Skip to main content

Coastal Wetlands of the Bahía Blanca Estuary: Landscape Structure and Plant Associations

  • Chapter
  • First Online:
The Bahía Blanca Estuary

Abstract

Landscape structure in the coastal zone of Bahía Blanca is a result of the marine transgression that affected the area during the Holocene. Storm deposits corresponding to the transgressive maximum are widespread along the northern and western margin of the estuary and set the limits to the area considered in this chapter. Based on geomorphic maps, different landscape units were identified and further characterized by their hydrogeomorphic conditions. Tidal and groundwater influences on the soil surface are the primary drivers of soil properties and vegetation structure. Within the intertidal zone, there are two different types of plant associations. Salt marshes of Spartina alterniflora are typical landscape components in the middle reach of the Principal Channel. They commonly occupy elevations lower than the mean high tide, from Ingeniero White to Puerto Rosales. Through the inner section of the Principal Channel, these marshes are less common, and the dominant species is Sarcocornia ambigua, which forms marshes at a higher elevation within the tidal fringe. Above the limits of tidal influence, other plant associations were described. Significant land cover changes and landscape trends were identified over the last decades, and their effects on ecosystem functions were discussed. Text boxes contain additional information on emblematic plant species in the area.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adam P (1990) Saltmarsh ecology. Cambridge University Press, New York

    Book  Google Scholar 

  • Ainouche M, Gray A (2016) Invasive Spartina: lessons and challenges. Biol Inv18:2119–2122

    Google Scholar 

  • Aliotta S, Farinati EA (1990) Stratigraphy of Holocene sand-shell ridges in the Bahía Blanca Estuary, Argentina. Mar Geol 34:353–360

    Google Scholar 

  • Aliotta S, Ginsberg SS, Giagante D et al (2014) Seismic stratigraphy of Pleistocene deltaic deposits in Bahía Blanca Estuary, Argentina. An Acad Brase Cienc 86:649–662

    Article  Google Scholar 

  • Alonso MÁ, Crespo MB (2008) Taxonomic and nomenclatural notes on South American taxa of Sarcocornia (Chenopodiaceae). Ann Bot Fenn 5:241–255

    Article  Google Scholar 

  • Alonso MA, Conticello L, Cerazo MB (2004) Suaeda neuquenensis (Chenopodiaceae), a new species from Argentina. Novon 14:1–5

    Google Scholar 

  • Armstrong W (1979) Aeration in higher plants. Advances in Botanical Research 7:225–332

    Article  CAS  Google Scholar 

  • Ayres DR, Strong DR (2001) Origin and genetic diversity of Spartina anglica (Poaceae) using nuclear DNA markers. Am J Bot 88:1863–1867

    Article  CAS  PubMed  Google Scholar 

  • Ayres DR, Zaremba K, Strong DR (2004) Extinction of a Common Native Species by Hybridization with an Invasive Congener. Weed Technol 18:1288–1292

    Article  Google Scholar 

  • Bao-Shan CUI, Qiang HE, Yuan AN (2011) Community structure and abiotic determinants of salt marsh plant zonation vary across topographic gradients. Estuar Coast 34:459–469

    Article  CAS  Google Scholar 

  • Barbier EB (2019) The Value of Coastal Wetland Ecosystem Services. In: Perillo GME, Wolanski E, Cahoon DR, Hopkinson CS (eds) Coastal Wetlands, 2nd edn. Elsevier, pp 947–964

    Chapter  Google Scholar 

  • Barbier EB, Hacker SD, Kennedy C et al (2011) The value of estuarine and coastal ecosystem services. Ecol Monogr 81:169–193

    Google Scholar 

  • Barth HJ, Böer B (2002) Introduction. In: Barth HJ, Böer B (eds) Sabkha Ecosyst. Vol. I Arab. Penins. Adjac. Ctries. Kluwer Academic Publishers, Dordrecht, Netherlands, pp 1–5

    Google Scholar 

  • Beasy KM, Ellison JC (2013) Comparison of three methods for the quantification of sediment organic carbon in salt marshes of the Rubicon Estuary, Tasmania. Australia. Int J Biol 5:1–13

    Google Scholar 

  • Bertin RL, Maltez HF, de Gois JS et al (2016) Mineral composition and bioaccessibility in Sarcocornia ambigua using ICP-MS. J Food Compos Anal 47:45–51

    Article  CAS  Google Scholar 

  • Bertness MD (1991) Zonation of Spartina patens and Spartina alterniflora in New England salt marsh. Ecology 72:138–148

    Article  Google Scholar 

  • Boettinger JL (1997) Aquisalids (Salorthids) and other wet saline and alkaline soils: Problems identifying aquic conditions and hydric soils. In: Vepraskas MJ, Sprecher SW (eds) Aquic Cond. hydric soils Probl. soils. SSSA Spec. Publ. No. 50. Soil Science Society of America, Madison, WI, pp p79–p97

    Google Scholar 

  • Bortolus A, Carlton JT, Schwindt E (2015) Reimagining South American coasts: unveiling the hidden invasion history of an iconic ecological engineer. Divers Distrib 21:1267–1283

    Article  Google Scholar 

  • Bortolus A, Adam P, Adams JB et al (2019) Supporting Spartina: Interdisciplinary perspective shows Spartina as a distinct solid genus. Ecology 100:e02863

    Article  PubMed  Google Scholar 

  • Bradley PM, Morris JT (1991) Relative importance of ion exclusion, secretion and accumulation in Spartina alterniflora Loisel. J Exp Bot 42:1525–1532

    Article  CAS  Google Scholar 

  • Bremer K (1994) Asteraceae: cladistics and classification. Timber Press, Portland, Ore

    Google Scholar 

  • Brinson MM, Christian RR, Blum LK (1995) Multiple states in the sea-level induced transition from terrestrial forest to estuary. Estuaries 18:648–659

    Article  CAS  Google Scholar 

  • Cabido M, Zeballos SR, Zak M et al (2018) Native woody vegetation in central Argentina: classification of Chaco and Espinal forests. Appl Veg Sci 21:298–311

    Article  Google Scholar 

  • Cabrera AL (1978) Flora de la provincia de Jujuy, República Argentina: Compositae. INTA, Buenos Aires

    Google Scholar 

  • Cai WJ, Wang Y, Krest J et al (2003) The geochemistry of dissolved inorganic carbon in a surficial groundwater aquifer in North Inlet, South Carolina, and the carbon fluxes to the coastal ocean. Geochim Cosmochim Ac 67:631–639

    Article  CAS  Google Scholar 

  • Callaway RM, Jones S, Ferren WR et al (1990) Ecology of a mediterranean-climate estuarine wetland at Carpinteria, California: plant distributions and soil salinity in the upper marsh. Can J Botany 68:1139–1146

    Article  Google Scholar 

  • Callaway JC, Parker VT, Vasey MC et al (2007) Emerging issues for the restoration of tidal marsh ecosystems in the context of predicted climate change. Madrono 54:234–249

    Article  Google Scholar 

  • Canepuccia AD, Pérez CF, Farina JL et al (2013) Dissimilarity in plant species diversity between salt marsh and neighboring environments decreases as environmental harshness increases. Mar Ecol Prog Ser 494:135–148

    Article  Google Scholar 

  • Cantero JJ, Cisneros JM, Zobel M et al (1998) Environmental relationships of vegetation patterns in saltmarshes of central Argentina. Folia Geobot 33:133–145

    Article  Google Scholar 

  • Canuel EA, Cammer SS, McIntosh HA et al (2012) Climate change impacts on the organic carbon cycle at the land-ocean interface. Ann Rev Earth Pl Sc 40:685–711

    Article  CAS  Google Scholar 

  • Carlton JT (2009) Deep Invasion Ecology and the Assembly of Communities in Historical Time. In: Rilov G, Crooks JA (eds) Biological Invasions in Marine Ecosystems. Springer, Berlinp, pp 13–56

    Chapter  Google Scholar 

  • Cavallotto JL, Violante RA, Parker G (2004) Sea-level fluctuations during the last 8600 years in the de la Plata river (Argentina). Quat Int 114:155–165

    Article  Google Scholar 

  • Celleri C, Zapperi G, González Trilla G et al (2019) Assessing the capability of broadband indices derived from Landsat 8 Operational Land Imager to monitor above ground biomass and salinity in semiarid saline environments of the Bahía Blanca Estuary, Argentina. Int J Remote Sens 40:4817–4838

    Article  Google Scholar 

  • Cheng X, Luo Y, Chen J et al (2006) Short-term C4 plant Spartina alterniflora invasions change the soil carbon in C3 plant-dominated tidal wetlands on a growing estuarine Island. Soil Biol Biogeochemestry 38:3380–3386

    Article  CAS  Google Scholar 

  • Chmura GL, Anisfeld SC, Cahoon DR et al (2003) Global carbon sequestration in tidal, saline wetland soils. Global Biogeochem Cy 17(4). https://doi.org/10.1029/2002GB001917

  • Christian RR, Stasavich LE, Thomas CR et al (2002) References is a Moving Target in Sea-Level Controlled Wetlands. In: Weinstein MP, Kreeger DA (eds) Concepts and Controversies in Tidal Marsh Ecology. Springer, Dordrecht, pp 805–825

    Chapter  Google Scholar 

  • Cintron-Molero G, Schaeffer Novelli Y (2002) A guide to wetlands on arid and semiarid zones. USFWS División of International Conservation, USAColmer TD (2003) Long-distance transport of gases in plants: a perspective on internal aeration and radial oxygen loss from roots. Plant. Cell and Environ 26:17–36

    Google Scholar 

  • Colmer TD (2003) Long‐distance transport of gases in plants: a perspective on internal aeration and radial oxygen loss from roots. Plant Cell Environ 26:17–36

    Google Scholar 

  • Costamagna MS, Ordóñez RM, Zampini IC et al (2013) Nutritional and antioxidant properties of Geoffroea decorticans, an Argentinean fruit, and derived products (flour, arrope, decoction and hydroalcoholic beverage). Food Res Int 54:160–168

    Article  CAS  Google Scholar 

  • Cronk JK, Fennessy MS (2001) Wetland plants: biology and ecology. Lewis Publishers, CRC Press, Boca Raton, USA

    Google Scholar 

  • Davy AJ, Costa CSB (1992) Development and Organization of Saltmarsh Communities. In: Seeliger U (ed) Coastal plant communities of Latin America. Academic Press, pp 157–178

    Chapter  Google Scholar 

  • del Vitto LA, Petenatti EM, Petenatti ME (1997) Recursos herbolarios de San Luis (República Argentina) primera parte: plantas nativas. Multequina 6:49–66

    Google Scholar 

  • Dickison WC (2000) Integrative Plant Anatomy. Harcourt Academic Press, San Diego

    Google Scholar 

  • Doody JP (1992) The conservation of British saltmarshes. In: Allen JR, Pye K (eds) Saltmarshes: Morphodynamics, conservation and engineering significance. Cambridge University Press, New York, pp 80–114

    Google Scholar 

  • Ecke F, Rydin H (2000) Succession on a land uplift coast in relation to plant strategy theory. Ann Bot Fennici 37:163–171

    Google Scholar 

  • Eynard C, Galetto L (2002) Pollination ecology of Geoffroea decorticans (Fabaceae) in central Argentine dry forest. J Arid Environ 51:79–88

    Article  Google Scholar 

  • Farinati EA (1983) Paleontología, Paleoecología y Paleogeografía de los sedimentos marinos de los alrededores de Bahía Blanca. PhD Thesis. Universidad Nacional del Sur, Bahía Blanca, Argentina

    Google Scholar 

  • Farinati EA, Aliotta S, Ginsberg SS (1992) Mass mortality of a Holocene Tagelus plebeius (Mollusca, Bivalvia) population in the Bahía Blanca Estuary, Argentina. Mar Geol 106:301–308

    Article  Google Scholar 

  • Freitas RF, Costa CS (2014) Germination responses to salt stress of two intertidal populations of the perennial glasswort Sarcocornia ambigua. Aquat bot 117:12–17

    Article  Google Scholar 

  • Gaitan JJ, Bran DE, Oliva GE et al (2019) Patagonian desert. In: Reference module in Earth systems and environmental sciences. Elsevier, Amsterdam. https://doi.org/10.1016/B978-0-12-409548-9.11929-3

  • Gao S, Du Y, Xie W et al (2014) Environment-ecosystem dynamic processes of Spartina alterniflora salt-marshes along the eastern China coastlines. Sci China Earth Sci 57:2567–2586

    Article  CAS  Google Scholar 

  • Gardner LR, Reeves HW, Thibodeau PM (2000) Groundwater dynamics along forest-marsh transects in a southeastern salt marsh, USA: description, interpretation, and challenges for numerical modeling. Wetl Ecol Manag 10:145–159

    Google Scholar 

  • Gates MW, Torrens J, Fidalgo P et al (2018) The gall associates of Asphondylia poss. swaedicola Kieffer & Jörgensen (Diptera: Cecidomyiidae) on Suaeda divaricata Moq.(Amaranthaceae) in the semiarid Argentina and summary of parasitic Hymenoptera associated with Suaeda worldwide. Neotrop entomol 47:598–609

    Article  CAS  PubMed  Google Scholar 

  • Gehrels WR (2000) Using foraminiferal transfer functions to produce high-resolution sea-level records from salt-marsh deposits, Maine, USA. The Holocene 10:367–376

    Article  Google Scholar 

  • Giagante DA, Aliotta S, Ginsberg SS (2008) Análisis sismoestratigráfico de paleocanales en el subsuelo marino del estuario de Bahía Blanca. Rev de la Asociación Geológica Argentina 63:65–75

    Google Scholar 

  • Giagante DA, Aliotta S, Ginsberg SS et al (2011) Evolution of a coastal alluvial deposit in response to the last Quaternary marine transgression, Bahía Blanca estuary, Argentina. Quat Res 75:614–623

    Article  Google Scholar 

  • Giusti L (1997) Chenopodiaceae. In: Hunziker AT (ed) Flora Fanerogámica Argentina. Proflora Conicet, Buenos Aires, pp 1–53

    Google Scholar 

  • Gómez-Miguel V, Peres Arias J, Guerrero F, et al (1984) The soils and water table properties of the Polder area “Castillo de Dona Blanca”, Puerto de Santa Maria, Cadiz Spain. In: Polders of the world. International symposium, Netherlands, pp 374–383

    Google Scholar 

  • González MA (1989) Holocene levels in the Bahía Blanca Estuary, Argentina Republic. J Coast Res 5:65–77

    Google Scholar 

  • González Trilla G, Pratolongo P, Beget ME et al (2013) Relating Biophysical Parameters of Coastal Marshes to Hyperspectral Reflectance Data in the Bahía Blanca Estuary, Argentina. J Coast Res 286:231–238

    Article  Google Scholar 

  • González MA, Weiler NE (1983) Ciclicidad de niveles marinos holocénicos en Bahía Blanca y en el Delta del Río Colorado (Provincia de Buenos Aires), en base a edades de Carbono – 14. Oscil. del Niv. del mar durante el último hemiciclo deglacial en la Argentina. Mar del Plata, Bahía Blanca, pp 69–90

    Google Scholar 

  • González MA, Panarello HO, Marino H et al (1983) Niveles marinos del Holoceno en el estuario de Bahía Blanca (Argentina). Isótopos estables y microfósiles calcáreos como indicadores paleoambientales. Oscil. del Niv. del mar durante el último hemiciclo deglacial en la Argentina. Mar del Plata, Bahía Blanca, pp 48–68

    Google Scholar 

  • González E, Gonzalez Trilla G, San Martin L et al (2019) Vegetation patterns in a South American coastal wetland using high-resolution imagery. J Maps 15:642–650

    Article  Google Scholar 

  • González-Uriarte M (1984) Características geomorfológicas de la porción continental que rodea la Bahía Blanca, Provincia de Buenos Aires. IX Congr. Argentino Geol. Bariloche, Argentina, pp 556–576

    Google Scholar 

  • Hageman BP (1969) Development of the western part of the Netherlands during the Holocene. Geol en Mijnb 48:373–386

    Google Scholar 

  • Henderson RE, Patrick JR (1982) Soil aeration and plant productivity. In: Rechcigl M Jr (ed) Handb. Agric. Product. CRC Press, Boca Raton, USA, pp 51–69

    Google Scholar 

  • Horton BP, Edwards RJ (2006) Quantifying Holocene sea level change using intertidal foraminifera: lessons from the British Isles. Departmental Papers http://repository.upenn.edu/ees_papers/50. Accessed 21 Dec 2019

  • Isacch JP, Costa CSB, Rodríguez-Gallego L et al (2006) Distribution of saltmarsh plant communities associated with environmental factors along a latitudinal gradient on the south-west Atlantic coast. J Biogeogr 33:888–900

    Article  Google Scholar 

  • Isla FI (1989) Holocene sea-level fluctuation in the southern hemisphere. Quat Sci Rev 8:359–368

    Article  Google Scholar 

  • Isla FI, Cortizo LC, Schnack EJ (1996) Pleistocene and Holocene beaches and estuaries along the Southern Barrier of Buenos Aires, Argentina. Quat Sci Rev 15:833–841

    Article  Google Scholar 

  • Jansen RK, Palmer JD (1987) A chloroplast DNA inversion marks an ancient evolutionary split in the sunflower family (Asteraceae). P Natl Acad Sci USA 84:5818–5822

    Article  CAS  Google Scholar 

  • Kadereit G, Borsch T, Weising K et al (2003) Phylogeny of Amaranthaceae and Chenopodiaceae and the evolution of C4 photosynthesis. Int J Plant Sci 164:959–986

    Article  CAS  Google Scholar 

  • Karlin MS, Buffa EV, Karlin UO et al (2012) Relations among soil properties, plant communities and cattle receptivity in saline environments (Salinas Grandes, Catamarca, Argentina). Rev Latinoamericana de Recursos Naturales 8:30–45

    Google Scholar 

  • Kirwan ML, Blum LK (2011) Enhanced decomposition offsets enhanced productivity and soil carbon accumulation in coastal wetlands responding to climate change. Biogeosciences 8:987–993

    Article  CAS  Google Scholar 

  • Kirwan ML, Murray AB (2008) Ecological and morphological response of brackish tidal marshland to the next century of sea level rise: Westham Island, British Columbia. Global Planet Change 60:471–486

    Article  Google Scholar 

  • Kruger HR (1989) Suelos halomórficos de la Bahía Blanca. Dinámica de sales y relación con la vegetación. PhD Thesis. Universidad Nacional del Sur, Bahía Blanca, Argentina

    Google Scholar 

  • Kruger HR, Peinemann N (1996) Coastal plain halophytes and their relation to soil ionic composition. Vegetatio 122:143–150

    Article  Google Scholar 

  • Lacambra C, Cutts N, Allen J, et al. (2004) Spartina anglica: a review of its status, dynamics and management. English Nature Research Reports No. 527, English Nature, Peterborough, UK

    Google Scholar 

  • Lavin M, Herendeen PS, Wojciechowski MF (2005) Evolutionary rates analysis of Leguminosae implicates a rapid diversification of lineages during the tertiary. Syst Biol 54:575–594

    Article  PubMed  Google Scholar 

  • León RJC, Bran D, Collantes M et al (1998) Grandes unidades de vegetación de la Patagonia extra andina. Ecología Austral 8:123–141

    Google Scholar 

  • Maricle BR, Lee RW (2002) Aerenchyma development and oxygen transport in the estuarine cordgrasses Spartina alterniflora and S-anglica. Aquat Bot 74:109–120

    Article  Google Scholar 

  • Mariotti G, Fagherazzi S, Wiberg PL et al (2010) Influence of storm surges and sea level on shallow tidal basin erosive processes. J Geophys Res. 115(C11). https://doi.org/10.1029/2009JC005892

  • Marquez M, Ferrero L, Cusminsky GC (2016) Holocene palaeoenvironmental evolution of the Pampa coastal plain (Argentina) based on calcareous microfossils. Rev Bras Paleontol 19:25–40

    Article  Google Scholar 

  • Mcleod E, Chmura GL, Bouillon S et al (2011) A blueprint for blue carbon: toward an improved understanding of the role of vegetated coastal habitats in sequestering CO2. Front Ecol Environ 9:552–560

    Article  Google Scholar 

  • Mendelssohn IA, Morris JT (2000) Eco-physiological controls on the primary productivity of Spartina alterniflora. Concepts and Controversies in Tidal Marsh. Ecology:59–80

    Google Scholar 

  • Moffett KB, Gorelick SM, McLaren RG et al (2012) Salt marsh ecohydrological zonation due to heterogeneous vegetation–groundwater–surface water interactions. Water Resour Res 48(2):W02516. https://doi.org/10.1029/2011WR010874

    Article  CAS  Google Scholar 

  • Múlgura ME, Marticorena A (2008) Chenopodiaceae. In: Zuloaga FO, Morrone O, Belgrano MJ (eds) Catálogo de las Plantas Vasculares del Cono Sur, vol II. Missouri Botanical Garden Press, Missouri, pp 1909–1929

    Google Scholar 

  • Munns R, Tester M (2008) Mechanisms of salinity tolerance. Annu Rev Plant Biol 59:651–681

    Article  CAS  PubMed  Google Scholar 

  • Nebbia AJ, Zalba S (2007) Comunidades Halófilas de la costa de la Bahía Blanca (Argentina): Caracterización, mapeo y cambios durante los últimos cincuenta años. Boletín la Soc Argentina Botánica 42:261–271

    Google Scholar 

  • Negrin VL, Botté SE, Pratolongo PD et al (2016) Ecological processes and biogeochemical cycling in salt marshes: synthesis of studies in the Bahía Blanca estuary (Argentina). Hydrobiologia 774:217–235

    Article  CAS  Google Scholar 

  • Nehring S, Hesse KJ (2008) Invasive alien plants in marine protected areas: the Spartina anglica affair in the European Wadden Sea. Biol. Invasions 10:937–950

    Article  Google Scholar 

  • Oertel GF, Kearney MS, Leatherman SP et al (1989) Anatomy of a barrier platform: outer barrier lagoon, southern Delmarva Peninsula, Virginia. Mar Geol 88:303–318

    Article  Google Scholar 

  • Ouyang ZT, Gao Y, Xie X et al (2013) Spectral discrimination of the invasive plant Spartina alterniflora at multiple phenological stages in a saltmarsh wetland. PLoS One 8:e67315

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oyarzabal M, Clavijo JR, Oakley LJ et al (2018) Unidades de vegetación de la Argentina. Ecología Austral 28:40–63

    Article  Google Scholar 

  • Paruelo JM, Beltrán B, Jobbagy EG et al (1998) The climate of Patagonia: general patterns and controls on biotic processes. Ecología Austral 8:85–101

    Google Scholar 

  • Pendleton L, Donato DC, Murray BC et al (2012) Estimating global “blue carbon” emissions from conversion and degradation of vegetated coastal ecosystems. PloS One 7(9). https://doi.org/10.1371/journal.pone.0043542

  • Pennings SC, Bertness MD (1999) Using latitudinal variation to examine effects of climate on coastal salt marsh pattern and process. Current Topics in Wetland Biogeochemistry 3:100–111

    Google Scholar 

  • Pennings SC, Bertness MD (2001) Salt marsh communities. In: Bertness MD, Gaines SD, Hay ME (eds) Marine community ecology. Sinauer Associates, Sunderland, pp 289–316

    Google Scholar 

  • Pennings SC, Grant MB, Bertness MD (2005) Plant zonation in low-latitude salt marshes: disentangling the roles of flooding, salinity and competition. J Ecol 93:159–167

    Article  Google Scholar 

  • Pérez Cuadra V (2008) Salitral de la Vidriera, un refugio para especies vegetales con características particulares. Boletín de la Sociedad Latinoamericana y del Caribe de Cactáceas y otras Suculentas 5:6–8

    Google Scholar 

  • Pérez Cuadra V, Cambi VN (2016) Caracteres epidérmicos de 30 especies xero-halófilas:¿ es el ambiente el principal factor determinante? Lilloa 53:282–298

    Google Scholar 

  • Pérez Cuadra V, Hermann R (2014) Anatomía foliar y caulinar de tres Salicornieae (Chenopodiaceae) halófilas argentinas. Phyton-Int J Exp Bot 83:369–377

    Google Scholar 

  • Peterson PM, Romaschenko K, Herrera Arrieta Y (2014) A molecular phylogeny and classification of the Cteniinae, Farragininae, Gouiniinae, Gymnopogoninae, Perotidinae, and Trichoneurinae (Poaceae: Chloridoideae: Cynodonteae). Taxon 63:275–286

    Article  Google Scholar 

  • Piovan MJ (2016) Controles geomorfológicos sobre la presencia y estructura de humedales costeros en el estuario de Bahía Blanca. PhD Thesis. Universidad Nacional del Sur, Bahía Blanca, Argentina

    Google Scholar 

  • Piovan MJ, Zapperi GM, Pratolongo PD (2014) Seed germination of Atriplex undulata under saline and alkaline conditions. Seed Sci Technol 42:286–292

    Article  Google Scholar 

  • Pratolongo P, Kirby JR, Plater A et al (2009) Temperate coastal wetlands: morphology, sediment processes, and plant communities. In: Perillo GME, Wolanski E, Cahoon DR, Brinson MM (eds) Coastal Wetlands 1 st edn. Elsevier, pp 89–118

    Google Scholar 

  • Pratolongo P, Perillo GME, Píccolo MC (2010) Combined effects of waves and plants on a mud deposition event at a mudflat-saltmarsh edge in the Bahía Blanca estuary. Estuar Coast Shelf Sci 87:207–212

    Article  Google Scholar 

  • Pratolongo P, Mazzon C, Zapperi G et al (2013) Land cover changes in tidal salt marshes of the Bahía Blanca estuary (Argentina) during the past 40 years. Estuar Coast Shelf Sci 133:23–31

    Article  Google Scholar 

  • Pratolongo PD, Piovan MJ, Cuadrado DG (2016) Coastal Environments in the Bahía Blanca Estuary, Argentina. In: Khan M, Boër B, Ȫzturk M et al (eds) Sabkha Ecosystems. Tasks for Vegetation Science, vol 48. Springer, Cham, pp 205–224

    Chapter  Google Scholar 

  • Pratolongo P, Piovan MJ, Cuadrado DG et al (2017) Coastal landscape evolution on the western margin of the Bahía Blanca Estuary (Argentina) mirrors a non-uniform sea-level fall after the mid-Holocene highstand. Geo-Mar Lett 37:373–384

    Article  CAS  Google Scholar 

  • Pratolongo P, Leonardi N, Kirby JR et al (2019) Temperate coastal wetlands: morphology, sediment processes, and plant communities. In: Perillo GME, Wolanski E, Cahoon DR, Hopkinson CS (eds) Coastal Wetlands, 2nd edn. Elsevier, pp 105–152

    Chapter  Google Scholar 

  • Raybould AF (1997) The history and ecology of Spartina anglica in Poole Harbour. Proc. Dorset Nat. Hist. Archaeol. Soc. 119:147–158

    Google Scholar 

  • Redelstein R, Dinter T, Hertel D et al (2018) Effects of inundation, nutrient availability and plant species diversity on fine root mass and morphology across a saltmarsh flooding gradient. Front Plant Sci 9. https://doi.org/10.3389/fpls.2018.00098

  • Rogel JA, Ariza FA, Silla RO (2000) Soil salinity and moisture gradients and plant zonation in Mediterranean salt marshes of Southeast Spain. Wetlands 20:357–372

    Article  Google Scholar 

  • Salem HB, Norman HC, Nefzaoui A et al (2010) Potential use of oldman saltbush (Atriplex nummularia Lindl.) in sheep and goat feeding. Small Ruminant Res 91:13–28

    Article  Google Scholar 

  • Saltonstall K (2002) Cryptic invasion by a non-native genotype of the common reed, Phragmites australis, into North America. Proc. Natl. Acad. Sci. 99:2445–2449

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schrire BD, Lavin M, Lewis GP (2005) Global distribution patterns of the Leguminosae: insights from recent phylogenies. Biol Skrif 55:375–422

    Google Scholar 

  • Schwindt E, Battini N, Giachetti C et al (2018) Especies exóticas marino-costeras (Argentina). Vázquez-Mazzini, Buenos Aires

    Google Scholar 

  • Silva RA, López de Ruiz RE, Ruiz SO (2004) Estudio fitoquímico de flores de Geoffroea decorticans (Gill. ex Hook. et Arm.) Burk, Leguminoseae (Fabaceae). Acta Farmacéutica Bonaerense 23:524–526

    CAS  Google Scholar 

  • Silvestri S, Defina A, Marani M (2005) Tidal regime, salinity and salt marsh plant zonation. Estuar Coast Shelf S 62:119–130

    Article  CAS  Google Scholar 

  • Simberloff D (2010) Invasions of Plant Communities. More of the Same, Something Very Different, or Both? The Am Mid Nat 163:220–233

    Article  Google Scholar 

  • Simenstad C, Thom R (1995) Spartina alterniflora (smooth cordgrass) as an invasive halophyte in Pacific northwest estuaries. Hortus Northwest 6:9–13

    Google Scholar 

  • Simões MP, Calado ML, Madeira M et al (2011) Decomposition and nutrient release in halophytes of a Mediterranean salt marsh. Aquat. Bot. 94:119–126

    Article  CAS  Google Scholar 

  • Soil-Survey-Staff (1975) Soil taxonomy: a basic system of soil classification for making and interpreting soil surveys, Agricultural handbook no. 436. Soil Conservation Service, U.S. Department of Agriculture, U.S. Government Printing Office, Washington, DC

    Google Scholar 

  • Soriano A (1947) Las Quenopodiáceas de la Tribu “Salicornieae” en la República Argentina. Rev Argentina de Agronomía 14:148–172

    Google Scholar 

  • Sosa A, Fusco MR, Rossomando P et al (2011) Anti-inflammatory properties from isolated compounds of Cyclolepis genistoides. Pharm biol 49:675–678

    Article  CAS  PubMed  Google Scholar 

  • Spagnuolo JO (2005) Evolución geológica de la región costera-marina de Punta Alta, provincia de Buenos Aires. PhD Thesis. Universidad Nacional del Sur, Bahía Blanca, Argentina

    Google Scholar 

  • Steffen S, Mucina L, Kadereit G (2010) A revision of Sarcocornia in South Africa, Namibia and Mozambique. Syst Bot 35:390–408

    Article  Google Scholar 

  • Steffen S, Ball P, Mucina L et al (2015) Phylogeny, biogeography and ecological diversification of Sarcocornia (Salicornioideae, Amaranthaceae). Ann Bot-London 15:353–368

    Article  CAS  Google Scholar 

  • Stevens PF (2001 onwards). Angiosperm Phylogeny Website. Version 14, July 2017. http://www.mobot.org/MOBOT/research/APweb/. Acceded Diciembre 2019

  • Strong DR, Ayres DA (2016) Control and consequences of Spartina spp. invasions with focus upon San Francisco Bay. Biol Invasions 18:2237–2246

    Article  Google Scholar 

  • Tangahu BV, Abdullah S, Rozaimah S et al (2011) A review on heavy metals (As, Pb, and Hg) uptake by plants through phytoremediation. International Journal of Chemical Engineering. https://doi.org/10.1155/2011/939161

  • Theuerkauf EJ, Stephens JD, Ridge JT et al (2015) Carbon export from fringing saltmarsh shoreline erosion overwhelms carbon storage across a critical width threshold. Estuar Coast Shelf S 164:367–378

    Article  CAS  Google Scholar 

  • Tiner R (1999) Wetland Indicators; A Guide to Wetland Identification, Delineation, Classification, and Mapping. Lewis Publishers/CRC Press, Boca Raton, USA

    Google Scholar 

  • Tong C, Zhang L, Wang W et al (2011) Contrasting nutrient stocks and litter decomposition in stands of native and invasive species in a sub-tropical estuarine marsh. Environ. Res. 111:909–916

    Article  CAS  PubMed  Google Scholar 

  • Traut BH (2005) The role of coastal ecotones: a case study of the salt marsh/upland transition zone in California. J Ecol 93:279–290

    Article  Google Scholar 

  • Valéry L, Fritz H, Lefeuvre JC, Simberloff D (2009) Invasive species can also be native…. Trends Ecol Evol 24:585

    Article  PubMed  Google Scholar 

  • Valéry L, Radureau A, Lefeuvre JC (2016) Spread of the native grass Elymus athericus in salt marshes of Mont-Saint-Michel bay as an unusual case of coastal eutrophication. J Coast Conserv 21:421–433

    Article  Google Scholar 

  • Vartiainen T (1988) Vegetation development on the outer islands of the Bothnian Bay. Vegetatio 77:149–158

    Article  Google Scholar 

  • Ventura Y, Wuddineh WA, Myrzabayeva M et al (2011) Effect of seawater concentration on the productivity and nutritional value of annual Salicornia and perennial Sarcocornia halophytes as leafy vegetable crops. Sci Hortic 128:189–196

    Article  CAS  Google Scholar 

  • Vepraskas MJ (1996) Redoximorphic features for identifying aquic conditions. North Carolina Agr. Res. Serv. Tech. Bull. 301. North Carolina State University, Raleigh, NC

    Google Scholar 

  • Verettoni HN (1974) Las comunidades vegetales de la región de Bahía Blanca. UNS, Bahía Blanca

    Google Scholar 

  • Violante RA, Parker G (2000) El Holoceno en las regiones marinas y costeras del nordeste de Buenos Aires. Rev la Asoc Geológica Argentina 55:337–351

    Google Scholar 

  • Wahid A (2003) Physiological significance of morpho-anatomical features of halophytes with particular reference to Cholistan flora. Int J Agric Biol 5:207–212

    Google Scholar 

  • Waller MP, Long AJ, Long D et al (1999) Patterns and processes in the development of coastal more vegetation: multi-site investigations from Walland Marsh, Southeast England. Quat Sci Rev 18:1419–1444

    Article  Google Scholar 

  • Wang Q, Wang CH, Zhao B et al (2006) Effects of growing conditions on the growth of and interactions between salt marsh plants: implications for invisibility of habitats. Biol Invasions 8:1547–1560

    Article  Google Scholar 

  • Wang Y, Zhou L, Zheng X et al (2013) Influence of Spartina alterniflora on the mobility of heavy metals in salt marsh sediments of the Yangtze River Estuary, China. Environ Sci Pollut R 20:1675–1685

    Article  CAS  Google Scholar 

  • Whigham DF (1999) Ecological issues related to wetland preservation, restoration, creation and assessment. J Total Environ 240:31–40

    Article  CAS  Google Scholar 

  • Willis B (1914) Northern Patagonia, character and resources. Scribner Press, New York, USA

    Google Scholar 

  • Zapperi G, Pratolongo P, Piovan MJ et al (2016) Benthic-Pelagic Coupling in an Intertidal Mudflat in the Bahía Blanca Estuary (SW Atlantic). J Coast Res 32:629–637

    Article  Google Scholar 

  • Zedler JB (1982) The ecology of southern California coastal salt marshes: a community profile. Fish and Wildlife Service, Washington

    Google Scholar 

  • Zobel M, Kont A (1992) Formation and succession of alvar communities in the Baltic land uplift area. Nord J Bot 12:249–256

    Article  Google Scholar 

  • Zuloaga FO, Belgrano MJ, Zanotti CA (2019) Actualización del Catálogo de las Plantas Vasculares del Cono Sur. Darwiniana, nueva serie 7:208–278

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pratolongo, P.D., Funk, F., Piovan, M.J., Celleri, C., Negrín, V.L. (2021). Coastal Wetlands of the Bahía Blanca Estuary: Landscape Structure and Plant Associations. In: Fiori, S.M., Pratolongo, P.D. (eds) The Bahía Blanca Estuary. Springer, Cham. https://doi.org/10.1007/978-3-030-66486-2_16

Download citation

Publish with us

Policies and ethics