Skip to main content
Log in

Environmental relationships of vegetation patterns in saltmarshes of central Argentina

  • Published:
Folia Geobotanica Aims and scope Submit manuscript

Abstract

We describe vegetation-environment relationships in the saltmarshes of central Argentina. Gradient analysis (Detrended canonical correspondence analysis, DCCA) was performed involving 14 parameters of the groundwater that account for most of the variation in plant communities. We used a stepwise multivariate procedure to classify the vegetation data into 8 clusters, named according to the most abundant characteristic species:Chloris canterai, Cynodon dactylon, Distichlis, spicata, Spartina densiflora andPaspalum vaginatum clusters, containing relevés of tall grassland communities, andAtriplex undulata, Cyclolepis genistoides andHeterostachys ritteriana clusters, containing relevés from scrub. Our interpretation of DCCA ordinations suggests that vegetation pattern is primarily related to a salinity-moisture gradient. There is a strong relationship between vegetation type and the amount of salt in the groundwater and the pattern of its variation during the year. The depth of the groundwater and the conditions of submersion are also related to the compositional variation of the vegetation. Although flooding causes some differences between sites, the most important discriminant variable, and therefore the best predictor of floristic variation, is salinization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adam P. (1990):Saltmarsh ecology. Cambridge University Press Cambridge.

    Google Scholar 

  • Antrop M. (1983):Inventoring and monitoring of landscape as a natural and cultural resource. Proceedings of a EARSEL/ESA symposium on remote sensing application for environment studies (ESA SP-188), Brussels, Belgium.

  • Burkart S.E., Leon R.J.C. &Movia C. (1990): Phytosociological inventory of an area of the Depression del Salado (Buenos Aires, Argentina) spanning the main environmental gradients.Darwiniana 30: 27–69.

    Google Scholar 

  • Caballero J.M., Esteve M.A., Calvo J.F. &Pujol J.A. (1994): Structure of the vegetation of salt steppes of Guadalentin (Murcia, Spain).Stud. Oecol. 10–11: 171–183.

    Google Scholar 

  • Callaway R.M. &Sabraw C.S. (1994): Effects of variable precipitation on the structure and diversity of a California saltmarsh community.J. Veg. Sci. 5: 433–438.

    Article  Google Scholar 

  • Cantero J.J. &Bianco C.A. (1986): Vascular plants in the southwest of the province of Córdoba (Argentina): Preliminar catalogue of the species.Revista Univ. Nac. Rio Cuarto 6: 5–52.

    Google Scholar 

  • Cantero J.J., Cantero A. &Cisneros J.M. (1996):The vegetation of hydrohalomorphic landscapes in central Argentina. Ed. Universidad Nacional de Rio Cuarto, Argentina.

    Google Scholar 

  • Cantero J.J., Cantero A. & Cisneros J.M. (1998): Habitat structure and vegetation relationships in central Argentina saltmarsh landscapes.Pl. Ecol. (in press).

  • Cantero J.J. &Leon R.J.C. (1996): Comparison of vegetation classifications from Argentine saltmarsh landscapes.Abstr. Bot. 20: 69–83.

    Google Scholar 

  • Cantu P.M. & Degiovanni S.E. (1984): Geomorphology of the central region of Córdoba province (Argentina). In: IX Geological Argentine Congress, Geological Argentine Society, San Carlos de Bariloche, Sect. IV: 66–92.

  • Chaneton E.J., Facelli J.M. &Leon R.J.C. (1988): Floristic changes induced by flooding on grazed and ungrazed lowland grasslands in Argentina.J. Range Managem. 41: 497–501.

    Google Scholar 

  • Flowers T.J. (1975): Halophytes In:Baker D.A. &Hall J.L. (eds.),Ion transport in cells and tissues, North Holland, Amsterdam, pp. 309–334.

    Google Scholar 

  • Garcia L.V., Maranon T., Moreno A. &Clemente L. (1993): Above-ground biomass and species richness in a Mediterranean saltmarsh.J. Veg. Sci. 4: 417–424.

    Article  Google Scholar 

  • Kruegger H.R. &Peinemann N. (1996): Coastal plain halophytes and their relation to soil ionic composition.Vegetatio 122: 143–150.

    Article  Google Scholar 

  • Lewis J.P., Pire E.F., Carnevale E.J., Boccanelli S., Stofella S. &Prado D.E. (1985): Floristic groups and plant communities of southeastern Santa Fe, Argentina.Vegetatio 60: 67–90.

    Article  Google Scholar 

  • Maryam H., Ismail S., Ala F. &Ahmad R. (1995): Studies on growth and salt regulation in some halophytes as influenced by edaphic and climatic conditions.Pakistan J. Bot. 27: 151–163.

    Google Scholar 

  • O'Leary J.W. &Glenn E.P. (1994): Global distribution and potential for halophytes. In:Squires V.R. &Ayoub A.T. (eds.),Halophytes as a resource for livestock and for rehabilitation of degraded lands, Task for vegetation science 34. Kluwer, Dordrecht, pp. 7–15.

    Google Scholar 

  • Orloci L. (1978):Multivariate analysis in vegetation research. Ed. 2, Dr. W. Junk, The Hague.

    Google Scholar 

  • Orloci L. &Kenkel N.C. (1987).Data analysis in population and community ecology. Univ. of Hawaii, Honolulu and New Mexico State University, Las Cruces.

    Google Scholar 

  • Orloci L. &Stanek W. (1979): Vegetation survey on the Alaska Highway. Yukon territory: types and gradients.Vegetatio 41: 1–56.

    Article  Google Scholar 

  • Perelman S., Leon R.J.C. &Deregibus V.A. (1982): The application of an objective method to the study of native grassland communities in the Salado River Basin (Argentina).Revista Fac. Agron. (Buenos Aires) 3: 27–40.

    Google Scholar 

  • Pizarro F. (1978): Drenaje agricola y recuperacion de suelos salinos. Editorial Agricola Española, Madrid.

    Google Scholar 

  • Ragonese A. &Covas G. (1947): The halophilous flora of southern Santa Fe province (Argentina).Darwiniana 7: 401–496.

    Google Scholar 

  • Richards E. (1973): Diagnostico y rehabilitacion de Suelos Salinos y Sodicos. Ed. Limusa, México.

    Google Scholar 

  • Šmilauer P. (1992).Cano Draw ver. 3.0. Lite. Microcomputer Power, USA.

    Google Scholar 

  • Soil Survey Staff. (1975).Soil taxonomy. A basic system of soil classification for making and interpreting soil surveys. U. S. Department of Agriculture, Soil Conservation Service, Agricultural Handbook 436, Washington D. C.

  • Sykora K.V., Van Katwijk M. &Meier R. (1987): Synecological relation in the moist grasslands of Ballyteige Innish Ireland. In:Huiskes A.L.H., Blom C.W.P.M. &Rozema J. (eds.),Vegetation between land and sea, Dr. W. Junk, Dordrecht.

    Google Scholar 

  • Ter Braak C.J.F. (1987a):Unimodal models to relate species to environment. Agricultural Mathematics Group, Wageningen.

    Google Scholar 

  • ter Braak C.J.F. (1987b): The analysis of vegetation-environment relationships by canonical correspondence analysis.Vegetatio 69: 69–77.

    Article  Google Scholar 

  • Ter Braak C.J.F. (1987c):CANOCO-a FORTRAN program for canonical community ordination by partial detrended canonical correspondence analysis, principal component analysis and redundancy analysis (version 2.1.). Agriculture Mathematics Group, Wageningen.

    Google Scholar 

  • Ter Braak C.J.F. (1988): Partial canonical correspondence analysis. In:Bock H.H. (ed.),Classification methods and related methods of data analysis, North Holland, Amsterdam.

    Google Scholar 

  • Ter Braak C.J.F. &Prentice L.C. (1988): A theory of gradient analysis.Advances Ecol. Res. 18: 271–317.

    Article  Google Scholar 

  • Ungar I. (1965): An ecological study of the vegetation of the big saltmarsh, Stanfford country, Kansas.Univ. Kansas Sci. Bull. 46: 1–99.

    Google Scholar 

  • Ungar I.A. (1968): Species-soil relationships on the Great Salt Plains of northern Oklahoma.Amer. Midl. Naturalist 80: 392–406.

    Article  Google Scholar 

  • Ungar I.A. (1970): Species-soil relationships on sulfate dominated soils in South Dakota.Amer. Midl. Naturalist 3: 343–357.

    Article  Google Scholar 

  • Ungar I.A. (1972): The vegetation of inland saline marshes of North America, north of Mexico. In:van der Maarel E. &Tüxen R. (eds.),Grundfragen und methoden in der pflanzensoziologie, Dr. W. Junk, Den Haag.

    Google Scholar 

  • Ungar I.A. (1974a):Ecology of halophytes. Academic Press, New York.

    Google Scholar 

  • Ungar I.A. (1974b): Halophyte communities of Park country, Colorado.Bull. Torrey Bot. Club 101: 145–152.

    Article  Google Scholar 

  • Waisel Y. (1972):Biology of halophytes. Academic Press, New York.

    Google Scholar 

  • Wildi O. (1989): A new numerical solution to traditional phytosociological tabular classification.Vegetatio 81: 95–106.

    Article  Google Scholar 

  • Wildi O. &Orloci L. (1983).Management and multivariate analysis of vegetation data. Ed. 2. Eidg. Anst. Forstl. Versuchswes., Berlin.

    Google Scholar 

  • Wildi O. &Orloci L. (1990):Numerical exploration of community patterns. SPB Academic Publ., The Hague.

    Google Scholar 

  • Wildi O. (1994).Data analysis with MULVA-5, WSL, Birmensdorf.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan José Cantero.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cantero, J.J., Cisneros, J.M., Zobel, M. et al. Environmental relationships of vegetation patterns in saltmarshes of central Argentina. Folia Geobot 33, 133–145 (1998). https://doi.org/10.1007/BF02913341

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02913341

Keywords

Navigation