Microbial Action on Hydrocarbons pp 143-179 | Cite as
Biosurfactant-Enhanced Petroleum Oil Bioremediation
Abstract
Hydrocarbon compounds, ranging from crude oil to its derivative products, have the potential to cause environmental problems on a global scale. The emergence of these hydrocarbon compounds in the ecosystem makes it a concern to general health of public and environmental aspects, owing to their toxic nature, low to less biodegradability, and potentially accumulated in the food chain. Various technologies have been employed for cleaning contaminated sites with hydrocarbon compounds, including physical and chemical approaches such as thermal desorption, soil washing, soil flushing, and solvent extraction technique. Increasing public awareness of more environmentally friendly methods encourages the use of biodegradation concept in its effort to decontaminate sites. This chapter will discuss the hazard of petroleum oil contamination to the environment, its cleanup methods including physical-chemical-biological process, and biosurfactants role in enhancing the remediation process. It is well known that some bacteria are capable to produce surface-active agent of what is so-called biosurfactants. Biosurfactants have some advantages compare to its synthetic counterparts, i.e., biodegradable, low level of toxicity, biocompatible, high availability of production of raw materials, and very useful for environmental management, i.e., in oil spills handling and bioremediation of industrial wastes contaminated soils. However, the most important biosurfactant weaknesses are in the case of large-scale production. High production costs are not suitable for environmental remediation field applications that require surfactants at low cost and large volumes. Some strategies to overcome these issues and also a case study of field-scale application are presented in this chapter.
References
- Abalos A, Vinas M, Sabate J, Manresa MA, Solanas M (2004) Enhanced biodegradation of Casablanca crude oil by a microbial consortium in presence of a rhamnolipid produced by Pseudomonas aeruginosa AT10. Biodegradation 15:249–260PubMedCrossRefPubMedCentralGoogle Scholar
- Adams CE Jr (1982) The economic of handling refinery sludge. Environ Int 7:293–303CrossRefGoogle Scholar
- Adenipekun CO, Lawal R (2012) Uses of mushrooms in bioremediation: a review. Biotechnol Mol Biol Rev 7(3):62–68Google Scholar
- Anderson WA (1995) Bioremediation. Wiley, New YorkGoogle Scholar
- Atlas RM, dan Cerniglia CE (1995) Bioremediation of petroleum pollutants: diversity and environmental aspect of hydrocarbon biodegradation. Bioscience 45(5):332–338 Academic Press, USACrossRefGoogle Scholar
- ATSDR (2001) Managing hazardous material incidents volumes III. Agency for Toxic Substances and Disease Registry (ATSDR): U.S. Department of Health and Human Services, Public Health Service, Atlanta, GAGoogle Scholar
- Bai G, Brusseau ML, dan Miller RM (1997) Biosurfactant-enhanced removal of residual hydrocarbon from soil. J Contam Hydrol 25:157–170CrossRefGoogle Scholar
- Banat IM, Franzetti A, Gandolfi I, Bestetti G, Martinotti MG, Fracchia L, Smyth TJ, Marchant R (2010) Microbial biosurfactants production, applications and future potential. Appl Microbiol Biotechnol 87(2):427–444. https://doi.org/10.1007/s00253-010-2589-0 CrossRefGoogle Scholar
- Battelle (2007) Sediment toxicity of petroleum hydrocarbon fractions. Report to Massachusetts Department of Environmental Protection Office of Research and Standards, Boston, USAGoogle Scholar
- Benincasa M (2007) Rhamnolipid produced from Agroindustrial wastes enhances hydrocarbon biodegradation in contaminated soil. Curr Microbiol 54(6):445–449CrossRefGoogle Scholar
- Berti AD, dan Thomas MG (2009) Analysis of Achromobactin biosynthesis by Pseudomonas syringae pv. syringae B728a. J Bacteriol 191:4594–4604PubMedPubMedCentralCrossRefGoogle Scholar
- Bhandari A, Novak JT, dan Dove DC (2000) Effect of soil washing petroleum hydrocarbon distribution on sand surfaces. J Hazard Subst Res 2:1–13Google Scholar
- Bishop JM (1991) Applied oceanography. Federal Emergency Management Agency and Department of Civil Engineering. Catholic University of AmericaGoogle Scholar
- Brooks RR (1998) Phytoremediation by volatilization. In: Brooks RR (ed) Plants that hyperaccumulate heavy metals: their Roles in phytoremediation, microbiology, archaeology, mineral exploration and phytomining. CAB International, Oxon, pp 289–312Google Scholar
- Brooks RR, Robinson BH (1998) Aquatic phytoremediation by accumulator plants. In: Brooks RR (ed) Plants that hyperaccumulate heavy metals: their roles in phytoremediation, microbiology, archaeology, mineral exploration and phytomining. CAB International, Oxon, pp 203–226Google Scholar
- Bustamante M, Durán N, Diez MC (2012) Biosurfactants are useful tools for the bioremediation of contaminated soil: a review. J Soil Sci Plant Nutr 12(4):667–687Google Scholar
- Cahyono BN, Sembiring IP, dan Hariyono (2009) Kajian Terhadap Pemanfaatan Co-Processing untuk Pengelolaan Oily Sludge. Jurnal Lingkungan Tropis, Edisi Khusus Agustus 2009Google Scholar
- Cameotra SS, Makkar RS (2010) Biosurfactant-enhanced bioremediation of hydrophobic pollutants. Pure Appl Chem 82(1):97–116CrossRefGoogle Scholar
- Cameotra SS, Singh P (2008) Bioremediation of oil sludge using crude biosurfactants. Int Biodeterior Biodegrad 62:274–280CrossRefGoogle Scholar
- Chong H, Li Q (2017) Microbial production of rhamnolipids: opportunities, challenges and strategies. Microb Cell Factories 16:1–12. https://doi.org/10.1186/s12934-017-0753-2 CrossRefGoogle Scholar
- Christofi N, Ivshina IB (2002) Microbial surfactants and their use in field studies of soil remediation. J Appl Microbiol 93:915–929PubMedCrossRefPubMedCentralGoogle Scholar
- Chrzanowski L, Dziadas M, Ławniczak L, Cyplik P, Białas W, Szulc A, Lisiecki P, Jelen H (2012) Biodegradation of rhamnolipids in liquid cultures: effect of biosurfactant dissipation on diesel fuel/B20 blend biodegradation efficiency and bacterial community composition. Bioresour Technol 111:328–335PubMedCrossRefPubMedCentralGoogle Scholar
- Chu W (2003) Remediation of contaminated soils by surfactant-aided soil washing. Pract Period Hazard Toxic Radioact Waste Manag 7:19–24CrossRefGoogle Scholar
- Cirigliano MC, Carman GM (1984) Isolation of a bioemulsifier from Candida lipolytica. Appl Environ Microbiol 48:747–750PubMedPubMedCentralGoogle Scholar
- Cookson JT (1995) Bioremediation engineering: design and aplication. McGraw-Hill, Inc, BostonGoogle Scholar
- Cortes GC, Carrillo TR, Peñasco IZ, Avila JR, Aké LQ, Cruz JM, dan Lora PO (2009) Microcosm assays and Taguchi experimental design for treatment of oil sludge containing high concentration of hydrocarbons. Bioresour Technol 100:5671–5677CrossRefGoogle Scholar
- Cui CZ, Zeng C, Wan X, Chen D, Zhang JY, Shen P (2008) Effect of Rhamnolipids in degradation of anthracene by two newly isolated strains, Sphingomonas sp. 12A and Pseudomonas sp. 12B. World J Microbiol Biotechnol 18:63–66Google Scholar
- da Rocha OR, Dantas RF, Duarte MMMB, Duarte MML, dan da Silva VL (2010) Oil sludge treatment by photocatalysis applying black and white light. Chem Eng J 157:80–85CrossRefGoogle Scholar
- Dahrazma B, Mulligan CN (2007) Investigation of the removal of heavy metals from sediments using rhamnolipid in a continuous flow configuration. Chemosphere 69:705. https://doi.org/10.1016/j.chemosphere.2007.05.037 CrossRefPubMedGoogle Scholar
- Deng Y, Lu Z, Bi H, Lu F, Zhang C, Bie X (2011) Isolation and characterization of peptide antibiotics LI-F04 and polymyxin B6 produced by Paenibacillus polymyxa strain JSa-9. Peptides 32:1917–1923PubMedCrossRefGoogle Scholar
- Desai JD, Banat IM (1997) Microbial production of surfactants and their commercial potential. Microbiol Mol Biol Rev 61(1):47–64PubMedPubMedCentralGoogle Scholar
- Desai JD, dan Desai AJ (1993) Production of biosurfactant. In: Kosaric N (ed) Biosurfactants production, properties and applications. Marcel Dekker, Inc, New York, pp 65–97Google Scholar
- Elazzazy AM, Abdelmoneim TS, Almaghrabi OA (2014) Isolation and characterization of biosurfactant production under extreme environmental conditions by alkali-halo-thermophilic bacteria from Saudi Arabia. Saudi J Biol Sci 22:466–475PubMedPubMedCentralCrossRefGoogle Scholar
- El-Hamied MHA, dan Ahmed AY (2004) Petroleum sludge recovery. Project Report Summary, Western desert operating petroleum Co. (WEPCO), EgyptGoogle Scholar
- Eweis J, Ergas B, Sarina J, Chang D, Schroeder PY, dan Edward D (1998) Bioremediation principles. McGraw-Hill Inc, BostonGoogle Scholar
- Faye B, dan Sinyavskiy Y (2008) Impact of pollution on animal products. In: Proceeding of the NATO advanced research workshop on impact of pollution on animal products, Alamaty, Kazakhstan. Springer NetherlandsGoogle Scholar
- Fiebig R, Schulze D, Chung JC, Lee ST (1997) Biodegradation of polychlorinated biphenyls (PCBs) in the presence of a bioemulsifier produced on sunflower oil. Biodegradation 8:67–75CrossRefGoogle Scholar
- Gomes KM, Duarte RS, Bastos MCF (2017) Lantibiotics produced by Actinobacteria and their potential applications (a review). Microbiology 163:109–121PubMedCrossRefGoogle Scholar
- Helmy Q, Kardena E (2015) Petroleum oil and gas industry waste treatment; common practice in Indonesia. J Pet Environ Biotechnol 6(5):1–7Google Scholar
- Helmy Q, Kardena E, Funamizu N, Wisjnuprapto (2011) Strategies toward commercial scale of biosurfactant production as potential substitute for it’s chemically counterparts. Int J Biotechnol 12(1/2):66–86CrossRefGoogle Scholar
- Hentati O, Lachhab R, Ayadi M, Ksibi M (2013) Toxicity assessment for petroleum contaminated soil using terrestrial invertebrates and plant bioassays. Environ Monit Assess 185(4):2989–2998. https://doi.org/10.1007/s10661-012-2766-y CrossRefPubMedPubMedCentralGoogle Scholar
- Hickey AM, Gordon L, Dobson ADW, Kelly CT, Doyle EM (2007) Effect of surfactants on fluoranthene degradation by Pseudomonas alcaligenes PA-10. Appl Microbiol Biotechnol 74:851–856PubMedCrossRefPubMedCentralGoogle Scholar
- Hidayati N, Surtiningsih T, Ni’matuzahroh (2014) Removal of heavy metals Pb, Zn and cu from sludge waste of paper industries using biosurfactant. J Bioremed Biodegr 5(7):1–3Google Scholar
- Hua Z, Chen Y, Du G, Chen J (2004) Effects of biosurfactants produced by Candida antarctica on the biodegradation of petroleum compounds. World J Microbiol Biotechnol 20(1):25–29CrossRefGoogle Scholar
- Huang W, Liu ZM (2013) Biosorption of Cd(II)/Pb(II) from aqueous solution by biosurfactant-producing bacteria: isotherm kinetic characteristic and mechanism studies. Colloids Surf B: Biointerfaces 105:113–119PubMedCrossRefPubMedCentralGoogle Scholar
- Husain S (2008) Effect of surfactants on pyrene degradation by Pseudomonas fluorescens 29L. World J Microbiol Biotechnol 24:2411–2419CrossRefGoogle Scholar
- Huszcza E, Burczyk B (2003) Biosurfactant production by Bacillus coagulans. J Surfactant Deterg 6(1):61–64CrossRefGoogle Scholar
- Ivshina IB, Kuyukina MS, Philp JC, Christofi N (1998) Oil desorption from mineral and organic materials using biosurfactant complexes produced by Rhodococcus species. World J Microbiol Biotechnol 14:711–717CrossRefGoogle Scholar
- Joseph PJ, dan Joseph A (2009) Microbial enhanced separation of oil from a petroleum refinery sludge. J Hazard Mater 161:522–525PubMedCrossRefPubMedCentralGoogle Scholar
- Juwarkar AA, Nair A, Dubey KV, Singh SK, Devotta S (2007) Biosurfactant technology for remediation of cadmium and lead contaminated soils. Chemosphere 68:1996–2002PubMedCrossRefPubMedCentralGoogle Scholar
- Kang SW, Kim YB, Shin JD, Kim EK (2010) Enhanced biodegradation of hydrocarbons in soil by microbial biosurfactant, Sophorolipid. Appl Biochem Biotechnol 160(3):780–790PubMedCrossRefPubMedCentralGoogle Scholar
- Kardena E, Widayatno RL, Helmy Q (2013) Bioremediation of petroleum oil contaminated soil in Bula block, West Seram, Indonesia. Project Report to Indonesian EPAGoogle Scholar
- Kardena E, Helmy Q, Funamizu N (2015) Biosurfactant and soil bioremediation. In: Kosaric N (ed) Biosurfactants: production and utilization-processes, technologies, and economics. CRC Press/Taylor and Francis Group, Boca Raton, pp 327–379Google Scholar
- Kardena E, Arsyah DM, Helmy Q (2017) Characterization of biosurfactant produced by petrofilic bacteria isolated from hydrocarbon impacted soil and its potential application in bioremediation. In: Proceeding of the 4th international seminar on sustainable urban development, August 9–10th 2017, Jakarta IndonesiaGoogle Scholar
- Kildisas V, Levisauskas D, Grigiskis S (2003) Development of clean-up complex technology of soil contaminated by oil pollutants based on cleaner production concepts. Environ Res Eng Manage 25:87–93Google Scholar
- Kim SJ, Choi DH, Sim DS, Oh YS (2005) Evaluation of bioremediation effectiveness on crude oil-contaminated sand. Chemosphere 59:845–852PubMedCrossRefPubMedCentralGoogle Scholar
- Klosowska-Chomiczewska I, Medrzycka K, Karpenko E (2011) Biosurfactants–biodegradability, toxicity, efficiency in comparison with synthetic surfactants. In: Plaza E, Levlin E (eds) Proceedings of the polish-Swedish-Ukrainian seminar “Research and application of new technologies in wastewater treatment and municipal solid waste disposal in Ukraine, Sweden and Poland”Google Scholar
- Kosaric N (1992) Biosurfactant in industry. J Am Oil Chem Soc 64(11):1731–1737Google Scholar
- Kosaric N (2001) Biosurfactants and their application for soil bioremediation. Food Technol Biotechnol 39(4):295–304Google Scholar
- Kostecki P, dan Behbehani M (1999) Assessment and remediation of oil contaminated soils. Arab School on Science and Technology, New Age International PublishersGoogle Scholar
- Krishnamurthi K, Devi SS, dan Chakrabarti T (2003) Genotoxic effects of PAH containing sludge extracts in Chinese hamster ovary cell cultures. Biomed Environ Sci 16:68–82PubMedPubMedCentralGoogle Scholar
- Krishnamurthi K, Devi SS, dan Chakrabarti T (2007) The genotoxicity of priority polycyclic aromatic hydrocarbons (PAHs) containing sludge samples. Toxicol Mech Methods 17:1–12PubMedCrossRefPubMedCentralGoogle Scholar
- Kucharski WA (1999) Remediation technique: an overview. dalam. In: Kostecki dan Behbehani (eds) Assessment and remediation of oil contaminated soils. New Age International Publisher, IndiaGoogle Scholar
- Kumari H, Balasubramanian D, Zincke D, Mathee K (2014) Role of Pseudomonas aeruginosa AmpR on β-lactam and non-β-lactam transient cross-resistance upon pre-exposure to subinhibitory concentrations of antibiotics. J Med Microbiol 63(4):544–555. https://doi.org/10.1099/jmm.0.070185-0 CrossRefPubMedPubMedCentralGoogle Scholar
- Lamichhane KM, Babcock RW Jr, Turnbull SJ, Schenck S (2012) Molasses enhanced phyto and bioremediation treatability study of explosives contaminated Hawaiian soils. J Hazard Mater 243:334–339PubMedCrossRefPubMedCentralGoogle Scholar
- Lawniczak L, Marecik R, Chrzanowski L (2013) Contributions of biosurfactants to natural or induced bioremediation. Appl Microbiol Biotechnol 97(6):2327–2339PubMedPubMedCentralCrossRefGoogle Scholar
- Lee S-C, Lee S-J, Kima S-H, Parka I-H, Lee Y-S, Chung S-Y, dan Choi Y-L (2007) Characterization of new biosurfactant produced by Klebsiella sp. Y6-1 isolated from waste soybean oil. Bioresour Technol 99:2288–2292PubMedCrossRefPubMedCentralGoogle Scholar
- Levisauskas D, Galvanauskas V, Zunda G, dan Grigiskis S (2004) Model-based optimization of biosurfactant production in fed-batch culture Azotobacter vinelandii. Biotechnol Lett 26:1141–1146PubMedCrossRefPubMedCentralGoogle Scholar
- Liu J, Jiang X, Zhou L, Wang H, dan Han X (2009) Co-firing of oil sludge with coal–water slurry in an industrial internal circulating fluidized bed boiler. J Hazard Mater 167:817–823PubMedCrossRefPubMedCentralGoogle Scholar
- Lotfabad TB, Ebadipour N, Roosta Azad R (2016) Evaluation of a recycling bioreactor for biosurfactant production by Pseudomonas aeruginosa MR01 using soybean oil waste. J Chem Technol Biotechnol 91:1368–1377CrossRefGoogle Scholar
- Mahmood T (2010) Phytoextraction of heavy metals – the process and scope for remediation of contaminated soils. Soil Environ 29(2):91–109Google Scholar
- Mahro B (2000) Bioavailability of contaminants, biotechnology, 2nd edn. Wiley-Vch, WeinheimGoogle Scholar
- Makkar RS, Cameotra SS (1999) Biosurfactant production by microorganisms on unconventional carbon source. J Surfactant Deterg 2(2):237CrossRefGoogle Scholar
- Marques APGC, Rangel AOSS, Castro PML (2009) Remediation of heavy metal contaminated soils: phytoremediation as a potentially promising clean-up technology. Crit Rev Environ Sci Technol 39:622–654CrossRefGoogle Scholar
- Martía MC, Camejoa D, García NF, Álvarez RR, Marques S, Sevilla F, dan Jiméneza A (2009) Effect of oil refinery sludges on the growth and antioxidant system of alfalfa plants. J Hazard Mater 171:879–885CrossRefGoogle Scholar
- Martienssen M, Reichel O, Schirmer M (2003) Use of surfactants to improve the biological degradability of petroleum hydrocarbons. Chemie Ingenieur Technik 75(11):1749–1755CrossRefGoogle Scholar
- McKew BA, Coulon F, Yakimov MM, Denaro R, Genovese M, Smith CJ, Osborn AM, Timmis KN, McGenity TJ (2007) Efficacy of intervention strategies for bioremediation of crude oil in marine systems and effects on indigenous hydrocarbonoclastic bacteria. Environ Microbiol 9(6):1562–1571. https://doi.org/10.1111/j.1462-2920.2007.01277.x CrossRefPubMedPubMedCentralGoogle Scholar
- Moran AC, Olivera N, Commendatore M, Esteves JL, Sineriz F (2000) Enhancement of hydrocarbon waste biodegradation by addition of a biosurfactant from Bacillus subtilis O9. Biodegradation 11:65–71PubMedCrossRefPubMedCentralGoogle Scholar
- Morelli IS, Vecchioli GI, Del Panno MT, Garré MI, Costanza OR, dan Painceira MT (1995) Assessment of the toxic potential of hydrocarbon containing sludges. Environ Pollut 89:131–135PubMedCrossRefPubMedCentralGoogle Scholar
- Morelli IS, Vecchioli GI, Costanza OR, Schafer R, Corti LB, dan Painceira MT (1999) Effect of storage on the toxic potential of hydrocarbon containing sludges. Environ Toxicol 14:227–233CrossRefGoogle Scholar
- Mujumdar S, Bashetti S, Pardeshi S, Thombre RS (2016) Industrial applications of biosurfactants. In: Thanadurai T, Sangeetha J (eds) Industrial biotechnology: sustainable production and bioresource utilization. CRC Press, Taylor and Francis GroupGoogle Scholar
- Mulligan C (2005) Environmental applications for biosurfactants. Environ Pollut 133(2):183–198PubMedCrossRefPubMedCentralGoogle Scholar
- Mulligan CN, Yong RN, Gibbs BF (2001) Heavy metal removal from sediments by biosurfactants. J Hazard Mater 85:111–125PubMedCrossRefPubMedCentralGoogle Scholar
- Munstermann B, Poremba K, Lang S, Wagner F (1992) Studies on environmental compatibility: Influence of (bio)surfactants on marine microbial and enzymatic systems. In: Proceedings of the international symposium on soil decontamination using biological processes, pp 414–420, 6–9 December, 1992. Karlsruhe, Germany. Frankfurt, DechemaGoogle Scholar
- Nalini S, Parthasarathi R (2017) Optimization of rhamnolipid biosurfactant production from Serratia rubidaea SNAU02 under solid-state fermentation and its biocontrol efficacy against Fusarium wilt of eggplant. Ann Agrarian Sci 1–8. https://doi.org/10.1016/j.aasci.2017.11.002 CrossRefGoogle Scholar
- Ndimele PE (2010) A review on the phytoremediation of petroleum hydrocarbon. Pak J Biol Sci 13:715–722PubMedCrossRefPubMedCentralGoogle Scholar
- Neu TR, Dengler T, Jann B, Poralla K (1990) Surface active properties of viscosin: a peptidolipid antibiotic. Appl Microbiol Biotechnol 32:518–520Google Scholar
- Noordman WH (1999) Biosurfactant-enhanced soil bioremediation. Rijksuniversiteit Groningen, NetherlandGoogle Scholar
- Ongarbayev Y, dan Mansurov Z (2008) Study of composition and properties of oil pollution. In Faye B, Sinyavskiy Y (eds) Impact of pollution on animal products, proceeding of the NATO advanced research workshop on impact of pollution on animal products, Alamaty, Kazakhstan, Springer NetherlandsGoogle Scholar
- Owsianiak M, Chrzanowski L, Szulc A, Staniewski J, Olszanowski A, Olejnik-Schmidt AK, Heipieper HJ (2009) Biodegradation of diesel/biodiesel blends by a consortium of hydrocarbon degraders: effect of the type of blend and the addition of biosurfactants. Bioresour Technol 100(3):1497–1500. https://doi.org/10.1016/j.biortech.2008.08.028 CrossRefPubMedPubMedCentralGoogle Scholar
- Pajević S, Borišev M, Nikolić N, Arsenov DD, Orlović S, Župunski M (2016) Phytoextraction of heavy metals by fast- growing trees: a review. In: Ansari AA et al (eds) Phytoremediation. Springer, Cham. https://doi.org/10.1007/978-3-319-40148-5_2 CrossRefGoogle Scholar
- Park S, Kim KS, Kim JT, Kang D, Sung K (2011) Effects of humic acid on phytodegradation of petroleum hydrocarbons in soil simultaneously contaminated with heavy metals. J Environ Sci 23(12):2034–2041CrossRefGoogle Scholar
- Pei X-H, Zhan X-H, Wang S-M, Lin Y-S, Zhou L-X (2010) Effects of a biosurfactant and a synthetic surfactant on phenanthrene degradation by a Sphingomonas strain. Pedosphere 20:771–779CrossRefGoogle Scholar
- Plaza GA, Wypych J, Berry C, Brigmon RL (2007) Utilization of monocyclic aromatic hydrocarbons individually and in mixture by bacteria isolated from petroleum contaminated soil. World J Microbiol Biotechnol 23:533–542CrossRefGoogle Scholar
- Prasetya B, Sudijono, dan Kasinoputro P (2006) Pemanfaatan lumpur minyak untuk pembuatan komposit berserat lignoselulosa. J Trop Wood Sci Technol 4:9–16Google Scholar
- Rahman KSM, Rahman TJ, McClean S, Marchant R, Banat IM (2002) Rhamnolipid biosurfactant production by strains of Pseudomonas aeruginosa using low-cost raw materials. Biotechnol Prog 18(6):1277–1281PubMedCrossRefPubMedCentralGoogle Scholar
- Rahman KSM, Rahman TJ, Kourkoutas Y, Petsas I, Banat IM (2003) Enhanced bioremediation of n-alkane in petroleum sludge using bacterial consortium amended with rhamnolipid and micronutrients. Bioresour Technol 90(2):159–168PubMedCrossRefPubMedCentralGoogle Scholar
- Raisbeck MF (2013) Petroleum hydrocarbons. In: Peterson ME, Talcott PA (eds) Small animal toxicology. Elsevier Saunders, St. LouisGoogle Scholar
- Rashedi H, Jamshidi E, Assadi MM, Bonakdarpour B (2006) Biosurfactant production with glucose as a carbon source. Chem Biochem Eng Q 20(1):99–106Google Scholar
- Reddy MS, Naresh B, Leela T, Prashanthi M, Madhusudhan NC, Dhanasri G, Devi P (2010) Biodegradation of phenanthrene with biosurfactant production by a new strain of Brevibacillus sp. Bioresour Technol 101:7980–7983PubMedCrossRefPubMedCentralGoogle Scholar
- Rittmann BE, dan McCarty PL (2001) Environmental biotechnology: principle and applications. McGraw Hill, New YorkGoogle Scholar
- Ron EZ, Rosenberg E (2001) Natural roles of biosurfactant. Environ Microbiol 3(4):229–236CrossRefGoogle Scholar
- Ron EZ, Rosenberg E (2002) Biosurfactants and oil bioremediation. Curr Opin Biotechnol 13:249–252PubMedCrossRefPubMedCentralGoogle Scholar
- Rosenberg E (1993) Microbial diversity as a source of useful biopolymers. J Ind Microbiol 11(3):131–137PubMedCrossRefPubMedCentralGoogle Scholar
- Rosenberg E, Rubinovitz C, Gottlieb A, Rosenhak S, Ron EZ (1988) Production of biodispersan by Acinetobacter calcoaceticus A2. Appl Environ Microbiol 54:317–322PubMedPubMedCentralGoogle Scholar
- Saeki H, Sasaki M, Komatsu K, Miura A, Matsuda H (2009) Oil spill remediation by using the remediation agent JE1058BS that contains a biosurfactant produced by Gordonia sp. strain JE-1058. Bioresour Technol 100:572–577PubMedCrossRefPubMedCentralGoogle Scholar
- Sakakibara M, Watanabe A, Inoue M, Sano S, Kaise T (2010) Phytoextraction and Phytovolatilization of arsenic from as-contaminated soils by Pteris vittata. In: Proceedings of the annual international conference on soils, sediments, water and energy, vol 12, Article 26Google Scholar
- Santa Anna LM, Soriano AU, Gomes AC, Menezes EP, Gutarra MLE, Freire DMG, Dan Pereira N Jr (2007) Use of biosurfactant in the removal of oil from contaminated sandy soil. J Chem Technol Biotechnol 82:687–691CrossRefGoogle Scholar
- Santos EC, Jacques JS, Bento FM, Peralba MCR, Selbach PA, Sa ELS, Camargo FAO (2007) Anthracene biodegradation and surface activity. Bioresour Technol 99:2644–2649. https://doi.org/10.1016/j.biortech.2007.04.050 CrossRefPubMedPubMedCentralGoogle Scholar
- Schindler J, Buhler M (1984) Biotransformation of aliphatic hydrocarbon, dalam. In: Rehm HJ, Reed G (eds) Biotransformation, vol 6a. Verlag Chemie, WeinheimGoogle Scholar
- Sen S, Borah SN, Bora A, Deka S (2017) Production, characterization, and antifungal activity of a biosurfactant produced by Rhodotorula babjevae YS3. Microb Cell Factories 16(95):1–14Google Scholar
- Shie J-L, Lin J-P, Chang C-Y, Lee D-J, Wu C-H (2003) Pyrolysis of oil sludge with additives of sodium and potassium compounds. Resour Conserv Recycl 39:51–64CrossRefGoogle Scholar
- Shin K-H, Dan Kim K-W (2004) A biosurfactant-enhanced soil flushing for the removal of phenanthrene and diesel in sand. Environ Geochem Health 26:5–11PubMedCrossRefPubMedCentralGoogle Scholar
- Singh H (2006) Mycoremediation: fungal bioremediation. Wiley, HobokenCrossRefGoogle Scholar
- Singh A, Van Hamme JD, dan Ward OP (2007) Surfactants in microbiology and biotechnology: Part 2. Application aspects. Biotechnol Adv 25:99–121CrossRefGoogle Scholar
- Singh A, Kuhad RC, Ward OP (2009) Advances in applied bioremediation. Springer, Berlin/HeidelbergCrossRefGoogle Scholar
- Singh GB, Gupta S, Gupta N (2013) Carbazole degradation and biosurfactant production by newly isolated Pseudomonas sp. strain GBS.5. Int Biodeterior Biodegrad 84:35–43CrossRefGoogle Scholar
- Sponza DT, Gok O (2011) Effects of sludge retention time (SRT) and biosurfactant on the removal of polyaromatic compounds and toxicity. J Hazard Mater 197:404–416PubMedCrossRefPubMedCentralGoogle Scholar
- Straight PD, Willey JM, dan Kolter R (2006) Interactions between Streptomyces coelicolor and Bacillus subtilis: role of surfactants in raising aerial structures. J Bacteriol 188:4918–4925PubMedPubMedCentralCrossRefGoogle Scholar
- Suryatmana P, Edwan K, Enny R, Wisjnuprapto (2005) The role of Azotobacter chroococcum as bioemulsifier producer to increase biodegradation rate of crude oil hydrocarbon. In: Proceeding of joint symposium on 3rd Asian conference for lactic acid Bacteriah & 9th National Congress of Indonesian Sosiety for Microbiology between ISLAB & PERMI. Bali, IndonesiaGoogle Scholar
- Taha RA, Yahia EA, Zein M, Al-Rawas AA, dan Al-Suleimani Y (2010) Solidification of tank bottom sludge. Geotech Geol Eng 28:15–25CrossRefGoogle Scholar
- Taiwo EA, dan Otolorin JA (2009) Oil recovery from petroleum sludge by solvent extraction. Pet Sci Technol 27(8):836–844CrossRefGoogle Scholar
- Tang J, Wang M, Wang F, Sun Q, Zhou Q (2011) Eco-toxicity of petroleum hydrocarbon contaminated soil. J Environ Sci 23(5):845–851CrossRefGoogle Scholar
- Tangahu BV, Abdullah SRS, Basri H, Idris M, Anuar N, Mukhlisin M (2011) A review on heavy metals (As, Pb, and Hg) uptake by plants through phytoremediation. Int J Chem Eng 2011:1–31. https://doi.org/10.1155/2011/939161 CrossRefGoogle Scholar
- Thavasi R, Nambaru VRMS, Jayalakshmi S, Balasubramanian T, dan Banat IM (2009) Biosurfactant production by Azotobacter chroococcum isolated from the marine environment. Mar Biotechnol 11:551–556PubMedCrossRefGoogle Scholar
- Thavasi R, Jayalakshmi S, Banat IM (2011) Application of biosurfactant produced from peanut oil cake by Lactobacillus delbrueckii in biodegradation of crude oil. Bioresour Technol 102:3366–3372PubMedCrossRefGoogle Scholar
- U.S. EPA (2000) Introduction to phytoremediation. Office of Research and Development. EPA 600-R-99-107Google Scholar
- Urum K, Pekdemir T (2004) Evaluation of biosurfactants for crude oil contaminated soil washing. Chemosphere 57(9):1139–1150PubMedCrossRefGoogle Scholar
- Urum K, Pekdemir T, Ross D, dan Grigson S (2005) Crude oil contaminated soil washing in air sparging assisted stirred tank reactor using biosurfactants. Chemosphere 60:334–343PubMedCrossRefPubMedCentralGoogle Scholar
- USACE (2002) Soil Vapor extraction and bioventing, engineering manual. Department of the Army US Army Corps of Engineers, Washington, DCGoogle Scholar
- Uysal A, Turkman A (2007) Biodegradation of 4-CP in an activated sludge reactor: effects of biosurfactant and the sludge age. J Hazard Mater 148:151. https://doi.org/10.1016/j.jhazmat.2007.02.020 CrossRefPubMedGoogle Scholar
- Van Hamme JD, Ward OP (2001) Physical and metabolic interaction of Pseudomonas sp. Strain JA5-B45 and Rhodococcus sp. Strain F9-D79 during growth on crude oil and effect of a chemical surfactant on them. Appl Environ Microbiol 67:4874–4879PubMedPubMedCentralCrossRefGoogle Scholar
- Viisimaa M, Karpenko O, Novikov V, Trapido M, Goi A (2013) Influence of biosurfactant on combined chemical–biological treatment of PCB-contaminated soil. Chem Eng J 220:352–359CrossRefGoogle Scholar
- Vijayakumar S, Saravanan V (2015) Biosurfactants-types, sources and applications. Res J Microbiol 10:181–192. https://doi.org/10.3923/jm.2015.181.192 CrossRefGoogle Scholar
- Vijayanand S, Divyashree M (2015) Bioremediation of heavy metals using biosurfactant producing microorganisms. Int J Pharm Sci Res 6(5):840–847Google Scholar
- Whang L-M, Liu P-W, Maa C-C, Cheng SS (2007) Application of biosurfactants, rhamnolipid, and surfactin, for enhanced biodegradation of diesel-contaminated water and soil. J Hazard Mater 151(1):155–163. https://doi.org/10.1016/j.jhazmat.2007.05.063 CrossRefPubMedPubMedCentralGoogle Scholar
- Whyte LG, Goalen B, Hawari J, Labbé D, Greer CW, Nahir M (2001) Bioremediation treatability assessment of hydrocarbon-contaminated soils from Eureka, Nunavut. Cold Reg Sci Technol 32:121–132CrossRefGoogle Scholar
- Wong JWC, Zhao Z, Zheng G (2010) Biosurfactants from Acinetobacter calcoaceticus BU03 enhance the bioavailability and biodegradation of polycyclic aromatic hydrocarbons. In: Proceedings of the annual international conference on soils, sediments, water and energy, vol 15, Article 5Google Scholar
- Xiao X, Chen H, Si C, Wu L (2012) Influence of biosurfactant-producing strain Bacillus subtilis BS1 on the mycoremediation of soils contaminated with phenanthrene. Int Biodeterior Biodegrad 75:36–42CrossRefGoogle Scholar
- Yan P, Lu M, Guan Y, Zhang W, Zhang Z (2011) Remediation of oil-based drill cuttings through a biosurfactant-based washing followed by a biodegradation treatment. Bioresour Technol 102:10252–10259PubMedCrossRefGoogle Scholar
- Zeng G, Liu Z, Zhong H, Li J, Yuan X, Fu H, Ding Y, Wang J, Zhou M (2011) Effect of monorhamnolipid on the degradation of n-hexadecane by Candida tropicalis and the association with cell surface properties. Appl Microbiol Biotechnol 90:1155–1161PubMedCrossRefGoogle Scholar
- Zhang J, Yin R, Lin X, Liu W, Chen R, Li X (2010) Interactive effect of biosurfactant and microorganism to enhance phytoremediation for removal of aged polycyclic aromatic hydrocarbons from contaminated soils. J Health Sci 56:257–266CrossRefGoogle Scholar
- Zhang C, Wang S, Yan Y (2011) Isomerization and biodegradation of beta-cypermethrin by Pseudomonas aeruginosa CH7 with biosurfactant production. Bioresour Technol 102:7139–7146PubMedCrossRefGoogle Scholar
- Zhang B, Zhu Z, Jing L, Cai Q, Li Z (2012) Pilot-scale demonstration of biosurfactant-enhanced InSitu bioremediation of a contaminated site in Newfoundland and Labrador. Faculty of Engineering and Applied Science Memorial University of Newfoundland St. John’s, Newfoundland and Labrador, Canada, A1B 3X5Google Scholar
- Zhao Z, Selvam A, Chung Wong JW (2011) Synergistic effect of thermophilic temperature and biosurfactant produced by Acinetobacter calcoaceticus BU03 on the biodegradation of phenanthrene in bioslurry system. J Hazard Mater 190:345–350PubMedCrossRefPubMedCentralGoogle Scholar
- Zouboulis AI, Matis KA, Lazaridis NK, Golyshin PN (2003) The use of biosurfactants in flotation: application for the removal of metal ions. Miner Eng 16(11):1231–1236CrossRefGoogle Scholar
- Zubaidy EAH, Abouelnasr DM (2010) Fuel recovery from waste oily sludge using solvent extraction. Process Saf Environ Prot 88:318–326CrossRefGoogle Scholar