Skip to main content
Log in

Biased cell migration of fibroblasts exhibiting contact guidance in oriented collagen gels

  • Research Articles
  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

We present here the first quantitative correlation for cell contact guidance in an oriented fibrillar network in terms of biased cell migration. The correlation is between the anisotropic cell diffusion parameter,D A=Dx/Dy, and the collagen gel birefringence, Δn, a measure of axially biased collagen fibril orientation in thex-direction. The cell diffusion coefficients,D x andD y, measure the dispersal of cells in the directions coincident with and normal to the axis of fibril orientation, respectively. Three essential methodological components are involved: (i) exploiting the orienting effect of a magnetic field on collagen fibrils during fibrillogenesis to systematically prepare uniform axially oriented collagen gels; (ii) using a microscope/image analysis workstation with precise, computer-controlled rotating and translating stages to automate birefringence measurement and, along with rapid “coarse optical sectioning” via digital image processing, to enable 3-D cell tracking of many cells in multiple samples simultaneously; and (iii) employing a rigorous statistical analysis of the cell tracks to estimate the magnitude and precision of the direction-dependent cell diffusion coefficients,D x andD y, that defineD A. We find that this measure of biased migration in contact guidance (D A) increases with increasing collagen fibril orientation (Δn) due mainly to a rapid enhancement of migration along the axis of fibril orientation at low levels of fibril orientation, and to a continued suppression of migration normal to the axis of fibril orientation at high levels of fibril orientation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Barocas, V.H.; Tranquillo, R.T. Biphasic model andin vitro assays of cell-fibril mechanical interactions in tissueequivalent gels. In: V.C. Mow, ed. Cell mechanics and cellular engineering. Springer-Verlag: New York; 1994.

    Google Scholar 

  2. Dickinson, R.B.; McCarthy, J.B.; Tranquillo, R.T. Quantitative characterization of cell invasionin vitro: formulation and validation of a mathematical model of the collagen gel invasion assay. Ann. Biomed. Eng. 21:679–697; 1993.

    Article  CAS  PubMed  Google Scholar 

  3. Dickinson, R.B.; Tranquillo, R.T. Optimal estimation of cell movement indices from the statistical analysis of cell tracking data. AIChE J 39:1995–2010; 1993.

    Article  Google Scholar 

  4. Dickinson, R.B.; Tranquillo, R.T. A stochastic model for adhesion-mediated cell random motility and haptotaxis. J. Math. Biol. 31:563–600; 1993.

    Article  CAS  PubMed  Google Scholar 

  5. Dunn, G.A. Characterising a kinesis response: time averaged measures of cell speed and directional persistence. Agents Actions Suppl. 12:14–33; 1983.

    CAS  PubMed  Google Scholar 

  6. Dunn, G.A. Chemotaxis as a form of directed cell behaviour: some theoretical considerations. In: Lackie, J.M.; Wilkinson, P.C., eds. Biology of the chemotactic response. Cambridge University Press: Cambridge; 1981: pp. 1–26.

    Google Scholar 

  7. Dunn, G.A. Contact guidance of cultured tissue cells: a survey of potentially relevant properties of the substratum. In: Bellairs, R.; Curtis, A.; Dunn, G., eds. Cell behaviour. Cambridge University Press: Cambridge; 1982: pp. 247–280.

    Google Scholar 

  8. Dunn, G.A.; Brown, A.F. A unified approach to analysing cell motility. J. Cell. Sci. Suppl. 8:81–102; 1987.

    CAS  PubMed  Google Scholar 

  9. Freshney, R.I. Culture of animal cells: a manual of basic technique, 2nd ed. Alan R. Liss, Inc.: New York; 1987.

    Google Scholar 

  10. Furth, V.R. Die Brownshe Bewegung bei Berucksichtigung einer Persistenze der Bewegungsrichtung. Mit Anwendungen auf die Bewegung lebender Infusorien. Zeit. f. Phys. II:244–256; 1920.

    Google Scholar 

  11. Gail, M.H.; Boone, C.W. The locomotion of mouse fibroblasts in tissue culture. Biophys. J. 10:980–993; 1970.

    CAS  PubMed  Google Scholar 

  12. Guido, S.; Tranquillo, R.T. A methodology for the systematic and quantitative study of cell contact guidance in oriented collagen gels: correlation of fibroblast orientation and gel birefringence. J. Cell. Sci. 105:317–331; 1993.

    PubMed  Google Scholar 

  13. Harris, A.K. Tissue culture cells on deformable substrata: biomechanical implications. J. Biomech. Eng. 106:19–24; 1984.

    PubMed  Google Scholar 

  14. Harris, A.K.; Stopak, D.; Wild, P. Fibroblast traction as a mechanism for collagen morphogenesis. Nature 290:249–251; 1981.

    Article  CAS  PubMed  Google Scholar 

  15. Haston, W.S.; Shields, J.M.; Wilkinson, P.C. The orientation of fibroblasts and neutrophils on elastic substrata. Exp. Cell. Res. 146:117–126; 1983.

    Article  CAS  PubMed  Google Scholar 

  16. Heath, J.P.; Hedlund, K.-O. Locomotion and cell surface movements of fibroblasts in fibrillar collagen gels. Scan. Electron Microsc. 4:2031–2043; 1984.

    Google Scholar 

  17. Inoue, S. Video microscopy. Plenum Press: New York; 1987.

    Google Scholar 

  18. Matthes, T.; Gruler, H. Analysis of cell locomotion. Contact guidance of human polymorphonuclear leukocytes. Eur. Biophys. J. 15:343–357; 1988.

    Article  CAS  PubMed  Google Scholar 

  19. Modis, L. Organization of the extracellular matrix: a polarization microscopic approach. CRC Press: Boca Raton; 1991.

    Google Scholar 

  20. Noble, P.B. Extracellular matrix and cell migration: locomotory characteristics of MOS-11 cells within a three-dimensional hydrated collagen lattice. J. Cell. Sci. 87:241–248; 1987.

    PubMed  Google Scholar 

  21. Noble, P.B.; Boyarsky, A. Analysis of cell three-dimensional locomotory vectors. Exp. Cell. Biol. 56:289–296; 1988.

    CAS  PubMed  Google Scholar 

  22. Noble, P.B.; Shields, E.D. Time-based changes in fibroblast three-dimensional locomotory characteristics and phenotypes. Exp. Cell. Biol. 57:238–245; 1989.

    CAS  PubMed  Google Scholar 

  23. Othmer, H. G.; Dunbar, S. R.; Alt, W. Models of dispersal in biological systems. J. Math. Biol. 26:263–298; 1988.

    Article  CAS  PubMed  Google Scholar 

  24. Parkhurst, M.R.; Saltzman, W.M. Quantification of human neurotrophil motility in three-dimensional collagen gels. Biophys. J. 61:306–315; 1992.

    CAS  PubMed  Google Scholar 

  25. Stopak, D.; Harris, A.K. Connective tissue morphogenesis by fibroblast traction. I. Tissue culture observations. Dev. Biol. 90:383–398; 1982.

    Article  CAS  PubMed  Google Scholar 

  26. Torbet, J.; Ronziere, M.C. Magnetic alignment of collagen during self-assembly. Biochem. J. 219:1057–1059; 1984.

    CAS  PubMed  Google Scholar 

  27. Tranquillo, R.T.; Alt, W. Glossary of terms concerning oriented movement. In: Alt, W.; Hoffman, G., eds. Biological motion. Springer-Verlag: Berlin; 1990, Vol. 89: pp. 510–517.

    Google Scholar 

  28. Tranquillo, R.T.; Durrani, M.A.; Moon, A.G. Tissue engineering science: consequences of cell traction force. Cytotechnology 10:225–250; 1992.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dickinson, R.B., Guido, S. & Tranquillo, R.T. Biased cell migration of fibroblasts exhibiting contact guidance in oriented collagen gels. Ann Biomed Eng 22, 342–356 (1994). https://doi.org/10.1007/BF02368241

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02368241

Keywords

Navigation