Skip to main content
Log in

Effect of monorhamnolipid on the degradation of n-hexadecane by Candida tropicalis and the association with cell surface properties

  • Environmental Biotechnology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

The effect of monorhamnolipid (monoRL) on the degradation of n-hexadecane by Candida tropicalis was investigated in this study. The concentration of hexadecane, cell growth, cell surface hydrophobicity (CSH), cell surface zeta potential (CSZP), and FT-IR spectra of cellular envelope were tested to determine the mechanisms. MonoRL at the initial concentrations of 11.4, 19, and 38 mg/l improved the degradation of hexadecane, and 19 mg/l was the best concentration. However, 114 mg/l monoRL suppressed the biodegradation probably because of the reduced bioavailability of hexadecane caused by the micelles. The presence of monoRL changed the cell surface properties, which was demonstrated by the increased CSH, the increased CSZP, and the changed FT-IR spectra of cellular envelope at 680 and 620 cm−1. The changes of cell surface properties may be a reason for the enhanced biodegradation of hexadecane by the yeast. The results indicate the potential application of monoRL in the bioremediation of hydrocarbons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Ahimou F, Jacques P, Deleu M (2000) Surfactin and iturin A effects on Bacillus subtilis surface hydrophobicity. Enzyme Microb Technol 27:749–754

    Article  CAS  Google Scholar 

  • Al-Tahhan RA, Sandrin TR, Bodour AA, Maier RM (2000) Rhamnolipid-induced removal of lipopolysaccharide from Pseudomonas aeruginosa: effect on cell surface properties and interaction with hydrophobic substrates. Appl Environ Microbiol 66(8):3262–3268

    Article  CAS  Google Scholar 

  • Busscher HJ, van de Belt-Gritter B, van der Mei HC (1995) Implications of microbial adhesion to hydrocarbons for evaluating cell surface hydrophobicity 1 Zeta potentials of hydrocarbon droplets. Colloids Sur B 5:111–116

    Article  CAS  Google Scholar 

  • Coimbra CD, Rufino RD, Luna JM, Sarubbo LA (2009) Studies of the cell surface properties of Candida species and relation to the production of biosurfactants for environmental applications. Curr Microbiol 25:245–251

    Article  Google Scholar 

  • Deng Y, Zhang Y, Hesham AE, Liu R, Yang M (2010) Cell surface properties of five polycyclic aromatic compound-degrading yeast strains. Appl Microbiol Biotechnol 86:1933–1939

    Article  CAS  Google Scholar 

  • Deschênes L, Lafrance P, Villeneuve JP, Samson R (1996) Adding sodium dodecyl sulfate and Pseudomonas aeruginosa UG2 biosurfactants inhibits polycyclic aromatic hydrocarbon degradation in a weathered creosote-contaminated soil. Appl Microbiol Biotechnol 46:638–646

    Article  Google Scholar 

  • Falatko DF, Novak JT (1992) Effects of biologically produced surfactants on the mobility and biodegradation of petroleum hydrocarbons. Water Environ Res 64:163–169

    Article  CAS  Google Scholar 

  • Geertsema-Doornbusch GI, van der Mei HC, Bushcher HJ (1993) Microbial cell surface hydrophobicity the involvement of electrostatic interactions in microbial adhesion to hydrocarbons (MATH). J Microbiol Methods 18:61–68

    Article  Google Scholar 

  • Hazen KC, Lay J-G, Hazen BW, Fu RC, Murthy S (1990) Partial biochemical characterization of cell surface hydrophobicity and hydrophilicity of Candida albicans. Infect Immun 58:3469–3476

    Article  CAS  Google Scholar 

  • Herman DC, Zhang Y, Miller RM (1997) Rhamnolipid (biosurfactant) effects on cell aggregation and biodegradation of residual hexadecane under saturated flow conditions. Appl Environ Microbiol 63:3622–3627

    Article  CAS  Google Scholar 

  • Hickey AM, Gordon L, Dobson ADW, Kelly CT, Doyle EM (2007) Effect of surfactants on fluoranthene degradation by Pseudomonas alcaligenes PA-10. Appl Microbiol Biotechnol 74:851–856

    Article  CAS  Google Scholar 

  • Hua Z, Chen J, Lun S, Wang X (2003) Influence of biosurfactants produced by Candida antarctica on surface properties of microorganism and biodegradation of n-alkanes. Water Res 37:4143–4150

    Article  CAS  Google Scholar 

  • Hua Z, Song R, Du G, Li H, Chen J (2007) Effects of EDTA and Tween60 on biodegradation of n-hexadecane with two strains of Pseudomonas aeruginosa. Biochem Eng J 36:66–71

    Article  CAS  Google Scholar 

  • Ijah UJJ (1998) Studies on relative capabilities of bacterial and yeast isolates from tropical soil in degrading crude oil. Waste Manage 18:293–299

    Article  CAS  Google Scholar 

  • Ishigami Y, Gama Y, Nagahora H, Yamaguchi M, Nakahara H, Kamata T (1987) The pH-sensitive conversion of molecular aggregates of rhamnolipid biosurfactant. Chem Lett 5:763–766

    Article  Google Scholar 

  • Ito S, Inoue S (1982) Sophorolipids from Torulopsis bombicola: possible relation to alkane uptake. Appl Environ Microbiol 43:1278–1283

    Article  CAS  Google Scholar 

  • Kaczorek E, Urbanowicz M, Olszanowski A (2010) The influence of surfactants on cell surface properties of Aeromonas hydrophila during diesel oil biodegradation. Colloids Sur B 81:363–368

    Article  CAS  Google Scholar 

  • Liu Z, Zeng G, Wang J, Zhong H, Ding Y, Yuan X (2010) Effects of monorhamnolipid and Tween 80 on the degradation of phenol by Candida tropicalis. Process Biochem 45:805–809

    Article  CAS  Google Scholar 

  • Mata-Sandoval JC, Karns J, Torrents A (2001) Influence of rhamnolipids and Triton X-100 on the biodegradation of three pesticides in aqueous phase and soil slurries. J Agric Food Chem 49:3296–3303

    Article  CAS  Google Scholar 

  • Mozes N, Léonard AJ, Rouxhet PG (1988) On the relations between the elemental surface composition of yeasts and bacteria and their charge and hydrophobicity. Biochim Biophys Acta 945:324–334

    Article  CAS  Google Scholar 

  • Noordman WH, Janssen DB (2002) Rhamnolipid stimulates uptake of hydrophobic compounds by Pseudomonas aeruginosa. Appl Environ Microbiol 68:4502–4508

    Article  CAS  Google Scholar 

  • Oberbremer A, Miiller-Hurtig R, Wagner F (1990) Effect of the addition of microbial surfactants on hydrocarbon degradation in a soil population in a stirred reactor. Appl Microbiol Biotechnol 32:485–493

    Article  CAS  Google Scholar 

  • Providenti MA, Flemming CA, Lee H, Trevors JT (1995) Effect of addition of rhamnolipid biosurfactants or rhamnolipid-producing Pseudomonas aeruginosa on phenanthrene mineralization in soil slurries. FEMS Microbiol Ecol 17:15–26

    Article  CAS  Google Scholar 

  • Ron EZ, Rosenberg E (2002) Biosurfactants and oil bioremediation. Curr Opin Biotechnol 13:249–252

    Article  CAS  Google Scholar 

  • van Loosdrecht MCM, Lyklema J, Norde W, Schraa G, Zehnder AJB (1987) Electrophoretic mobility and hydrophobicity as a measure to predict the initial steps of bacterial adhesion. Appl Environ Microbiol 53:1898–1901

    Article  Google Scholar 

  • Whang L, Liu PG, Ma C, Cheng S (2009) Application of rhamnolipid and surfactin for enhanced diesel biodegradation—effects of pH and ammonium addition. J Hazard Mater 164:1045–1050

    Article  CAS  Google Scholar 

  • Wong JWC, Fang M, Zhao Z, Xing B (2004) Effect of surfactants on solubilization and degradation of phenanthrene under thermophilic conditions. J Environ Qual 33:2015–2025

    Article  CAS  Google Scholar 

  • Zeng G, Fu H, Zhong H, Yuan X, Fu M, Wang W, Huang G (2007) Co-degradation with glucose of four surfactants, CTAB, Triton X-100, SDS and rhamnolipid, in liquid culture media and compost matrix. Biodegradation 18:303–310

    Article  CAS  Google Scholar 

  • Zhang Y, Miller RM (1992) Enhanced octadecane dispersion and biodegradation by a Pseudomonas rhamnolipid surfactant (biosurfactant). Appl Environ Microbiol 58:3276–3282

    Article  CAS  Google Scholar 

  • Zhang Y, Miller RM (1994) Effect of a Pseudomonas rhamnolipid biosurfactant on cell hydrophobicity and biodegradation of octadecane. Appl Environ Microbiol 60:2101–2106

    Article  CAS  Google Scholar 

  • Zhang Y, Miller RM (1995) Effect of rhamnolipid (biosurfactant) structure on solubilization and biodegradation of n-alkanes. Appl Environ Microbiol 61:2247–2251

    Article  CAS  Google Scholar 

  • Zhang Y, Maier WJ, Miller RM (1997) Effect of rhamnolipid on the dissolution, bioavailability, and biodegradation of phenanthrene. Environ Sci Technol 31:2211–2217

    Article  CAS  Google Scholar 

  • Zhong H, Zeng G, Yuan X, Fu H, Huang G, Ren F (2007) Adsorption of dirhamnolipid on four microorganisms and the effect on cell surface hydrophobicity. Appl Microbiol Biotechnol 77(2):447–455

    Article  CAS  Google Scholar 

  • Zhong H, Zeng G, Liu J, Xu X, Yuan X, Fu H, Huang G, Liu Z, Ding Y (2008) Adsorption of monorhamnolipid and dirhamnolipid on two Pseudomonas aeruginosa strains and the effect on cell surface hydrophobicity. Appl Microbiol Biotechnol 79:671–677

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The study was financially supported by the Program for Changjiang Scholars and Innovative Research Team in University (IRT0719), the National Natural Science Foundation of China (50908081, 50978088, 51039001), the Hunan Key Scientific Research Project (2009FJ1010), the Hunan Provincial Natural Science Foundation of China(10JJ7005), the British Columbia Innovation Council (ICSD-2007-Li-J), the Xiamen Science & Technology Planning Project Fund (3502Z20093040), and the Hunan University Graduate Education Innovation Project (531107011019).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guangming Zeng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zeng, G., Liu, Z., Zhong, H. et al. Effect of monorhamnolipid on the degradation of n-hexadecane by Candida tropicalis and the association with cell surface properties. Appl Microbiol Biotechnol 90, 1155–1161 (2011). https://doi.org/10.1007/s00253-011-3125-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-011-3125-6

Keywords

Navigation