMed  CAS  Google Scholar 

  • Weinberg CB, Bell E. 1986. A blood vessel model constructed from collagen and cultured vascular cells. Science 231:397–400.

    PubMed  CAS  Google Scholar 

  • Weiser L, Bhargava M, Attia E, Torzilli PA. 1999. Effect of serum and platelet-derived growth factor on chondrocytes grown in collagen gels. Tissue Eng. 5:533–544.

    PubMed  CAS  Google Scholar 

  • Wilkins LM, Watson SR, Prosky SJ, Meunier SF, Parenteau NL. 1994. Development of a bilayered living skin construct for clinical applications. Biotechnol. Bioeng. 43:747–756.

    Article  Google Scholar 

  • Woo SL, Hildebrand K, Watanabe N, Fenwick JA, Papageorgiou CD, Wang JH. 1999. Tissue engineering of ligament and tendon healing. Clin. Orthop. Rel. Res. (367 Suppl) S312–323.

    Google Scholar 

  • Ye Q, Zund G, Benedikt P, Jockenhoevel S, Hoerstrup SP, Sakyama S, Hubbell JA, Turina M. 2000a. Fibrin gel as a three dimensional matrix in cardiovascular tissue engineering. Eur. J. Cardiothorac Surg. 17:587–591.

    PubMed  CAS  Google Scholar 

  • Ye Q, Zund G, Jockenhoevel S, Hoerstrup SP, Schoeberlein A, Grunenfelder J, Turina M. 2000b. Tissue engineering in cardiovascular surgery: new approach to develop completely human autologous tissue. Eur. J. Cardiothorac Surg. 17:449–454.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag New York, Inc.

About this chapter

Cite this chapter

Tranquillo, R.T., Isenberg, B.C. (2003). Artificial Soft Tissue Fabrication from Cell-Contracted Biopolymers. In: Guilak, F., Butler, D.L., Goldstein, S.A., Mooney, D.J. (eds) Functional Tissue Engineering. Springer, New York, NY. https://doi.org/10.1007/0-387-21547-6_23

Download citation

  • DOI: https://doi.org/10.1007/0-387-21547-6_23

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-0-387-95553-7

  • Online ISBN: 978-0-387-21547-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics