Skip to main content

Psychrotolerant Microbes: Characterization, Conservation, Strain Improvements, Mass Production, and Commercialization

  • Chapter
  • First Online:
Microbiological Advancements for Higher Altitude Agro-Ecosystems & Sustainability

Part of the book series: Rhizosphere Biology ((RHBIO))

Abstract

Exploring cold habitats offers untapped sites for screening and harnessing potential/novel psychrotrophic microbes bestowed with the characteristic to grow near 0 °C and optima lying in mesophilic range. These microbes are of great commercial importance and find multiple uses in different areas such as industries, pharmaceuticals, and agriculture as they are potential producers of enzymes, peptides, biodetergents, antibiotics and acquire multiple plant growth-promoting traits. Utility of such cold-active microbial strains is of immense need for high altitude agroecosystems due to the unique climatic conditions. Hence, it is crucial to identify, characterize, and conserve these beneficial microbes that maintain their functional properties under cold temperature conditions. This chapter is likely to provide some more insights into the recent developments associated with improvement and large-scale production of psychrotolerant microbes as well as scaling up for commercial production.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Araujo R, Casal M, Cavaco-Paulo A (2008) Application of enzymes for textile fibres processing. Biocatal Biotransformation 26(5):332–349

    Article  CAS  Google Scholar 

  • Bakker AW, Schippers B (1987) Microbial cyanide production in the rhizosphere in relation to potato yield reduction and Pseudomonas spp. mediated plant growth-stimulation. Soil Biol Biochem 19(4):451–457

    Article  CAS  Google Scholar 

  • Balaji V, Ebenezer P (2008) Optimization of extracellular lipase production in Colletotrichum gloeosporioides by solid state fermentation. Indian J Sci Technol 1:1–8

    Google Scholar 

  • Banerjee R, Halder A, Natta A (2016) Psychrophilic microorganisms: habitats and exploitation potentials. Eur J Biotechnol Biosci 4:16–24

    Google Scholar 

  • Boddey R, De Oliveira O, Urquiaga S, Reis V, De Olivares F, Baldani V, Döbereiner J (1995) Biological nitrogen fixation associated with sugar cane and rice: contributions and prospects for improvement. Plant Soil 174(1–2):195–209

    Article  CAS  Google Scholar 

  • Bollmann A, Lewis K, Epstein SS (2007) Incubation of environmental samples in a diffusion chamber increases the diversity of recovered isolates. Appl Environ Microbiol 73:6386–6390

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bric JM, Bostock RM, Silverstone SE (1991) Rapid in situ assay for indoleacetic acid production by bacteria immobilized on a nitrocellulose membrane. Appl Environ Microbiol 57(2):535–538

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bridges BA (2001) Hypermutation in bacteria and other cellular systems. Philos Trans R Soc Lond B Biol Sci 356(1405):29–39

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cappuccino JC, Sherman N (1992) Microbiology: a laboratory manual, 3rd edn. Benjamin/Cummings Pub. Co., New York, pp 125–179

    Google Scholar 

  • Carrasco M, Villarreal P, Barahona S, Alcaíno J, Cifuentes V, Baeza M (2016) Screening and characterization of amylase and cellulase activities in psychrotolerant yeasts. BMC Microbiol 16(1):21

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Cheng Z, Park E, Glick BR (2007) 1-Aminocyclopropane-1- carboxylate (ACC) deaminase from Pseudomonas putida UW4 facilitates the growth of canola in the presence of salt. Can J Microbiol 53(7):912–918

    Article  CAS  PubMed  Google Scholar 

  • Chisti Y (1999) Shear sensitivity. In: Flickinger MC, Drew SW (eds) Encyclopedia of bioprocess technology: fermentation, biocatalysis, and bioseparation, vol 5. Wiley, New York, pp 2379–2406

    Google Scholar 

  • Das K, Katiyar V, Goel R (2003) ‘P’ solubilization potential of plant growth promoting Pseudomonas mutants at low temperature. Microbiol Res 158(4):359–362

    Article  PubMed  Google Scholar 

  • Dhakar K, Pandey A (2016) Wide pH range tolerance in extremophiles: towards understanding an important phenomenon for future biotechnology. Appl Microbiol Biotechnol 100:2499–2510

    Article  CAS  PubMed  Google Scholar 

  • Dominguez C, Boelens R, Bonvin AM (2003) HADDOCK: a protein−protein docking approach based on biochemical or biophysical information. J Am Chem Soc 125(7):1731–1737

    Article  CAS  PubMed  Google Scholar 

  • Dong J, Gasmalla MA, Zhao W, Sun J, Liu W, Wang M, Han L, Yang R (2017) Characterization of a cold-adapted esterase and mutants from a psychrotolerant Pseudomonas sp. strain. Biotechnol Appl Biochem 64(5):686–699

    Article  CAS  PubMed  Google Scholar 

  • Doraisamy S, Nakkeeran S, Chandrasekar G (2001) Trichoderma—bioarsenal in plant disease management and its scope for commercialization. In: Proceedings of Indian Phytopathological Society, Southern Zone Meeting, 10–12 December 2001. Indian Institute of Spice Research, Calicut, pp 43–55

    Google Scholar 

  • Elibol M, Ozer D (2000) Influence of oxygen transfer on lipase production by Rhizopus arrhizus. Process Biochem 36(4):325–329

    Article  Google Scholar 

  • Fasim F, Ahmed N, Parsons R, Gadd GM (2002) Solubilization of zinc salts by a bacterium isolated from the air environment of a tannery. FEMS Microbiol Lett 213(1):1–6

    Article  CAS  PubMed  Google Scholar 

  • Feller G, Gerday C (2003) Psychrophilic enzymes: hot topics in cold adaptation. Nat Rev Microbiol 1(3):200

    Article  CAS  PubMed  Google Scholar 

  • Ferrer M, Golyshina O, Beloqui A, Golyshin PN (2007) Mining enzymes from extreme environments. Curr Opin Microbiol 10(3):207–214

    Article  CAS  PubMed  Google Scholar 

  • Glick BR (1995) The enhancement of plant growth by free-living bacteria. Can J Microbiol 41(2):109–117

    Article  CAS  Google Scholar 

  • Griffith GW (2012) Do we need a global strategy for microbial conservation? Trends Ecol Evol 27(1):1–2

    Article  PubMed  Google Scholar 

  • Gulati A, Vyas P, Rahi P, Kasana RC (2009) Plant growth-promoting and rhizosphere-competent Acinetobacter rhizosphaerae strain BIHB 723 from the cold deserts of the Himalayas. Curr Microbiol 58(4):371–377

    Article  CAS  PubMed  Google Scholar 

  • Gunasekaran V, Das D (2005) Lipase fermentation: progress and prospects. Indian J Biotechnol 4:437–445

    CAS  Google Scholar 

  • GuoYing XU, ShuoShuo CU, XueZheng LI (2011) Cloning and heterologous expression of pro-2127, a gene encoding cold-active protease from Pseudoalteromonas sp. QI-1. Adv Polar Sci 22(2):124–130

    Google Scholar 

  • Hacia JG, Makalowski W, Edgemon K, Erdos MR, Robbins CM, Fodor SP, Brody LC, Collins FS (1998) Evolutionary sequence comparisons using high-density oligonucleotide arrays. Nat Genet 18:155–158

    Article  CAS  PubMed  Google Scholar 

  • Hellmuth K, van den Brink JM (2013) Microbial production of enzymes used in food applications. In: Microbial production of food ingredients, enzymes and nutraceuticals. Woodhead Publishing, Cambridge, pp 262–287

    Chapter  Google Scholar 

  • Hemachander C, Bose N, Puvanakrishnan R (2001) Whole cell immobilization of Ralstonia pickettii for lipase production. Process Biochem 36(7):629–633

    Article  CAS  Google Scholar 

  • Heywood VH, Dulloo ME (2005) In situ conservation of wild plant species: a critical global review of best practices. IPGRI Technical Bulletin No. 11. p 5

    Google Scholar 

  • Ito T, Kikuta H, Nagamori E, Honda H, Ogino H, Ishikawa H, Kobayashi T (2001) Lipase production in two-step fed-batch culture of organic solvent-tolerant Pseudomonas aeruginosa LST-03. J Biosci Bioeng 91(3):245–250

    Article  CAS  PubMed  Google Scholar 

  • Kademi A, Danielle L, Ajain H (2005) Lipases. Enzyme Technol 15:297–318

    Google Scholar 

  • Kaeberlein T, Lewis K, Epstein SS (2002) Isolating ‘uncultivable’ microorganisms in pure culture in a simulated natural environment. Science 296:1127–1129

    Article  CAS  PubMed  Google Scholar 

  • Katiyar V, Goel R (2004) Siderophore mediated plant growth promotion at low temperature by mutant of fluorescent pseudomonad. Plant Growth Regul 42(3):239–244

    Article  CAS  Google Scholar 

  • Kepner RLJ, Pratt JR (1994) Use of fluorochromes for direct enumeration of total bacteria in environmental samples: past and present. Microbiol Rev 58:603–615

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kuddus M, Ramteke PW (2009) Cold-active extracellular alkaline protease from an alkaliphilic Stenotrophomonas maltophilia: production of enzyme and its industrial applications. Can J Microbiol 55(11):1294–1301

    Article  CAS  PubMed  Google Scholar 

  • Kuddus M, Ramteke PW (2011) Production optimization of an extracellular cold-active alkaline protease from Stenotrophomonas maltophilia MTCC 7528 and its application in detergent industry. Afr J Microbiol Res 5(7):809–816

    Article  CAS  Google Scholar 

  • Kulakova L, Galkin A, Kurihara T, Yoshimura T, Esaki N (1999) Cold-active serine alkaline protease from the psychrotrophic bacterium Shewanella strain Ac10: gene cloning and enzyme purification and characterization. Appl Environ Microbiol 65(2):611–617

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar D, Bhalla TC (2005) Microbial proteases in peptide synthesis: approaches and applications. Appl Microbiol Biotechnol 68(6):726–736

    Article  CAS  PubMed  Google Scholar 

  • Kumar S, Suyal DC, Dhauni N, Bhoriyal M, Goel R (2014) Relative plant growth promoting potential of Himalayan Psychrotolerant Pseudomonas jesenii strain MP1 against native Cicer arietinum (L.)., Vigna mungo (L.) Hepper; Vigna radiata (L.) Wilczek., Cajanus cajan (L.) Millsp. and Eleusine coracana (L.) Gaertn. Afr J Microbiol Res 8(50):3931–3943

    Google Scholar 

  • Margesin R, Schinner F (1994) Properties of cold-adapted microorganisms and their potential role in biotechnology. J Biotechnol 33(1):1–4

    Article  CAS  Google Scholar 

  • Margesin R, Fauster V, Fonteyne PA (2005) Characterization of cold-active pectate lyases from psychrophilic Mrakia frigida. Lett Appl Microbiol 40(6):453–459

    Article  CAS  PubMed  Google Scholar 

  • Maukonen J, Mättö J, Wirtanen G, Raaska L, Mattila-Sandholm T, Saarela M (2003) Methodologies for the characterization of microbes in industrial environments: a review. J Ind Microbiol Biotechnol 30(6):327–356

    Article  CAS  PubMed  Google Scholar 

  • McBeath J (1995) Cold tolerant Trichoderma. US Patent #5,418,165

    Google Scholar 

  • Menoncin S, Domingues NM, Freire DM, Toniazzo G, Cansian RL, Oliveira JV, Di Luccio M, de Oliveira D, Treichel H (2008) Study of the extraction, concentration, and partial characterization of lipases obtained from Penicillium verrucosum using solid-state fermentation of soybean bran. Food Bioprocess Technol 3(4):537–544

    Article  CAS  Google Scholar 

  • Methé BA, Nelson KE, Deming JW, Momen B, Melamud E, Zhang X, Moult J, Madupu R, Nelson WC, Dodson RJ, Brinkac LM (2005) The psychrophilic lifestyle as revealed by the genome sequence of Colwellia psychrerythraea 34H through genomic and proteomic analyses. Proc Natl Acad Sci U S A 102(31):10913–10918

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Mishra PK, Mishra S, Selvakumar G, Bisht SC, Bisht JK, Gupta HS (2008) Characterization of a psychrotolerant plant growth promoting Pseudomonas sp. strain PGERs17 (MTCC 9000) isolated from North Western Indian Himalayas. Ann Microbiol 58:561–568

    Article  Google Scholar 

  • Mishra PK, Mishra S, Bisht SC, Selvakumar G, Kundu S, Bisht J, Gupta HS (2009) Isolation, molecular characterization and growth-promotion activities of a cold tolerant bacterium Pseudomonas sp. NARs9 (MTCC9002) from the Indian Himalayas. Biol Res 42(3):305–313

    Article  CAS  PubMed  Google Scholar 

  • Mishra PK, Joshi P, Bisht SC, Bisht JK, Selvakumar G (2010) Cold-tolerant agriculturally important microorganisms. In: Plant growth and health promoting bacteria. Springer, Berlin, pp 273–296

    Chapter  Google Scholar 

  • Morita RY (1975) Psychrophilic bacteria. Bacteriol Rev 39:144–167

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Najafi MF, Deobagkar D, Deobagkar D (2005) Potential application of protease isolated from Pseudomonas aeruginosa PD100. Electron J Biotechnol 8(2):79–85

    Article  Google Scholar 

  • Nakkeeran S, Kavitha K, Mathiyazhagan S, Fernando WGD, Chandrasekar G, Renukadevi P (2004) Induced systemic resistance and plant growth promotion by Pseudomonas chlororaphis strain PA-23 and Bacillus subtilis strain CBE4 against rhizome rot of turmeric (Curcuma longa L). Can J Plant Pathol 26:417–418

    Google Scholar 

  • Narinx E, Baise E, Gerday C (1997) Subtilisin from psychrophilic Antarctic bacteria: characterization and site-directed mutagenesis of residues possibly involved in the adaptation to cold. Protein Eng 10(11):1271–1279

    Article  CAS  PubMed  Google Scholar 

  • Nichols D, Lewis K, Orjala J, Mo S, Ortenberg R, O’Connor P, Zhao C, Vouros P, Kaeberlein T, Epstein SS (2008) Short peptide induces an “uncultivable” microorganism to grow in vitro. Appl Environ Microbiol 74(15):4889–4897

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ottenheim C, Nawrath M, Wu JC (2018) Microbial mutagenesis by atmospheric and room-temperature plasma (ARTP): the latest development. Biores Bioprocess 5(1):12

    Article  Google Scholar 

  • Pandey A, Trivedi P, Palni LMS (2006) Characterization of phosphate solubilizing and antagonistic strain of Pseudomonas putida (BO) isolated from a sub-alpine location in the Indian Central Himalaya. Curr Microbiol 53:102–107

    Article  CAS  PubMed  Google Scholar 

  • Pandey A, Dhakar K, Jain R, Pandey N, Gupta VK, Kooliyottil R, Adhikari P (2019) Cold adapted fungi from Indian Himalaya: untapped source for bioprospecting. Proc Natl Acad Sci India Sect B Biol Sci 89(4):1125–1132

    Article  CAS  Google Scholar 

  • Patten CL, Glick BR (2002) Role of Pseudomonas putida indoleacetic acid in development of the host plant root system. Appl Environ Microbiol 68(8):3795–3801

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pikovskaya R (1948) Mobilization of phosphorus in soil in connection with vital activity of some microbial species. Mikrobiologiya 17:362–370

    CAS  Google Scholar 

  • Ramana KV, Singh L, Dhaked RK (2000) Biotechnological application of psychrophiles and their habitat to low-temperature. J Sci Ind Res 59:87–101

    CAS  Google Scholar 

  • Refai M, El-Yazid HA, Tawakko W (2015) Monograph on the genus Penicillium- A guide for historical, classification and identification of Penicillium, their industrial applications and detrimental effects. 157pp

    Google Scholar 

  • Russell NJ (1990) Cold adaptation of micro-organism. Philos Trans R Soc Lond B Biol Sci 326:595–611

    Article  CAS  PubMed  Google Scholar 

  • Saranraj P, Sivasakthivelan P, Sivasakthi S (2013) Prevalence and production of plant growth promoting substance by Pseudomonas fluorescens isolated from paddy rhizosphere soil of Cuddalore district, Tamil Nadu, India. Afr J Basic Appl Sci 5(2):95–101

    CAS  Google Scholar 

  • Satyanarayana T (1994) Production of bacterial extracellular enzymes by solid-state fermentation. In: Pandey A (ed) Solid-state fermentation. Wiley Eastern Limited, New Delhi, pp 122–129

    Google Scholar 

  • Saxena RK, Sheoran A, Giri B, Davidson WS (2003) Purification strategies for microbial lipases. J Microbiol Methods 52(1):1–8

    Article  CAS  PubMed  Google Scholar 

  • Schwyn B, Neilands J (1987) Universal chemical assay for the detection and determination of siderophores. Anal Biochem 160(1):47–56

    Article  CAS  PubMed  Google Scholar 

  • Selvakumar G, Kundu S, Joshi P, Gupta AD, Nazim S, Mishra PK, Gupta HS (2008a) Characterization of a cold-tolerant plant growth-promoting bacterium Pantoea dispersa 1A isolated from a sub-alpine soil in the North Western Indian Himalayas. World J Microbiol Biotechnol 24:955–960

    Article  CAS  Google Scholar 

  • Selvakumar G, Mohan M, Kundu S, Gupta AD, Joshi P, Nazim S, Gupta HS (2008b) Cold tolerance and plant growth promotion potential of Serratia marcescens strain SRM (MTCC 8708) isolated from flowers of summer squash (Cucurbita pepo). Lett Appl Microbiol 46:171–175

    Article  CAS  PubMed  Google Scholar 

  • Selvakumar G, Joshi P, Nazim S, Mishra P, Bisht J, Gupta H (2009a) Phosphate solubilization and growth promotion by Pseudomonas fragi CS11RH1 (MTCC 8984), a psychrotolerant bacterium isolated from a high altitude Himalayan rhizosphere. Biologia 64(2):239–245

    Article  CAS  Google Scholar 

  • Selvakumar G, Joshi P, Nazim S, Mishra PK, Kundu S, Gupta HS (2009b) Exiguobacterium acetylicum strain 1P (MTCC 8707) a novel bacterial antagonist from the North Western Indian Himalayas. World J Microbiol Biotechnol 25:131–137

    Article  Google Scholar 

  • Selvakumar G, Joshi P, Suyal P, Mishra PK, Joshi GK, Bisht JK, Bhatt JC, Gupta HS (2011) Pseudomonas lurida M2RH3 (MTCC 9245), a psychrotolerant bacterium from the Uttarakhand Himalayas, solubilizes phosphate and promotes wheat seedling growth. World J Microbiol Biotechnol 27(5):1129–1135

    Article  CAS  Google Scholar 

  • Sharma SK (2016) In-situ conservation I. Microbial conservation strategies and methodologies: status and challenges. Indian J Plant Genet Res 29(3):340–342

    Article  Google Scholar 

  • Sharma A, Shouche Y (2014) Microbial culture collection (MCC) and international depositary authority (IDA) at national centre for cell science, Pune. Indian J Microbiol 54(2):129–133

    Article  PubMed  PubMed Central  Google Scholar 

  • Sharma R, Chisti Y, Banerjee UC (2001) Production, purification, characterization, and applications of lipases. Biotechnol Adv 19(8):627–662

    Article  CAS  PubMed  Google Scholar 

  • Sharma SK, Singh SK, Ramesh A, Sharma PK, Varma A, Ahmad E, Khande R, Singh UB, Saxena AK (2018) Microbial genetic resources: status, conservation, and access and benefit-sharing regulations. In: Sharma S, Varma A (eds) Microbial resource conservation, Soil biology, vol 54. Springer, Cham

    Google Scholar 

  • Sharma SK, Saini S, Verma A, Sharma PK, Lal R, Roy M, Singh UB, Saxena AK, Sharma AK (2019a) National agriculturally important microbial culture collection in the global context of microbial culture collection centres. Proc Natl Acad Sci India Sect B Biol Sci 89(2):405–418

    Article  Google Scholar 

  • Sharma SK, Singh SK, Ramesh A, Sharma PK, Varma A, Ahmad E, Khande R, Singh UB, Saxena AK (2019b) Microbial genetic resources: status, conservation, and access and benefit sharing regulations. In: Sharma SK, Varma A (eds) Microbial resource conservation conventional to modern approaches. Springer Nature, Switzerland, pp 1–34. https://doi.org/10.1007/978-3-319-96971-8

    Chapter  Google Scholar 

  • Shukla L, Suman A, Yadav AN, Verma P, Saxena AK (2016) Syntrophic microbial system for ex-situ degradation of paddy straw at low temperature under controlled and natural environment. Appl Microbiol Biotechnol 4(2):30–37

    CAS  Google Scholar 

  • Siddiqui ZA, Mahmood I (1996) Biological control of Heterodera cajani and Fusarium udum on pigeon pea by Glomus mosseae, Trichoderma harzianum and Verticillium chlamydosporium. Israel J Plant Sci 44:49–56

    Article  Google Scholar 

  • Singh RN, Gaba S, Yadav AN, Gaur P, Gulati S, Kaushik R, Saxena AK (2016) First high quality draft genome sequence of a plant growth promoting and cold active enzyme producing psychrotrophic Arthrobacter agilis strain L77. Stand Genomic Sci 11:54

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Solanke AU, Sharma AK (2008) Signal transduction during cold stress in plants. Physiol Mol Biol Plants 14(1–2):69–79

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Soror SH, Verma V, Rao R, Rasool S, Koul S, Qazi GN, Cullum J (2007) A cold-active esterase of Streptomyces coelicolor A3 (2): from genome sequence to enzyme activity. J Ind Microbiol Biotechnol 34(8):525–531

    Article  CAS  PubMed  Google Scholar 

  • Temperton B, Giovannoni SJ (2012) Metagenomics: microbial diversity through a scratched lens. Curr Opin Microbiol 15(5):605–612

    Article  CAS  PubMed  Google Scholar 

  • Tindbaek N, Svendsen A, Oestergaard PR, Draborg H (2004) Engineering a substrate-specific cold-adapted subtilisin. Protein Eng Des Sel 17(2):149–156

    Article  CAS  PubMed  Google Scholar 

  • Turner SJ, Saul DJ, Rodrigo AG, Lewis GD (2002) A heteroduplex method for detection of targeted sub-populations of bacterial communities. FEMS Microbiol Lett 208:9–13

    Article  CAS  PubMed  Google Scholar 

  • Twardowski T, Małyska A (2015) Uninformed and disinformed society and the GMO market. Trends Biotechnol 33(1):1–3

    Article  CAS  PubMed  Google Scholar 

  • Vazquez SC, Coria SH, Mac Cormack WP (2008) Extracellular proteases from eight psychrotolerant Antarctic strains. Microbiol Res 159(2):157–166

    Article  CAS  Google Scholar 

  • Verma P, Yadav AN, Khannam KS, Panjiar N, Kumar S, Saxena AK, Suman A (2015) Assessment of genetic diversity and plant growth promoting attributes of psychrotolerant bacteria allied with wheat (Triticum aestivum) from the northern hills zone of India. Ann Microbiol 65(4):1885–1899

    Article  CAS  Google Scholar 

  • Verma P, Yadav AN, Khannam KS, Kumar S, Saxena AK, Suman A (2016) Molecular diversity and multifarious plant growth promoting attributes of bacilli associated with wheat (Triticum aestivum L.) rhizosphere from six diverse agro-ecological zones of India. J Basic Microbiol 56(1):44–58

    Article  CAS  PubMed  Google Scholar 

  • Verma P, Yadav AN, Kumar V, Singh DP, Saxena AK (2017) Beneficial plant-microbes interactions: biodiversity of microbes from diverse extreme environments and its impact for crops improvement. In: Singh DP, Singh HB, Prabha R (eds) Plant-microbe interactions in agroecological perspectives. Springer, Singapore, pp 543–580. https://doi.org/10.1007/978-981-10-6593-4.

    Chapter  Google Scholar 

  • Vester JK, Glaring MA, Stougaard P (2015) Improved cultivation and metagenomics as new tools for bioprospecting in cold environments. Extremophiles 19(1):17–29

    Article  CAS  PubMed  Google Scholar 

  • Vyas P, Joshi R, Sharma K, Rahi P, Gulati A, Gulati A (2010) Cold-adapted and rhizosphere-competent strain of Rahnella sp. with broad spectrum plant growth-promotion potential. J Microbiol Biotechnol 20(12):1724–1734

    CAS  PubMed  Google Scholar 

  • Wang M, Jiang X, Wu W, Hao Y, Su Y, Cai L, Xiang M, Liu X (2015) Psychrophilic fungi from the world’s roof. Persoonia 34:100–112

    Article  CAS  PubMed  Google Scholar 

  • World Federation for Culture Collections (2014). http://www.wfcc.info/ccinfo/index.php/home/content

  • Yadav AN, Sachan SG, Verma P, Saxena AK (2015) Prospecting cold deserts of north western Himalayas for microbial diversity and plant growth promoting attributes. J Biosci Bioeng 119(6):683–693

    Article  CAS  PubMed  Google Scholar 

  • Yadav AN, Verma P, Kour D, Rana KL, Kumar V, Singh B, Chauahan VS, Sugitha T, Saxena AK, Dhaliwal HS (2017) Plant microbiomes and its beneficial multifunctional plant growth promoting attributes. Int J Environ Sci Nat Res 3:1–8

    Google Scholar 

  • Yadav AN, Verma P, Sachan SG, Kaushik R, Saxena AK (2018) Psychrotrophic microbiomes: molecular diversity and beneficial role in plant growth promotion and soil health. In: Microorganisms for green revolution. Springer, Singapore, pp 197–240

    Chapter  Google Scholar 

  • Zachariah S, Kumari P, Das SK (2017) Psychrobacter pocilloporae sp. nov., isolated from a coral, Pocillopor aeydouxi. Int J Syst Evol Microbiol 66(12):5091–5098

    Article  CAS  Google Scholar 

  • Zeng R, Zhang R, Zhao J, Lin N (2003) Cold-active serine alkaline protease from the psychrophilic bacterium Pseudomonas strain DY-A: enzyme purification and characterization. Extremophiles 7(4):335–337

    Article  CAS  PubMed  Google Scholar 

  • Zhang H, Prithiviraj B, Charles TC, Driscoll BT, Smith DL (2003) Low temperature tolerant Bradyrhizobium japonicum strains allowing improved nodulation and nitrogen fixation of soybean in a short season (cool spring) area. Eur J Agron 19:205–213

    Article  CAS  Google Scholar 

  • Zlokarnik M (2000) Scale-up. Wiley-CH Verlag GmbH, Weinheim.

    Book  Google Scholar 

Download references

Acknowledgement

The authors are grateful to the Director, ICAR-VPKAS, Almora-263601, Uttarakhand, India for his directions and valuable suggestions.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mishra, P.K., Joshi, S., Gangola, S., Khati, P., Bisht, J.K., Pattanayak, A. (2020). Psychrotolerant Microbes: Characterization, Conservation, Strain Improvements, Mass Production, and Commercialization. In: Goel, R., Soni, R., Suyal, D. (eds) Microbiological Advancements for Higher Altitude Agro-Ecosystems & Sustainability. Rhizosphere Biology. Springer, Singapore. https://doi.org/10.1007/978-981-15-1902-4_12

Download citation

Publish with us

Policies and ethics