Skip to main content

Advertisement

Log in

Protective Effect of Tanshinone IIA Against Infarct Size and Increased HMGB1, NFκB, GFAP and Apoptosis Consequent to Transient Middle Cerebral Artery Occlusion

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Acute inflammation plays an important role in brain damage following cerebral ischemia and reperfusion (I/R) injury. The present study employed a rat model of middle cerebral artery occlusion to explore the neuroprotective effects of tanshinone IIA (TSN), which is widely used in China for treating cerebrovascular and cardiovascular diseases. Rats were divided into a sham-operated group and I/R transiently occluded then reperfused groups. Some of the I/R animals were treated daily for 7 or 15 days with two different doses of TSN. After 15 days, triphenyl tetrazolium chloride staining revealed less unstained area indicating fewer lesions in the TSN-treated I/R group relative to the untreated corresponding I/R group. TSN treatment dramatically reduced infarct sizes and reduced content of high mobility group box 1 protein following I/R. Nuclear translocation of NFκB was also attenuated in I/R animals subsequently receiving TSN. Terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end labeling staining revealed more apoptosis in the I/R model group and this was reduced in the I/R animals treated with TSN for 15 days. Thus, TSN mitigates the severity of damage effected by I/R.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Andersson U, Wang H, Palmblad K, Aveberger AC, Bloom O, Erlandsson-Harris H, Janson A, Kokkola R, Zhang M, Yang H, Tracey KJ (2000) High mobility group 1 protein (HMG-1) stimulates proinflammatory cytokine synthesis in human monocytes. J Exp Med 192:565–570

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  2. Cho BB, Toledo-Pereyra LH (2008) Caspase-independent programmed cell death following ischemic stroke. J Invest Surg 21:141–147

    Article  PubMed  Google Scholar 

  3. Choi JH, Yoo KY, Lee CH, Park O, Yan BC, Li H, Moon YS, Hwang IK, Lee YL, Shin HC, Won MH (2010) Transient cerebral ischemia induces active astrocytosis without distinct neuronal death in the gerbil main olfactory bulb: a long-term analysis. Neurochem Res 35:1588–1598

    Article  CAS  PubMed  Google Scholar 

  4. Clemens JA, Stephenson DT, Dixon EP, Smalstig EB, Mincy RE, Rash KS, Little SP (2008) Global cerebral ischemia activates nuclear factor-kappa B prior to evidence of DNA fragmentation. Brain Res Mol Brain Res 48:187–196

    Article  Google Scholar 

  5. Dong K, Xu W, Yang J, Qiao H, Wu L (2009) Neuroprotective effects of tanshinone IIA on permanent focal cerebral ischemia in mice. Phytother Res 23:608–613

    Article  CAS  PubMed  Google Scholar 

  6. Durukan A, Tatlisumak T (2007) Acute ischemic stroke: overview of major experimental rodent models, pathophysiology, and therapy of focal cerebral ischemia. Pharmacol Biochem Behav 87:179–197

    Article  CAS  PubMed  Google Scholar 

  7. Feigin VL, Lawes CM, Bennett DA, Anderson CS (2003) Stroke epidemiology: a review of population-based studies of incidence, prevalence, and case-fatality in the late 20th century. Lancet Neurol 2:43–53

    Article  PubMed  Google Scholar 

  8. Froehler MT, Ovbiagele B (2010) Therapeutic hypothermia for acute ischemic stroke. Expert Rev Cardiovasc Ther 8:593–603

    Article  CAS  PubMed  Google Scholar 

  9. Gao J, Yang G, Pi R, Li R, Wang P, Zhang H, Le K, Chen S, Liu P (2008) Tanshinone IIA protects neonatal rat cardiomyocytes from adriamycin-induced apoptosis. Transl Res 151:79–87

    Article  CAS  PubMed  Google Scholar 

  10. Goldstein RS, Gallowitsch-Puerta M, Yang L, Rosas-Ballina M, Huston JM, Czura CJ, Lee DC, Ward MF, Bruchfeld AN, Wang H, Lesser ML, Church AL, Litroff AH, Sama AE, Tracey KJ (2006) Elevated high-mobility group box 1 levels in patients with cerebral and myocardial ischemia. Shock 25:571–574

    Article  CAS  PubMed  Google Scholar 

  11. Lam BY, Lo AC, Sun X, Luo HW, Chung SK, Sucher NJ (2003) Neuroprotective effects of tanshinones in transient focal cerebral ischemia in mice. Phytomedicine 10:286–291

    Article  CAS  PubMed  Google Scholar 

  12. Lee SW, Clemenson GD, Gage FH (2012) New neurons in an aged brain. Behav Brain Res 227:497–507

    Article  PubMed Central  PubMed  Google Scholar 

  13. Liu L, Zhang X, Wang L, Yang R, Cui L, Li M, Du W, Wang S (2010) The neuroprotective effects of tanshinone IIA are associated with induced nuclear translocation of TORC1 and upregulated expression of TORC1, pCREB and BDNF in the acute stage of ischemic stroke. Brain Res Bull 82:228–233

    Article  CAS  PubMed  Google Scholar 

  14. Longa EZ, Weinstein PR, Carlson S, Cummins R (1989) Reversible middle cerebral artery occlusion without craniectomy in rats. Stroke 20:84–91

    Article  CAS  PubMed  Google Scholar 

  15. Luan ZG, Zhang H, Yang PT, Ma XC, Zhang C, Guo RX (2010) HMGB1 activates nuclear factor-κB signaling by RAGE and increases the production of TNF-alpha in human umbilical vein endothelial cells. Immunobiology 215:956–962

    Article  CAS  PubMed  Google Scholar 

  16. Muhammad S, Barakat W, Stoyanov S, Murikinati S, Yang H, Tracey KJ, Bendszus M, Rossetti G, Nawroth PP, Bierhaus A, Schwaninger M (2008) The HMGB1 receptor RAGE mediates ischemic brain damage. J Neurosci 28:12023–12031

    Article  CAS  PubMed  Google Scholar 

  17. Niu XL, Ichimori K, Yang X, Hirota Y, Hoshiai K, Li M, Nakazawa H (2000) Tanshinone II-A inhibits low density lipoprotein oxidation in vitro. Free Rad Res 33:305–312

    Article  CAS  Google Scholar 

  18. Orlova VV, Choi EY, Xie C, Chavakis E, Bierhaus A, Ihanus E, Ballantyne CM, Gahmberg CG, Bianchi ME, Nawroth PP, Chavakis T (2007) A novel pathway of HMGB1 mediated inflammatory cell recruitment that requires Mac-1-integrin. EMBO J 26:1129–1139

    Article  CAS  PubMed  Google Scholar 

  19. Palumbo R, Galvez BG, Pusterla T, De Marchis F, Cossu G, Marcu KB, Bianchi ME (2007) Cells migrating to sites of tissue damage in response to the danger signal HMGB1 require NF-κB activation. J Cell Biol 179:33–40

    Article  CAS  PubMed  Google Scholar 

  20. Park JS, Gamboni-Robertson F, He Q, Svetkauskaite D, Kim JY, Strassheim D, Sohn JW, Yamada S, Maruyama I, Banerjee A, Ishizaka A, Abraham E (2006) High mobility group box 1 protein interacts with multiple toll-like receptors. Am J Physiol Cell Physiol 290:C917–C924

    Article  CAS  PubMed  Google Scholar 

  21. Pendlebury ST, Rothwell PM (2009) Prevalence, incidence, and factors associated with pre-stroke and post-stroke dementia: a systematic review and meta-analysis. Lancet Neurol 8:1006–1018

    Article  PubMed  Google Scholar 

  22. Pluta R, Kocki J, Maciejewski R, Ułamek-Kozioł M, Jabłoński M, Bogucka-Kocka A, Czuczwar SJ (2012) Ischemia signalling to Alzheimer-related genes. Folia Neuropathol 50:322–329

    Article  CAS  PubMed  Google Scholar 

  23. Pluta R, Jabłoński M, Ułamek-Kozioł M, Kocki J, Brzozowska J, Januszewski S, Furmaga-Jabłońska W, Bogucka-Kocka A, Maciejewski R, Czuczwar SJ (2013) Sporadic Alzheimer’s disease begins as episodes of brain ischemia and ischemically dysregulated Alzheimer’s disease genes. Mol Neurobiol 48:500–515

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Qian YH, Xiao Q, Xu J (2012) The protective effects of tanshinone IIA on β-amyloid protein (1–42)-induced cytotoxicity via activation of the Bcl-xL pathway in neuron. Brain Res Bull 88:354–358

    Article  CAS  PubMed  Google Scholar 

  25. Qiu J, Nishimura M, Wang Y, Sims JR, Qiu S, Savitz SI, Salomone S, Moskowitz MA (2008) Early release of HMGB-1 from neurons after the onset of brain ischemia. J Cereb Blood Flow Metab 28:927–938

    Article  CAS  PubMed  Google Scholar 

  26. Ridder DA, Schwaninger M (2009) NF-κB signaling in cerebral ischemia. Neuroscience 158:995–1006

    Article  CAS  PubMed  Google Scholar 

  27. Scaffidi P, Misteli T, Bianchi ME (2002) Release of chromatin protein HMGB1 by necrotic cells triggers inflammation. Nature 418:191–195

    Article  CAS  PubMed  Google Scholar 

  28. Sekeljic V, Bataveljic D, Stamenkovic S, Ułamek M, Jabłoński M, Radenovic L, Pluta R, Andjus PR (2012) Cellular markers of neuroinflammation and neurogenesis after ischemic brain injury in the long-term survival rat model. Brain Struct Funct 217:411–420

    Article  CAS  PubMed  Google Scholar 

  29. Tang C, Xue H, Bai C, Fu R, Wu A (2010) The effects of tanshinone IIA on blood-brain barrier and brain edema after transient middle cerebral artery occlusion in rats. Phytomedicine 17:1145–1149

    Article  CAS  PubMed  Google Scholar 

  30. Thomas JO, Travers AA (2001) HMG1 and 2, and related ‘architectural’ DNA-binding proteins. Trends Biochem Sci 26:167–174

    Article  CAS  PubMed  Google Scholar 

  31. Tian J, Avalos AM, Mao SY, Chen B, Senthil K, Wu H, Parroche P, Drabic S, Golenbock D, Sirois C, Hua J, An LL, Audoly L, La Rosa G, Bierhaus A, Naworth P, Marshak-Rothstein A, Crow MK, Fitzgerald KA, Latz E, Kiener PA, Coyle AJ (2007) Toll-like receptor 9-dependent activation by DNA-containing immune complexes is mediated by HMGB1 and RAGE. Nature Immunol 8:487–496

    Article  CAS  Google Scholar 

  32. Treutiger CJ, Mullins GE, Johansson AS, Rouhiainen A, Rauvala HM, Erlandsson-Harris H, Andersson U, Yang H, Tracey KJ, Andersson J, Palmblad JE (2003) High mobility group 1 B-box mediates activation of human endothelium. J Intern Med 254:375–385

    Article  CAS  PubMed  Google Scholar 

  33. Tsung A, Zheng N, Jeyabalan G, Izuishi K, Klune JR, Geller DA, Lotze MT, Lu L, Billiar TR (2007) Increasing numbers of hepatic dendritic cells promote HMGB1-mediated ischemia–reperfusion injury. J Leukoc Biol 81:119–128

    Article  CAS  PubMed  Google Scholar 

  34. Wang H, Bloom O, Zhang M, Vishnubhakat JM, Ombrellino M, Che J, Frazier A, Yang H, Ivanova S, Borovikova L, Manogue KR, Faist E, Abraham E, Andersson J, Andersson U, Molina PE, Abumrad NN, Sama A, Tracey KJ (1999) HMG-1 as a late mediator of endotoxin lethality in mice. Science 285:248–251

    Article  CAS  PubMed  Google Scholar 

  35. Wang Q, Yu X, Patal K, Hu R, Chuang S, Zhang G, Zheng J (2013) Tanshinones inhibit amyloid aggregation by amyloid-β peptide, disaggregate amyloid fibrils, and protect cultured cells. ACS Chem Neurosci 4:1004–1015

    Article  CAS  PubMed  Google Scholar 

  36. Wang L, Zhang X, Liu L, Cui L, Yang R, Li M, Du W (2010) Tanshinone II A down-regulates HMGB1, RAGE, TLR4, NF-κB expression, ameliorates BBB permeability and endothelial cell function, and protects rat brains against focal ischemia. Brain Res 1321:143–151

    Article  CAS  PubMed  Google Scholar 

  37. Wexler EJ, Peters EE, Gonzales A, Gonzales ML, Slee AM, Kerr JS (2002) An objective procedure for ischemic area evaluation of the stroke intraluminal thread model in the mouse and rat. J Neurosci Methods 113:51–58

    Article  PubMed  Google Scholar 

  38. Xia WJ, Yang M, Fok TF, Li K, Chan WY, Ng PC, Ng HK, Chik KW, Wang CC, Gu GJ, Woo KS, Fung KP (2005) Partial neuroprotective effect of pretreatment with tanshinone IIA on neonatal hypoxia–ischemia brain damage. Pediatr Res 58:784–790

    Article  CAS  PubMed  Google Scholar 

  39. Xie XY, Zhang B, Li JH, Fan QX, Zhang Y, Mu DG, Li WP, Xu M, Zhao PT, Jin FG, Li ZC (2011) Sodium tanshinone IIA sulfonate attenuates seawater aspiration-induced acute pulmonary edema by up-regulating Na(+), K(+)-ATPase activity. Exp Lung Res 37:482–491

    Article  CAS  PubMed  Google Scholar 

  40. Xu W, Yang J, Wu LM (2009) Cardioprotective effects of tanshinone IIA on myocardial ischemia injury in rats. Pharmazie 64:332–336

    CAS  PubMed  Google Scholar 

  41. Yang D, Chen Q, Yang H, Tracey KJ, Bustin M, Oppenheim JJ (2007) High mobility group box-1 protein induces the migration and activation of human dendritic cells and acts as an alarmin. J Leukoc Biol 81:59–66

    Article  CAS  PubMed  Google Scholar 

  42. Yu XY, Lin SG, Zhou ZW, Chen X, Liang J, Liu PQ, Duan W, Chowbay B, Wen JY, Li CG, Zhou SF (2007) Role of P-glycoprotein in the intestinal absorption of tanshinone IIA, a major active ingredient in the root of Salvia miltiorrhiza Bunge. Curr Drug Metab 8:325–340

    Article  CAS  PubMed  Google Scholar 

  43. Zhang W, Potrovita I, Tarabin V, Herrmann O, Beer V, Weih F, Schneider A, Schwaninger M (2005) Neuronal activation of NF-κB contributes to cell death in cerebral ischemia. J Cereb Blood Flow Metab 25:30–40

    Article  PubMed  Google Scholar 

  44. Zhou J, Fonseca MI, Pisalyaput K, Tenner AJ (2008) Complement C3 and C4 expression in C1q sufficient and deficient mouse models of Alzheimer’s disease. J Neurochem 106:2080–2092

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  45. Zhou J, Zhou L, Hou D, Tang J, Sun J, Bondy SC (2011) Paeonol increases levels of cortical cytochrome oxidase and vascular actin and improves behavior in a rat model of Alzheimer’s disease. Brain Res 1388:141–147

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The financial support provided by Hunan Provincial Social Science Foundation of China under the contract Grant Nos. 10JJ6037 and 2011WK3047 is greatly appreciated here.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Zhou.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, JG., Bondy, S.C., Zhou, L. et al. Protective Effect of Tanshinone IIA Against Infarct Size and Increased HMGB1, NFκB, GFAP and Apoptosis Consequent to Transient Middle Cerebral Artery Occlusion. Neurochem Res 39, 295–304 (2014). https://doi.org/10.1007/s11064-013-1221-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-013-1221-y

Keywords

Navigation