Skip to main content

Modulation of HMGB1 Release for Treating Lethal Infection and Injury

  • Chapter
  • First Online:
Severe Trauma and Sepsis

Abstract

Sepsis refers to a life-threatening organ dysfunction caused by a dysregulated host response to infection. Its pathogenesis is partly attributable to dysregulated inflammatory responses orchestrated by innate immune cells (e.g., macrophages and monocytes) that sequentially release early (e.g., TNF, IL-1, and IFN-γ) and late (e.g., HMGB1) pro-inflammatory mediators. As a ubiquitous nuclear protein, HMGB1 is constitutively expressed and can be actively secreted in response to exogenous pathogen-associated molecular pattern molecules (PAMPs, e.g., ds-RNA, CpG-DNA, and endotoxin) or endogenous cytokines [e.g., interferon (IFN)-γ or IFN-β]. In addition to active secretion, HMGB1 can also be passively released from damaged cells following ischemia/reperfusion, trauma, or toxemia, thereby serving as damage-associated molecular pattern (DAMP). Even during microbial infections, the PAMP-elicited inflammatory response may be accompanied by cell injury and DAMP release that further amplifies the cytokine storm to precipitate organ dysfunction. Here we discuss the evidence that support extracellular HMGB1 as a key mediator of inflammatory diseases and discuss the potential of several HMGB1-targeting therapies in animal models of lethal sepsis. Although microbial infection-induced sepsis is indistinguishable from sterile injury-elicited systemic inflammatory response syndrome, it may be more advantageous to develop strategies that specifically attenuate DAMP-mediated inflammatory responses without compromising the PAMP-mediated innate immunity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bao GQ, He L, Lee D, et al. An ongoing search for potential targets and therapies for lethal sepsis. Mil Med Res. 2015;2:20. https://doi.org/10.1186/s40779-015-0047-0. eCollection;%2015.:20-0047.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Lu B, Wang C, Wang M, et al. Molecular mechanism and therapeutic modulation of high mobility group box 1 release and action: an updated review. Expert Rev Clin Immunol. 2014;10:713–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Wang H, Ward MF, Sama AE. Targeting HMGB1 in the treatment of sepsis. Expert Opin Ther Targets. 2014;18:257–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Andersson U, Tracey KJ. HMGB1 is a therapeutic target for sterile inflammation and infection. Annu Rev Immunol. 2011;29:139–62. https://doi.org/10.1146/annurev-immunol-030409-101323.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Yanai H, Matsuda A, An J, et al. Conditional ablation of HMGB1 in mice reveals its protective function against endotoxemia and bacterial infection. Proc Natl Acad Sci U S A. 2013;110:20699–704.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Huang H, Nace GW, McDonald KA, et al. Hepatocyte-specific high-mobility group box 1 deletion worsens the injury in liver ischemia/reperfusion: a role for intracellular high-mobility group box 1 in cellular protection. Hepatology. 2014;59:1984–97.

    Article  CAS  PubMed  Google Scholar 

  7. Kang R, Zhang Q, Hou W, et al. Intracellular Hmgb1 inhibits inflammatory nucleosome release and limits acute pancreatitis in mice. Gastroenterology. 2014;146:1097–107.

    Article  CAS  PubMed  Google Scholar 

  8. Wang H, Zhu S, Zhou R, Li W, Sama AE. Therapeutic potential of HMGB1-targeting agents in sepsis. Expert Rev Mol Med. 2008;10:e32.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Brightbill HD, Libraty DH, Krutzik SR, et al. Host defense mechanisms triggered by microbial lipoproteins through toll-like receptors. Science. 1999;285:732–6.

    Article  CAS  PubMed  Google Scholar 

  10. Gao M, Ha T, Zhang X, et al. Toll-like receptor 3 plays a central role in cardiac dysfunction during polymicrobial sepsis. Crit Care Med. 2012;40(8):2390–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Ha T, Lu C, Liu L, et al. TLR2 ligands attenuate cardiac dysfunction in polymicrobial sepsis via a phosphoinositide 3-kinase-dependent mechanism. Am J Physiol Heart Circ Physiol. 2010;298:H984–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Hemmi H, Takeuchi O, Kawai T, et al. A toll-like receptor recognizes bacterial DNA. Nature. 2000;408:740–5.

    Article  CAS  PubMed  Google Scholar 

  13. Poltorak A, He X, Smirnova I, et al. Defective LPS signaling in C3H/HeJ and C57BL/10ScCr mice: mutations in Tlr4 gene. Science. 1998;282:2085–8.

    Article  CAS  PubMed  Google Scholar 

  14. Akira S, Takeda K. Toll-like receptor signalling. Nat Rev Immunol. 2004;4:499–511.

    Article  CAS  PubMed  Google Scholar 

  15. Baggiolini M, Loetscher P. Chemokines in inflammation and immunity. Immunol Today. 2000;21:418–20.

    Article  CAS  PubMed  Google Scholar 

  16. Chan ED, Riches DW. IFN-gamma + LPS induction of iNOS is modulated by ERK, JNK/SAPK, and p38(mapk) in a mouse macrophage cell line. Am J Physiol Cell Physiol. 2001;280:C441–50.

    Article  CAS  PubMed  Google Scholar 

  17. Wizemann TM, Gardner CR, Laskin JD, et al. Production of nitric oxide and peroxynitrite in the lung during acute endotoxemia. J Leukoc Biol. 1994;56:759–68.

    Article  CAS  PubMed  Google Scholar 

  18. Dellinger RP, Levy MM, Carlet JM, et al. Surviving sepsis campaign: international guidelines for management of severe sepsis and septic shock: 2008. Crit Care Med. 2008;36:296–327.

    Article  PubMed  Google Scholar 

  19. Angus DC, Linde-Zwirble WT, Lidicker J, et al. Epidemiology of severe sepsis in the United States: analysis of incidence, outcome, and associated costs of care. Crit Care Med. 2001;29:1303–10.

    Article  CAS  PubMed  Google Scholar 

  20. Tracey KJ, Fong Y, Hesse DG, et al. Anti-cachectin/TNF monoclonal antibodies prevent septic shock during lethal bacteraemia. Nature. 1987;330:662–4.

    Article  CAS  PubMed  Google Scholar 

  21. Wang H, Bloom O, Zhang M, et al. HMG-1 as a late mediator of endotoxin lethality in mice. Science. 1999;285:248–51.

    Article  CAS  PubMed  Google Scholar 

  22. Ivanov S, Dragoi AM, Wang X, et al. A novel role for HMGB1 in TLR9-mediated inflammatory responses to CpG-DNA. Blood. 2007;110:1970–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Kim JH, Kim SJ, Lee IS, et al. Bacterial endotoxin induces the release of high mobility group box 1 via the IFN-beta signaling pathway. J Immunol. 2009;182:2458–66.

    Article  CAS  PubMed  Google Scholar 

  24. Qiang X, Yang WL, Wu R, et al. Cold-inducible RNA-binding protein (CIRP) triggers inflammatory responses in hemorrhagic shock and sepsis. Nat Med. 2013;19:1489–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Rendon-Mitchell B, Ochani M, Li J, et al. IFN-gamma induces high mobility group Box 1 protein release partly through a TNF-dependent mechanism. J Immunol. 2003;170:3890–7.

    Article  CAS  PubMed  Google Scholar 

  26. Bonaldi T, Talamo F, Scaffidi P, et al. Monocytic cells hyperacetylate chromatin protein HMGB1 to redirect it towards secretion. EMBO J. 2003;22:5551–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Gardella S, Andrei C, Ferrera D, et al. The nuclear protein HMGB1 is secreted by monocytes via a non-classical, vesicle-mediated secretory pathway. EMBO Rep. 2002;3:955–1001.

    Article  Google Scholar 

  28. Yang Z, Li L, Chen L, et al. PARP-1 mediates LPS-induced HMGB1 release by macrophages through regulation of HMGB1 acetylation. J Immunol. 2014;193:6114–23.

    Article  CAS  PubMed  Google Scholar 

  29. Lu B, Nakamura T, Inouye K, et al. Novel role of PKR in inflammasome activation and HMGB1 release. Nature. 2012;488:670–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Kim YM, Park EJ, Kim JH, et al. Ethyl pyruvate inhibits the acetylation and release of HMGB1 via effects on SIRT1/STAT signaling in LPS-activated RAW264.7 cells and peritoneal macrophages. Int Immunopharmacol. 2016;41:98–105. https://doi.org/10.1016/j.intimp.2016.11.002. Epub;%2016 Nov 16.:98-105.

    Article  CAS  PubMed  Google Scholar 

  31. Liu H, Yao YM, Yu Y, et al. Role of Janus kinase/signal transducer and activator of transcription pathway in regulation of expression and inflammation-promoting activity of high mobility group box protein 1 in rat peritoneal macrophages. Shock. 2007;27:55–60.

    Article  PubMed  CAS  Google Scholar 

  32. Youn JH, Shin JS. Nucleocytoplasmic shuttling of HMGB1 is regulated by phosphorylation that redirects it toward secretion. J Immunol. 2006;177:7889–97.

    Article  CAS  PubMed  Google Scholar 

  33. Zhang X, Wheeler D, Tang Y, et al. Calcium/calmodulin-dependent protein kinase (CaMK) IV mediates nucleocytoplasmic shuttling and release of HMGB1 during lipopolysaccharide stimulation of macrophages. J Immunol. 2008;181:5015–23.

    Article  CAS  PubMed  Google Scholar 

  34. Ito I, Fukazawa J, Yoshida M. Post-translational methylation of high mobility group box 1 (HMGB1) causes its cytoplasmic localization in neutrophils. J Biol Chem. 2007;282:16336–44.

    Article  CAS  PubMed  Google Scholar 

  35. Lamkanfi M, Sarkar A, Vande WL, et al. Inflammasome-dependent release of the alarmin HMGB1 in endotoxemia. J Immunol. 2010;185:4385–92.

    Article  CAS  PubMed  Google Scholar 

  36. Qin S, Wang H, Yuan R, et al. Role of HMGB1 in apoptosis-mediated sepsis lethality. J Exp Med. 2006;203:1637–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Hett EC, Slater LH, Mark KG, et al. Chemical genetics reveals a kinase-independent role for protein kinase R in pyroptosis. Nat Chem Biol. 2013;9:398–405.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Li W, Zhu S, Li J, et al. Serum Amyloid A stimulates PKR expression and HMGB1 release possibly through TLR4/RAGE receptors. Mol Med. 2015;21:515–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Karehed K, Dimberg A, Dahl S, Nilsson K, Oberg F. IFN-gamma-induced upregulation of Fcgamma-receptor-I during activation of monocytic cells requires the PKR and NFkappaB pathways. Mol Immunol. 2007;44:615–24.

    Article  CAS  PubMed  Google Scholar 

  40. Thapa RJ, Nogusa S, Chen P, et al. Interferon-induced RIP1/RIP3-mediated necrosis requires PKR and is licensed by FADD and caspases. Proc Natl Acad Sci U S A. 2013;110:E3109–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Scaffidi P, Misteli T, Bianchi ME. Release of chromatin protein HMGB1 by necrotic cells triggers inflammation. Nature. 2002;418:191–5.

    Article  CAS  PubMed  Google Scholar 

  42. Andrassy M, Volz HC, Igwe JC, et al. High-mobility group box-1 in ischemia-reperfusion injury of the heart. Circulation. 2008;117:3216–26.

    Article  CAS  PubMed  Google Scholar 

  43. Tsung A, Sahai R, Tanaka H, et al. The nuclear factor HMGB1 mediates hepatic injury after murine liver ischemia-reperfusion. J Exp Med. 2005;201:1135–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Cohen MJ, Brohi K, Calfee CS, et al. Early release of high mobility group box nuclear protein 1 after severe trauma in humans: role of injury severity and tissue hypoperfusion. Crit Care. 2009;13:R174.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Peltz ED, Moore EE, Eckels PC, et al. HMGB1 is markedly elevated within 6 hours of mechanical trauma in humans. Shock. 2009;32:17–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Antoine DJ, Dear JW, Lewis PS, et al. Mechanistic biomarkers provide early and sensitive detection of acetaminophen-induced acute liver injury at first presentation to hospital. Hepatology. 2013;58:777–87.

    Article  CAS  PubMed  Google Scholar 

  47. Seo YS, Kwon JH, Yaqoob U, et al. HMGB1 recruits hepatic stellate cells and liver endothelial cells to sites of ethanol induced parenchymal cell injury. Am J Physiol Gastrointest Liver Physiol. 2013;305(11):G838–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Zhou RR, Liu HB, Peng JP, et al. High mobility group box chromosomal protein 1 in acute-on-chronic liver failure patients and mice with ConA-induced acute liver injury. Exp Mol Pathol. 2012;93:213–9.

    Article  CAS  PubMed  Google Scholar 

  49. Bald T, Quast T, Landsberg J, et al. Ultraviolet-radiation-induced inflammation promotes angiotropism and metastasis in melanoma. Nature. 2014;507:109–13.

    Article  CAS  PubMed  Google Scholar 

  50. Wang L, He L, Bao G, et al. Ionizing radiation induces HMGB1 cytoplasmic translocation and extracellular release. Guo Ji Fang She Yi Xue He Yi Xue Za Zhi. 2016;40:91–9.

    PubMed  PubMed Central  Google Scholar 

  51. Zhu S, Li W, Ward MF, et al. High mobility group box 1 protein as a potential drug target for infection- and injury-elicited inflammation. Inflamm Allergy Drug Targets. 2010;9:60–72.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Vincent JL, Opal SM, Marshall JC, Tracey KJ. Sepsis definitions: time for change. Lancet. 2013;381:774–5.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Cho YS, Challa S, Moquin D, et al. Phosphorylation-driven assembly of the RIP1-RIP3 complex regulates programmed necrosis and virus-induced inflammation. Cell. 2009;137:1112–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Gunther C, Martini E, Wittkopf N, et al. Caspase-8 regulates TNF-alpha-induced epithelial necroptosis and terminal ileitis. Nature. 2011;477:335–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Nystrom S, Antoine DJ, Lundback P, et al. TLR activation regulates damage-associated molecular pattern isoforms released during pyroptosis. EMBO J. 2013;32:86–99.

    Article  PubMed  CAS  Google Scholar 

  56. Zhang Q, Raoof M, Chen Y, et al. Circulating mitochondrial DAMPs cause inflammatory responses to injury. Nature. 2010;464:104–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Tian J, Avalos AM, Mao SY, et al. Toll-like receptor 9-dependent activation by DNA-containing immune complexes is mediated by HMGB1 and RAGE. Nat Immunol. 2007;8:487–96.

    Article  CAS  PubMed  Google Scholar 

  58. Dumitriu IE, Bianchi ME, Bacci M, et al. The secretion of HMGB1 is required for the migration of maturing dendritic cells. J Leukoc Biol. 2007;81:84–91.

    Article  CAS  PubMed  Google Scholar 

  59. Yang D, Chen Q, Yang H, et al. High mobility group box-1 protein induces the migration and activation of human dendritic cells and acts as an alarmin. J Leukoc Biol. 2007;81:59–66.

    Article  CAS  PubMed  Google Scholar 

  60. Orlova VV, Choi EY, Xie C, et al. A novel pathway of HMGB1-mediated inflammatory cell recruitment that requires Mac-1-integrin. EMBO J. 2007;26:1129–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Degryse B, Bonaldi T, Scaffidi P, et al. The high mobility group (HMG) boxes of the nuclear protein HMG1 induce chemotaxis and cytoskeleton reorganization in rat smooth muscle cells. J Cell Biol. 2001;152:1197–206.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Yu M, Wang H, Ding A, et al. HMGB1 signals through toll-like receptor (TLR) 4 and TLR2. Shock. 2006;26:174–9.

    Article  CAS  PubMed  Google Scholar 

  63. Chen GY, Tang J, Zheng P, Liu Y. CD24 and Siglec-10 selectively repress tissue damage-induced immune responses. Science. 2009;323:1722–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Abeyama K, Stern DM, Ito Y, et al. The N-terminal domain of thrombomodulin sequesters high-mobility group-B1 protein, a novel antiinflammatory mechanism. J Clin Investig. 2005;115:1267–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Salmivirta M, Rauvala H, Elenius K, Jalkanen M. Neurite growth-promoting protein (amphoterin, p30) binds syndecan. Exp Cell Res. 1992;200:444–51.

    Article  CAS  PubMed  Google Scholar 

  66. Zhu S, Ashok M, Li J, et al. Spermine protects mice against lethal sepsis partly by attenuating surrogate inflammatory markers. Mol Med. 2009;15:275–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Fiuza C, Bustin M, Talwar S, et al. Inflammation-promoting activity of HMGB1 on human microvascular endothelial cells. Blood. 2003;101:2652–60.

    Article  CAS  PubMed  Google Scholar 

  68. Kazama H, Ricci JE, Herndon JM, et al. Induction of immunological tolerance by apoptotic cells requires caspase-dependent oxidation of high-mobility group box-1 protein. Immunity. 2008;29:21–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Liu A, Fang H, Dirsch O, Jin H, Dahmen U. Oxidation of HMGB1 causes attenuation of its pro-inflammatory activity and occurs during liver ischemia and reperfusion. PLoS One. 2012;7:e35379.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Venereau E, Casalgrandi M, Schiraldi M, et al. Mutually exclusive redox forms of HMGB1 promote cell recruitment or proinflammatory cytokine release. J Exp Med. 2012;209:1519–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Schiraldi M, Raucci A, Munoz LM, et al. HMGB1 promotes recruitment of inflammatory cells to damaged tissues by forming a complex with CXCL12 and signaling via CXCR4. J Exp Med. 2012;209:551–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Yang H, Lundback P, Ottosson L, et al. Redox modification of cysteine residues regulates the cytokine activity of high mobility group box-1 (HMGB1). Mol Med. 2012;18:250–9. https://doi.org/10.2119/molmed.2011.00389.

    Article  CAS  PubMed  Google Scholar 

  73. Zhou R, Yazdi AS, Menu P, Tschopp J. A role for mitochondria in NLRP3 inflammasome activation. Nature. 2011;469:221–5.

    Article  CAS  PubMed  Google Scholar 

  74. Nagai Y, Akashi S, Nagafuku M, et al. Essential role of MD-2 in LPS responsiveness and TLR4 distribution. Nat Immunol. 2002;3:667–72.

    Article  CAS  PubMed  Google Scholar 

  75. Kim S, Kim SY, Pribis JP, et al. Signaling of high mobility group box 1 (HMGB1) through toll-like receptor 4 in macrophages requires CD14. Mol Med. 2013;19:88–98. https://doi.org/10.2119/molmed.2012.00306.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Hsu LC, Enzler T, Seita J, et al. IL-1beta-driven neutrophilia preserves antibacterial defense in the absence of the kinase IKKbeta. Nat Immunol. 2011;12:144–50.

    Article  CAS  PubMed  Google Scholar 

  77. Yang H, Ochani M, Li J, et al. Reversing established sepsis with antagonists of endogenous high-mobility group box 1. Proc Natl Acad Sci U S A. 2004;101:296–301.

    Article  CAS  PubMed  Google Scholar 

  78. Wang H, Yang H, Czura CJ, Sama AE, Tracey KJ. HMGB1 as a late mediator of lethal systemic inflammation. Am J Respir Crit Care Med. 2001;164:1768–73.

    Article  CAS  PubMed  Google Scholar 

  79. Ye C, Choi JG, Abraham S, et al. Human macrophage and dendritic cell-specific silencing of high-mobility group protein B1 ameliorates sepsis in a humanized mouse model. Proc Natl Acad Sci U S A. 2012;109:21052–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Levy RM, Mollen KP, Prince JM, et al. Systemic inflammation and remote organ injury following trauma require HMGB1. Am J Physiol Regul Integr Comp Physiol. 2007;293:R1538–44.

    Article  CAS  PubMed  Google Scholar 

  81. Manganelli V, Signore M, Pacini I, et al. Increased HMGB1 expression and release by mononuclear cells following surgical/anesthesia trauma. Crit Care. 2010;14:R197.

    Article  PubMed  PubMed Central  Google Scholar 

  82. Sugita A, Kinoshita K, Sakurai A, et al. Systemic impact on secondary brain aggravation due to ischemia/reperfusion injury in post-cardiac arrest syndrome: a prospective observational study using high-mobility group box 1 protein. Crit Care. 2017;21:247–1828.

    Article  PubMed  PubMed Central  Google Scholar 

  83. Qiu J, Nishimura M, Wang Y, et al. Early release of HMGB-1 from neurons after the onset of brain ischemia. J Cereb Blood Flow Metab. 2008;28:927–38.

    Article  CAS  PubMed  Google Scholar 

  84. Wu H, Ma J, Wang P, et al. HMGB1 contributes to kidney ischemia reperfusion injury. J Am Soc Nephrol. 2010;21:1878–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Okuma Y, Liu K, Wake H, et al. Anti-high mobility group box-1 antibody therapy for traumatic brain injury. Ann Neurol. 2012;72:373–84.

    Article  CAS  PubMed  Google Scholar 

  86. Shimazaki J, Matsumoto N, Ogura H, et al. Systemic involvement of high-mobility group box 1 protein and therapeutic effect of anti-high-mobility group box 1 protein antibody in a rat model of crush injury. Shock. 2012;37:634–8.

    Article  CAS  PubMed  Google Scholar 

  87. Nadatani Y, Watanabe T, Tanigawa T, et al. High mobility group box 1 promotes small intestinal damage induced by nonsteroidal anti-inflammatory drugs through toll-like receptor 4. Am J Pathol. 2012;181:98–110.

    Article  CAS  PubMed  Google Scholar 

  88. Yang R, Zhang S, Cotoia A, et al. High mobility group B1 impairs hepatocyte regeneration in acetaminophen hepatotoxicity. BMC Gastroenterol. 2012;12:45. https://doi.org/10.1186/1471-230X-12-45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Hirata Y, Kurobe H, Higashida M, et al. HMGB1 plays a critical role in vascular inflammation and lesion formation via toll-like receptor 9. Atherosclerosis. 2013;231:227–33.

    Article  CAS  PubMed  Google Scholar 

  90. Nadatani Y, Watanabe T, Tanigawa T, et al. High-mobility group box 1 inhibits gastric ulcer healing through toll-like receptor 4 and receptor for advanced Glycation end products. PLoS One. 2013;8:e80130.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Patel VS, Sitapara RA, Gore A, et al. High mobility group Box-1 mediates hyperoxia-induced impairment of Pseudomonas aeruginosa clearance and inflammatory lung injury in mice. Am J Respir Cell Mol Biol. 2013;48:280–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Li Z, Scott MJ, Fan EK, et al. Tissue damage negatively regulates LPS-induced macrophage necroptosis. Cell Death Differ. 2016;23:1428–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Aneja RK, Tsung A, Sjodin H, et al. Preconditioning with high mobility group box 1 (HMGB1) induces lipopolysaccharide (LPS) tolerance. J Leukoc Biol. 2008;84:1326–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. El Gazzar M, Yoza BK, Chen X, et al. Chromatin-specific remodeling by HMGB1 and linker histone H1 silence proinflammatory genes during endotoxin tolerance. Mol Cell Biol. 2009;29(7):1959–71.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  95. Robert SM, Sjodin H, Fink MP, Aneja RK. Preconditioning with high mobility group box 1 (HMGB1) induces lipoteichoic acid (LTA) tolerance. J Immunother. 2010;33:663–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Rosas-Ballina M, Olofsson PS, Ochani M, et al. Acetylcholine-synthesizing T cells relay neural signals in a vagus nerve circuit. Science. 2011;334:98–101.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Borovikova LV, Ivanova S, Zhang M, et al. Vagus nerve stimulation attenuates the systemic inflammatory response to endotoxin. Nature. 2000;405:458–62.

    Article  CAS  PubMed  Google Scholar 

  98. Wang H, Liao H, Ochani M, et al. Cholinergic agonists inhibit HMGB1 release and improve survival in experimental sepsis. Nat Med. 2004;10:1216–21.

    Article  CAS  PubMed  Google Scholar 

  99. Wang H, Yu M, Ochani M, et al. Nicotinic acetylcholine receptor alpha7 subunit is an essential regulator of inflammation. Nature. 2003;421:384–8.

    Article  CAS  PubMed  Google Scholar 

  100. Wang H, Zhang M, Bianchi M, et al. Fetuin (alpha2-HS-glycoprotein) opsonizes cationic macrophagedeactivating molecules. Proc Natl Acad Sci U S A. 1998;95:14429–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Zhang M, Borovikova LV, Wang H, Metz C, Tracey KJ. Spermine inhibition of monocyte activation and inflammation. Mol Med. 1999;5:595–605.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Zhang M, Caragine T, Wang H, et al. Spermine inhibits proinflammatory cytokine synthesis in human mononuclear cells: a counterregulatory mechanism that restrains the immune response. J Exp Med. 1997;185:1759–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Zhang M, Wang H, Tracey KJ. Regulation of macrophage activation and inflammation by spermine: a new chapter in an old story. Crit Care Med. 2000;28:N60–6.

    Article  CAS  PubMed  Google Scholar 

  104. Li W, Zhu S, Li J, et al. A hepatic protein, fetuin-A, occupies a protective role in lethal systemic inflammation. PLoS One. 2011b;6:e16945.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Wang H, Li W, Zhu S, et al. Peripheral administration of fetuin-a attenuates early cerebral ischemic injury in rats. J Cereb Blood Flow Metab. 2010;30:493–504.

    Article  PubMed  CAS  Google Scholar 

  106. Hagiwara S, Iwasaka H, Hasegawa A, et al. High-dose intravenous immunoglobulin G improves systemic inflammation in a rat model of CLP-induced sepsis. Intensive Care Med. 2008;34(10):1812.

    Article  CAS  PubMed  Google Scholar 

  107. Hagiwara S, Iwasaka H, Matsumoto S, Noguchi T. High dose antithrombin III inhibits HMGB1 and improves endotoxin-induced acute lung injury in rats. Intensive Care Med. 2008;34:361–7.

    Article  CAS  PubMed  Google Scholar 

  108. Chorny A, Anderson P, Gonzalez-Rey E, Delgado M. Ghrelin protects against experimental sepsis by inhibiting high-mobility group box 1 release and by killing bacteria. J Immunol. 2008;180:8369–77.

    Article  CAS  PubMed  Google Scholar 

  109. Chorny A, Delgado M. Neuropeptides rescue mice from lethal sepsis by down-regulating secretion of the late-acting inflammatory mediator high mobility group box 1. Am J Pathol. 2008;172:1297–307.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Fann DY, Lee SY, Manzanero S, et al. Intravenous immunoglobulin suppresses NLRP1 and NLRP3 inflammasome-mediated neuronal death in ischemic stroke. Cell Death Dis. 2013;4:e790. https://doi.org/10.1038/cddis.2013.326.

    Article  CAS  PubMed  Google Scholar 

  111. Favreau F, Thuillier R, Cau J, et al. Anti-thrombin therapy during warm ischemia and cold preservation prevents chronic kidney graft fibrosis in a DCD model. Am J Transplant. 2010;10:30–9.

    Article  CAS  PubMed  Google Scholar 

  112. Herzog C, Lorenz A, Gillmann HJ, et al. Thrombomodulin’s lectin-like domain reduces myocardial damage by interfering with HMGB1-mediated TLR2 signalling. Cardiovasc Res. 2014;101(3):400–10.

    Article  CAS  PubMed  Google Scholar 

  113. Jiang W, Tang W, Geng Q, Xu X. Inhibition of toll-like receptor 4 with vasoactive intestinal peptide attenuates liver ischemia-reperfusion injury. Transplant Proc. 2011;43:1462–7.

    Article  CAS  PubMed  Google Scholar 

  114. Zhang H, Cui Z, Luo G, et al. Ghrelin attenuates intestinal ischemia/reperfusion injury in mice by activating the mTOR signaling pathway. Int J Mol Med. 2013;32:851–9.

    Article  CAS  PubMed  Google Scholar 

  115. Mohri T, Tanaka H, Tajima G, et al. Synergistic effects of recombinant human soluble thrombomodulin and fluid-volume resuscitation in a rat lethal crush injury model. Shock. 2006;26:581–6.

    Article  CAS  PubMed  Google Scholar 

  116. Wang XQ, Hayes MT, Kempf M, et al. Fetuin-a: a major fetal serum protein that promotes “wound closure” and scarless healing. J Investig Dermatol. 2008;128:753–7.

    Article  CAS  PubMed  Google Scholar 

  117. Imazu Y, Yanagi S, Miyoshi K, et al. Ghrelin ameliorates bleomycin-induced acute lung injury by protecting alveolar epithelial cells and suppressing lung inflammation. Eur J Pharmacol. 2011;672:153–8.

    Article  CAS  PubMed  Google Scholar 

  118. Luo Q, Wang Y, Feng D, Xu Y, Xu L. Vasoactive intestinal peptide attenuates concanavalin A-mediated liver injury. Eur J Pharmacol. 2009;607:226–33.

    Article  CAS  PubMed  Google Scholar 

  119. Yang D, Liu Z, Zhang H, Luo Q. Ghrelin protects human pulmonary artery endothelial cells against hypoxia-induced injury via PI3-kinase/Akt. Peptides. 2013;42:112–7. https://doi.org/10.1016/j.peptides.2013.01.012.

    Article  CAS  PubMed  Google Scholar 

  120. Jacob A, Shah KG, Wu R, Wang P. Ghrelin as a novel therapy for radiation combined injury. Mol Med. 2010;16:137–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Jun MS, Kim HS, Kim YM, et al. Ethanol extract of Prunella vulgaris var. lilacina inhibits HMGB1 release by induction of heme oxygenase-1 in LPS-activated RAW 264.7 cells and CLP-induced septic mice. Phytother Res. 2012;26:605–12.

    Article  PubMed  Google Scholar 

  122. Wang H, Li W, Li J, et al. The aqueous extract of a popular herbal nutrient supplement, Angelica sinensis, protects mice against lethal endotoxemia and sepsis. J Nutr. 2006;136:360–5.

    Article  CAS  PubMed  Google Scholar 

  123. Zhu S, Li W, Li J, et al. It is not just folklore: the aqueous extract of Mung bean coat is protective against sepsis. Evid Based Complement Alternat Med. 2012;2012:498467. https://doi.org/10.1155/2012/498467.

    Article  PubMed  PubMed Central  Google Scholar 

  124. Xie CH, Zhang MS, Zhou YF, et al. Chinese medicine Angelica sinensis suppresses radiation-induced expression of TNF-alpha and TGF-beta1 in mice. Oncol Rep. 2006;15:1429–36.

    PubMed  Google Scholar 

  125. Mohd AN, Mohd YH, Long K, et al. Antioxidant and hepatoprotective effect of aqueous extract of germinated and fermented mung bean on ethanol-mediated liver damage. Biomed Res Int. 2013;2013:693613. https://doi.org/10.1155/2013/693613.

    Article  Google Scholar 

  126. Jiang WL, Yong X, Zhang SP, Zhu HB, Jian H. Forsythoside B protects against experimental sepsis by modulating inflammatory factors. Phytother Res. 2012;26:981–7.

    Article  CAS  PubMed  Google Scholar 

  127. Kim TH, Ku SK, Bae JS. Anti-inflammatory activities of isorhamnetin-3-O-galactoside against HMGB1-induced inflammatory responses in both HUVECs and CLP-induced septic mice. J Cell Biochem. 2013;114:336–45.

    Article  CAS  PubMed  Google Scholar 

  128. Kim TH, Ku SK, Bae JS. Persicarin is anti-inflammatory mediator against HMGB1-induced inflammatory responses in HUVECs and in CLP-induced sepsis mice. J Cell Physiol. 2013;228:696–703.

    Article  CAS  PubMed  Google Scholar 

  129. Lee CH, Yoon SJ, Lee SM. Chlorogenic acid attenuates high mobility group box 1 (HMGB1) and enhances host defense mechanisms in murine sepsis. Mol Med. 2013;18:1437–48. https://doi.org/10.2119/molmed.2012.00279.

    Article  CAS  PubMed  Google Scholar 

  130. Lee W, Ku SK, Kim TH, Bae JS. Emodin-6-O-beta-D-glucoside inhibits HMGB1-induced inflammatory responses in vitro and in vivo. Food Chem Toxicol. 2013;52:97–104. https://doi.org/10.1016/j.fct.2012.10.061.

    Article  CAS  PubMed  Google Scholar 

  131. Li W, Ashok M, Li J, et al. A major ingredient of green tea rescues mice from lethal sepsis partly by inhibiting HMGB1. PLoS One. 2007;2:e1153.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  132. Li W, Li J, Ashok M, et al. A cardiovascular drug rescues mice from lethal sepsis by selectively attenuating a late-acting proinflammatory mediator, high mobility group box 1. J Immunol. 2007;178:3856–64.

    Article  CAS  PubMed  Google Scholar 

  133. Seo ES, Oh BK, Pak JH, et al. Acteoside improves survival in cecal ligation and puncture-induced septic mice via blocking of high mobility group box 1 release. Mol Cells. 2013;35:348–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Yang EJ, Ku SK, Lee W, et al. Barrier protective effects of rosmarinic acid on HMGB1-induced inflammatory responses in vitro and in vivo. J Cell Physiol. 2013;228:975–82.

    Article  CAS  PubMed  Google Scholar 

  135. Yang M, Cao L, Xie M, et al. Chloroquine inhibits HMGB1 inflammatory signaling and protects mice from lethal sepsis. Biochem Pharmacol. 2013;86(3):410–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Li W, Zhu S, Li J, et al. EGCG stimulates autophagy and reduces cytoplasmic HMGB1 levels in endotoxin-stimulated macrophages. Biochem Pharmacol. 2011;81:1152–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Zhang Y, Li W, Zhu S, et al. Tanshinone IIA sodium sulfonate facilitates endocytic HMGB1 uptake. Biochem Pharmacol. 2012;84:1492–500.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Li W, Li J, Sama AE, Wang H. Carbenoxolone blocks endotoxin-induced protein kinase R (PKR) activation and high mobility group box 1 (HMGB1) release. Mol Med. 2013;19:203–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Zhao L, Li W, Zhu S, et al. Green tea catechins quench the fluorescence of bacteria-conjugated Alexa fluor dyes. Inflamm Allergy Drug Targets. 2013;12:308–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Fang H, Liu A, Dahmen U, Dirsch O. Dual role of chloroquine in liver ischemia reperfusion injury: reduction of liver damage in early phase, but aggravation in late phase. Cell Death Dis. 2013;4:e694. https://doi.org/10.1038/cddis.2013.225.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Giakoustidis AE, Giakoustidis DE, Iliadis S, et al. Attenuation of intestinal ischemia/reperfusion induced liver and lung injury by intraperitoneal administration of (−)-epigallocatechin-3-gallate. Free Radic Res. 2006;40:103–10.

    Article  CAS  PubMed  Google Scholar 

  142. Jiang WL, Tian JW, Fu FH, Zhu HB, Hou J. Neuroprotective efficacy and therapeutic window of Forsythoside B: in a rat model of cerebral ischemia and reperfusion injury. Eur J Pharmacol. 2010;640:75–81.

    Article  CAS  PubMed  Google Scholar 

  143. Ogiku M, Kono H, Hara M, Tsuchiya M, Fujii H. Glycyrrhizin prevents liver injury by inhibition of high-mobility group box 1 production by Kupffer cells after ischemia-reperfusion in rats. J Pharmacol Exp Ther. 2011;339:93–8.

    Article  CAS  PubMed  Google Scholar 

  144. Tamura K, Alessandri B, Heimann A, Kempski O. The effect of a gap-junction blocker, carbenoxolone, on ischemic brain injury and cortical spreading depression. Neuroscience. 2011;194:262–71.

    Article  CAS  PubMed  Google Scholar 

  145. Tsaroucha AK, Valsami G, Kostomitsopoulos N, et al. Silibinin effect on Fas/FasL, HMGB1, and CD45 expressions in a rat model subjected to liver ischemia-reperfusion injury. J Investig Surg. 2017:1–12. https://doi.org/10.1080/08941939.2017.1360416.

    Article  PubMed  Google Scholar 

  146. Wang JG, Bondy SC, Zhou L, et al. Protective effect of Tanshinone IIA against infarct size and increased HMGB1, NFkappaB, GFAP and apoptosis consequent to transient middle cerebral artery occlusion. Neurochem Res. 2014;39:295–304.

    Article  CAS  PubMed  Google Scholar 

  147. Yun N, Kang JW, Lee SM. Protective effects of chlorogenic acid against ischemia/reperfusion injury in rat liver: molecular evidence of its antioxidant and anti-inflammatory properties. J Nutr Biochem. 2012;23:1249–55.

    Article  CAS  PubMed  Google Scholar 

  148. Zhai CL, Zhang MQ, Zhang Y, et al. Glycyrrhizin protects rat heart against ischemia-reperfusion injury through blockade of HMGB1-dependent phospho-JNK/Bax pathway. Acta Pharmacol Sin. 2012;33:1477–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Hellmich HL, Rojo DR, Micci MA, et al. Pathway analysis reveals common pro-survival mechanisms of metyrapone and carbenoxolone after traumatic brain injury. PLoS One. 2013;8:e53230.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Yin X, Yin Y, Cao FL, et al. Tanshinone IIA attenuates the inflammatory response and apoptosis after traumatic injury of the spinal cord in adult rats. PLoS One. 2012;7:e38381.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Renno WM, Al Maghrebi M, Alshammari A, George P. (−)-Epigallocatechin-3-gallate (EGCG) attenuates peripheral nerve degeneration in rat sciatic nerve crush injury. Neurochem Int. 2013;62:221–31.

    Article  CAS  PubMed  Google Scholar 

  152. Ohnishi M, Katsuki H, Fukutomi C, et al. HMGB1 inhibitor glycyrrhizin attenuates intracerebral hemorrhage-induced injury in rats. Neuropharmacology. 2011;61:975–80.

    Article  CAS  PubMed  Google Scholar 

  153. Lim Y, Hedayati M, Merchant AA, et al. Chloroquine improves survival and hematopoietic recovery after lethal low-dose-rate radiation. Int J Radiat Oncol Biol Phys. 2012;84:800–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Sanchez-Campillo M, Gabaldon JA, Castillo J, et al. Rosmarinic acid, a photo-protective agent against UV and other ionizing radiations. Food Chem Toxicol. 2009;47:386–92.

    Article  CAS  PubMed  Google Scholar 

  155. Kim DW, Cho HI, Kim KM, et al. Isorhamnetin-3-O-galactoside protects against CCl4-induced hepatic injury in mice. Biomol Ther (Seoul). 2012;20:406–12.

    Article  CAS  Google Scholar 

  156. Lee KJ, Woo ER, Choi CY, et al. Protective effect of acteoside on carbon tetrachloride-induced hepatotoxicity. Life Sci. 2004;74:1051–64.

    Article  CAS  PubMed  Google Scholar 

  157. Valdes-Ferrer SI, Rosas-Ballina M, Olofsson PS, et al. High-mobility group box 1 mediates persistent splenocyte priming in sepsis survivors: evidence from a murine model. Shock. 2013;40:492–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Sursal T, Stearns-Kurosawa DJ, Itagaki K, et al. Plasma bacterial and mitochondrial DNA distinguish bacterial sepsis from sterile systemic inflammatory response syndrome and quantify inflammatory tissue injury in nonhuman primates. Shock. 2013;39:55–62.

    PubMed  PubMed Central  Google Scholar 

  159. Ziegler EJ, Fisher CJ Jr, Sprung CL, et al. Treatment of gram-negative bacteremia and septic shock with HA-1A human monoclonal antibody against endotoxin. A randomized, double-blind, placebo-controlled trial. The HA-1A sepsis study group. N Engl J Med. 1991;324:429–36.

    Article  CAS  PubMed  Google Scholar 

  160. Opal SM, Laterre PF, Francois B, et al. Effect of eritoran, an antagonist of MD2-TLR4, on mortality in patients with severe sepsis: the ACCESS randomized trial. JAMA. 2013;309:1154–62.

    Article  CAS  PubMed  Google Scholar 

  161. Feldmann M, Maini RN. Anti-TNF alpha therapy of rheumatoid arthritis: what have we learned? Annu Rev Immunol. 2001;19:163–96.

    Article  CAS  PubMed  Google Scholar 

  162. Abraham E, Wunderink R, Silverman H, et al. Efficacy and safety of monoclonal antibody to human tumor necrosis factor alpha in patients with sepsis syndrome. A randomized, controlled, double-blind, multicenter clinical trial. TNF-alpha MAb sepsis study group. JAMA. 1995;273:934–41.

    Article  CAS  PubMed  Google Scholar 

  163. Zeng L, Kang R, Zhu S, et al. ALK is a therapeutic target for lethal sepsis. Sci Transl Med. 2017;9(412):eaan5689.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgments and Funding

The work in authors’ laboratory was supported by grants from the US National Center of Complementary and Alternative Medicine (NCCAM, R01AT005076) and the US National Institute of General Medical Sciences (NIGMS, R01GM063075 and R41GM123858).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haichao Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chen, W., He, L., Jin, H., D’Angelo, J., Bao, G., Wang, H. (2019). Modulation of HMGB1 Release for Treating Lethal Infection and Injury. In: Fu, X., Liu, L. (eds) Severe Trauma and Sepsis. Springer, Singapore. https://doi.org/10.1007/978-981-13-3353-8_14

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-3353-8_14

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-3352-1

  • Online ISBN: 978-981-13-3353-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics