Skip to main content

Advertisement

Log in

Ecological processes and biogeochemical cycling in salt marshes: synthesis of studies in the Bahía Blanca estuary (Argentina)

  • WETLANDS BIODIVERSITY AND PROCESSES
  • Review Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Here we offer an integrative review of biogeochemical cycling of carbon, nitrogen, phosphorus, and several metals in salt marshes of the Bahía Blanca Estuary, located in South America, which is a region underrepresented in the literature. The dominant species, Spartina alterniflora and Sarcocornia perennis, have low net aboveground primary productivity but play substantial and contrasting roles in the biogeochemical cycling of elements. S. perennis was more efficient at metal sequestration, whereas S. alterniflora was important in the immobilization of phosphorus. Because of the differences in net aboveground primary productivity between high and low marsh, plant position should be considered to evaluate the role of S. alterniflora on biogeochemical cycles. Some elements were also in high concentrations in belowground tissues but, based on our data, we could not accurately estimate net belowground primary productivity, a key process to evaluate elemental cycling in salt marshes. In spite of uncertainties in the estimations, the slower decomposition rates in S. alterniflora would be indicative of a higher contribution to the long-term storage of nutrients and metals within the marsh. Regardless shortcomings, our work represents a valuable tool for comparisons with salt marshes worldwide.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Barbier, E. B., S. D. Hacker, C. Kennedy, E. W. Koch, A. C. Stier & B. R. Silliman, 2011. The value of estuarine and coastal ecosystem services. Ecological Monographs 81: 169–193.

    Article  Google Scholar 

  • Bedford, B. L. & E. M. Preston, 1988. Developing the scientific basis for assessing cumulative effects of wetland loss and degradation of landscape functions: status, perspectives and prospects. Environmental Management 12: 751–771.

    Article  Google Scholar 

  • Blum, L. K., 1993. Spartina alterniflora root dynamics in a Virginia marsh. Marine Ecology Progress Series 102: 169–178.

    Article  Google Scholar 

  • Bocock, K. & O. Gilbert, 1957. The disappearance of leaf litter under different woodland conditions. Plant Soil 9: 179–185.

    Article  Google Scholar 

  • Bortolus, A., E. Schwindt, P. Bouza & Y. Idaszkin, 2009. A characterization of patagonian salt marshes. Wetlands 29: 772–780.

    Article  Google Scholar 

  • Botté, S.E., 2005. El rol de la vegetación en el ciclo biogeoquímico de metales pesados en humedales del estuario de Bahía Blanca. Thesis dissertation, Universidad Nacional del Sur, Bahía Blanca, Argentina.

  • Botté, S. E., R. H. Freije & J. E. Marcovecchio, 2007. Dissolved heavy metal (Cd, Pb, Cr, Ni) concentrations in surface water and porewater from Bahía Blanca Estuary tidal flats. Bulletin of Environmental Contamination and Toxicology 79: 415–421.

    Article  PubMed  Google Scholar 

  • Botté, S. E., R. H. Freije & J. E. Marcovecchio, 2010. Distribution of several heavy metals in tidal flats sediments within Bahía Blanca Estuary (Argentina). Water, Air, Soil Pollution 210: 371–388.

    Article  Google Scholar 

  • Bouchard, V. & J. C. Lefeuvre, 2000. Primary production and macrodetritus dynamics in a European salt marsh: carbon and nitrogen budgets. Aquatic Botany 67: 23–42.

    Article  CAS  Google Scholar 

  • Brinson, M., 1988. Strategies for assessing the cumulative effects of wetland alteration on water quality. Environmental Management 12: 655–662.

    Article  Google Scholar 

  • Caçador, I. M., B. Duarte Caetano & C. Vale, 2009. Stock and losses of trace metals from salt marsh plants. Marine Environmental Research 67: 75–82.

    Article  PubMed  Google Scholar 

  • Caetano, M., C. Vale, R. Cesário & N. Fonseca, 2008. Evidence for preferential depths of metal retention in roots of salt marsh plants. Science of the Total Environment 390: 466–474.

    Article  CAS  PubMed  Google Scholar 

  • Chmura, G. L., S. Anisfeld, D. Cahoon & J. Lynch, 2003. Global carbon sequestration in tidal, saline wetland soils. Global Biogeochemical Cycles 17: 1–12.

    Article  Google Scholar 

  • Couto, T., B. Duarte, D. Barroso, I. Caçador & J. C. Marques, 2013. Halophytes as sources of metals in estuarine systems with low levels of contamination. Functional Plant Biology 40(9): 931–939.

    CAS  Google Scholar 

  • Davy, A. J., G. F. Bishop, H. Mossman, S. Redondo-Gómez, J. M. Castillo, E. M. Castellanos, T. Luque & M. E. Figueroa, 2006. Biological flora of the British isles: Sarcocornia perennis (Miller) A.J. Scott. Journal of Ecology 94: 1035–1048.

    Article  CAS  Google Scholar 

  • Day, J. W., B. C. Crumpt, M. W. Kemp & A. Yáñez-Arancibia, 1989. Estuarine Ecology. Wiley-Interscience, New York.

    Google Scholar 

  • Duarte, B., M. Caetano, P. R. Almeida, C. Vale & I. Caçador, 2010. Accumulation and biological cycling of heavy metal in four salt marsh species, from Tagus estuary (Portugal). Environmental Pollution 158: 1661–1668.

    Article  CAS  PubMed  Google Scholar 

  • Enriquez, S., C. M. Duarte & K. Sand-Jensen, 1993. Patterns in decomposition rates among photosynthetic organisms: the importance of detritus C:N: P content. Oecologia 94: 457–471.

    Article  Google Scholar 

  • Ferrer, L., E. Contardi, S. J. Andrade, R. Asteasuain, A. E. Pucci & J. E. Marcovecchio, 2000. Environmental cadmium and lead concentrations in the Bahía Blanca Estuary (Argentina). Potential toxic effects of Cd and Pb on crab larvae. Oceanologia 42: 493–504.

    Google Scholar 

  • Freije, R. H., C. V. Spetter, J. E. Marcovecchio, C. A. Popovich, S. E. Botté, V. L. Negrin, A. H. Arias, F. Delucchi & R. O. Astesuain, 2008. Water chemistry and nutrients of the Bahía Blanca Estuary. In Neves, R., J. Baretta & M. Mateus (eds), Perspectives on Integrated Coastal Zone Management in South America. IST Press, Lisboa: 241–254.

    Google Scholar 

  • Gedan, K. B., B. R. Silliman & M. D. Bertness, 2009. Centuries of human-driven change in salt marsh ecosystems. Annual Review of Marine Science 1: 117–141.

    Article  PubMed  Google Scholar 

  • González, M. A., 1989. Holocene levels in the Bahía Blanca estuary, Argentina Republic. Journal of Coastal Research 5: 65–77.

    Google Scholar 

  • González Trilla, G., P. Kandus, V. L. Negrin, R. Vicari & J. E. Marcovecchio, 2009. Tiller dynamic and production on a SW Atlantic Spartina alterniflora marsh. Estuarine, Coastal and Shelf Science 85: 126–133.

    Article  Google Scholar 

  • González Trilla, G., M. M. Borro, N. S. Morandeira, F. Schivo, P. Kandus & J. E. Marcovecchio, 2013. Allometric scaling of dry weight and leaf area for Spartina densiflora and Spartina alterniflora in two Southwest Atlantic saltmarshes. Journal of Coastal Research 29: 1373–1381.

    Article  Google Scholar 

  • Gross, M., M. Hardisky, P. Wolf & V. Klemas, 1991. Relationship between aboveground and belowground biomass of Spartina alterniflora (smooth cordgrass). Estuaries 14: 180–191.

    Article  Google Scholar 

  • Hempel, M., S. E. Botté, V. L. Negrin, M. N. Chiarello & J. E. Marcovecchio, 2008. The role of the smooth cordgrass Spartina alterniflora and associated sediments in the heavy metal biogeochemical cycle within Bahía Blanca estuary salt marshes. Journal of Soils and Sediments 8: 289–297.

    Article  CAS  Google Scholar 

  • Idaszkin, Y. L. & A. Bortolus, 2011. Does low temperature prevent Spartina alterniflora from expanding toward the austral-most salt marshes? Plant ecology 212: 553–561.

    Article  Google Scholar 

  • Idaszkin, Y. L., P. J. Bouza, C. H. Marinho & M. N. Gil, 2014. Trace metal concentrations in Spartina densiflora and associated soil from a Patagonian salt marsh. Marine Pollution Bulletin 89: 444–450.

    Article  CAS  PubMed  Google Scholar 

  • Isacch, J., C. Costa, L. Rodriguez-Gallego, D. Conde, M. Escapa, D. Gagliardini & O. Iribarne, 2006. Distribution of salt marsh plant communities associated with environmental factors along a latitudinal gradient on the south-west Atlantic coast. Journal of Biogeography 33: 888–900.

    Article  Google Scholar 

  • Kirwan, M. L. & A. B. Murray, 2007. A coupled geomorphic and ecological model of tidal marsh evolution. Proceedings of the National Academy of Sciences 104: 6118–6122.

    Article  CAS  Google Scholar 

  • Kirwan, M. L., G. R. Guntenspergen & J. T. Morris, 2009. Latitudinal trends in Spartina alterniflora productivity and the response of coastal marshes to global change. Global Change Biology 15: 1982–1989.

    Article  Google Scholar 

  • Kirwan, M. L. & L. K. Blum, 2011. Enhanced decomposition offsets enhanced productivity and soil carbon accumulation in coastal wetlands responding to climate change. Biogeosciences 8: 987–993.

    Article  CAS  Google Scholar 

  • Koretsky, C. M., M. Haveman, A. Cuellar, L. Beuving, T. Shattuck & M. Wagner, 2008. Influence of Spartina and Juncus on saltmarsh sediments. I. Porewater geochemistry. Chemical Geology 255: 87–99.

    Article  CAS  Google Scholar 

  • La Colla, N. S., V. L. Negrin, J. E. Marcovecchio & S. E. Botté, 2015. Dissolved and particulate metals dynamics in a human impacted estuary from the SW Atlantic. Estuarine, Coastal and Shelf Science. doi:10.1016/j.ecss.2015.05.009.

    Google Scholar 

  • Lanfredi, N. W., E. E. D’Onofrio & C. A. Mazio, 1988. Variations of the mean sea level in the southwest Atlantic Ocean. Continental Shelf Research 8: 1211–1220.

    Article  Google Scholar 

  • Limbozzi, F. & T. E. Leitào, 2008. Characterization of Bahía Blanca main existing pressures and their effects on the state indicators for surface and groundwater quality. In Neves, R., J. Baretta & M. Mateus (eds), Perspectives on Integrated Coastal Zone Management in South America. IST Press, Lisboa: 315–331.

    Google Scholar 

  • Linthurst, R. A. & R. J. Reimold, 1978. An evaluation of methods for estimating the net aerial primary productivity of estuarine angiosperms. Journal of Applied Ecology 15: 919–931.

    Article  Google Scholar 

  • Luque, C. J., E. M. Castellanos, J. M. Castillo, M. González, M. C. González-Vilches & M. E. Figueroa, 1999. Metals in halophytes of a contaminated estuary (Odiel Saltmarshes, SW Spain). Marine Pollution Bulletin 38: 49–51.

    Article  CAS  Google Scholar 

  • Menéndez, M. & N. Sanmartí, 2007. Geratology and decomposition of Spartina versicolor in a brackish Mediterranean marsh. Estuarine, Coastal and Shelf Science 74: 320–330.

    Article  Google Scholar 

  • National Biological Information Infrastructure (NBII) & IUCN/SSC Invasive Species Specialist Group (ISSG) (Comp.), 2005. Global Invasive Species Database. http://www.issg.org/database/species/.

  • Negrin, V.L. 2011. El rol de las marismas del estuario de Bahía Blanca en el ciclo bio-geoquímico de nutrientes inorgánicos y de materia orgánica. Thesis dissertation, Universidad Nacional del Sur, Bahía Blanca, Argentina.

  • Negrin, V. L., C. V. Spetter, R. O. Asteasuain, G. M. E. Perillo & J. E. Marcovecchio, 2011. Influence of flooding and vegetation on carbon, nitrogen, and phosphorus dynamics in the pore water of a Spartina alterniflora salt marsh. Journal of Environmental Sciences 23: 212–221.

    Article  CAS  Google Scholar 

  • Negrin, V. L., A. E. de Villalobos, G. González Trilla, S. E. Botté & J. E. Marcovecchio, 2012a. Above and belowground biomass and nutrient pools of Spartina alterniflora (smooth cordgrass) in a South American salt marsh. Chemistry and Ecology 28: 391–404.

    Article  CAS  Google Scholar 

  • Negrin, V. L., G. González Trilla, P. Kandus & J. E. Marcovecchio, 2012b. Decomposition and nutrient dynamics in a Spartina alterniflora marsh of the Bahía Blanca estuary, Argentina. Brazilian Journal of Oceanography 60: 259–263.

    Article  Google Scholar 

  • Negrin, V. L., C. V. Spetter, V. A. Guinder, G. M. E. Perillo & J. E. Marcovecchio, 2013. The role of Sarcocornia perennis and tidal flooding on sediment biogeochemistry in a South American wetland. Marine Biology Research 9: 703–715.

    Article  Google Scholar 

  • Negrin, V. L., P. D. Pratolongo, A. E. de Villalobos, S. E. Botté & J. E. Marcovecchio, 2015. Biomass, decomposition and nutrient cycling in a SW Atlantic Sarcocornia perennis marsh. Journal of Sea Research 97: 50–55.

    Article  Google Scholar 

  • Newell, S. Y., R. D. Fallon & J. D. Miller, 1989. Decomposition and microbial dynamics for standing, naturally positioned leaves of the salt-marsh grass Spartina alterniflora. Marine Biology 101: 471–481.

    Article  Google Scholar 

  • Odum, E. P., 2000. Tidal marshes as outwelling/pulsing systems. In Weinstein, M. & D. A. Kreeger (eds), Concepts and Controversies in Tidal Marsh Ecology. Kluwer Academic Publishing, Dordrecht: 3–7.

    Google Scholar 

  • Palomo, L. & F. X. Niell, 2009. Primary production and nutrient budgets of Sarcocornia perennis ssp. alpini (Lag.) Castroviejo in the salt marsh of the Palmones River estuary (Southern Spain). Aquatic Botany 91: 130–136.

    Article  CAS  Google Scholar 

  • Perillo, G. M. E. & M. C. Piccolo, 1991. Tidal response in the Bahia Blanca estuary, Argentina. Journal of Coastal Research 7: 437–449.

    Google Scholar 

  • Piccolo, M. C., 2008. Climatological features of the Bahía Blanca Estuary. In Neves, R., J. Baretta & M. Mateus (eds), Perspectives on Integrated Coastal Zone Management in South America. IST Press, Lisboa: 231–239.

    Google Scholar 

  • Piccolo, M. C., G. M. E. Perillo & W. D. Melo, 2008. The Bahía Blanca Estuary: an integrated overview of its geomorphology and dynamics. In Neves, R., J. Baretta & M. Mateus (eds), Perspectives on Integrated Coastal Zone Management in South America. IST Press, Lisboa: 219–229.

    Google Scholar 

  • Piovan, M. J, P. Pratolongo, G. Zapperi & G. M. E. Perillo, 2014. Aplicación de herramientas de teledetección satelital y SIG para caracterizar a los humedales costeros de Bahía Blanca. Proceedings of II Jornadas de Tecnologías de la Información Geográfica del Sur Argentino. Bahía Blanca, Argentina, 78–82.

  • Pozo, J. & R. Colino, 1992. Decomposition processes of Spartina maritima in a salt marsh of the Basque Country. Hydrobiologia 231: 165–175.

    Article  CAS  Google Scholar 

  • Pratolongo, P. D., G. M. E. Perillo & M. C. Piccolo, 2010. Combined effects of waves and plants on a mud deposition event at a mudflat-saltmarsh edge in the Bahía Blanca Estuary. Estuarine, Coastal and Shelf Science 87: 207–212.

    Article  Google Scholar 

  • Pratolongo, P., C. Mazzon, G. Zapperi, M. J. Piovan & M. M. Brinson, 2013. Land cover changes in tidal salt marshes of the Bahía Blanca estuary (Argentina) during the past 40 years. Estuarine, Coastal and Shelf Science 133: 23–31.

    Article  Google Scholar 

  • Rascio, N. & F. Navari-Izzo, 2011. Heavy metal hyperaccumulating plants: how and why do they do it? And what makes them so interesting? Plant Science 180: 169–181.

    Article  CAS  PubMed  Google Scholar 

  • Reboreda, R. & I. Caçador, 2007. Halophyte vegetation influences in salt marsh retention capacity for heavy metals. Environmental Pollution 146: 147–154.

    Article  CAS  PubMed  Google Scholar 

  • Reboreda, R., I. Caçador, S. Pedro & P. Raposo Almeida, 2008. Mobility of metals in salt marsh sediments colonized by Spartina maritima (Tagus estuary, Portugal). Hydrobiologia 606: 129–137.

    Article  CAS  Google Scholar 

  • Redondo-Gómez, S., 2013. Bioaccumulation of heavy metals in Spartina. Functional Plant Biology 40: 913–921.

    Google Scholar 

  • Rejmánková, E. & K. Houdková, 2006. Wetland plant decomposition under different nutrient conditions: what is more important, litter quality or site quality? Biogeochemistry 80: 245–262.

    Article  Google Scholar 

  • Scarton, F., J. Day & A. Rismondo, 2002. Primary production and decomposition of Sarcocornia fruticosa (L.) Scott and Phragmites australis Trin. Ex Steudel in the Po Delta, Italy, Estuaries 25: 325–336.

    Google Scholar 

  • Schubauer, J. P. & C. S. Hopkinson, 1984. Above-and belowground emergent macrophyte production and turnover in a coastal marsh ecosystem, Georgia. Limnology and Oceanography 29: 1052–1065.

    Article  Google Scholar 

  • Scian, B. & J. Pierini, 2013. Variability and trends of extreme dry and wet seasonal precipitation in Argentina. A retrospective analysis. Atmósfera 26: 3–26.

    Article  Google Scholar 

  • Simões, M. P., M. L. Calado, M. Madeira & L. C. Gazarini, 2011. Decomposition and nutrient release in halophytes of a Mediterranean salt marsh. Aquatic Botany 94: 119–126.

    Article  Google Scholar 

  • Sousa, A. I., A. I. Lillebø, I. Caçador & M. Â. Pardal, 2008. Contribution of Spartina maritima to the reduction of eutrophication in estuarine systems. Environmental Pollution 156: 628–635.

    Article  CAS  PubMed  Google Scholar 

  • Sousa, A. I., A. I. Lillebø, M. Â. Pardal & I. Caçador, 2010. Productivity and nutrient cycling in salt marshes: contribution to ecosystem health. Estuarine, Coastal and Shelf Science 87: 640–646.

    Article  CAS  Google Scholar 

  • Tangahu, B.V., S. R. Sheikh Abdullah, H. Basri, M. Idris, N. Anuar & M. Mukhlisin, 2011. A review on heavy metals (As, Pb, and Hg) uptake by plants through phytoremediation. International Journal of Chemical Engineering, 2011.

  • Taylor, D. I. & B. R. Allanson, 1995. Organic carbon fluxes between a high marsh and estuary, and the inapplicability of the outwelling hypothesis. Marine Ecology Progress Series 120: 263–270.

    Article  CAS  Google Scholar 

  • Turner, R. E., E. M. Swenson & C. S. Milan, 2000. Organic and inorganic contributions to vertical accretion in salt marsh sediments. In Weinstein, M. & D. A. Kreeger (eds), Concepts and Controversies in Tidal Marsh Ecology. Kluwer Academic Publishing, Dordrecht: 583–595.

    Google Scholar 

  • Turner, R. E., E. M. Swenson, C. S. Milan, J. M. Lee & T. A. Oswald, 2004. Belowground biomass in healthy and impaired salt marshes. Ecological Research 19: 29–35.

    Article  Google Scholar 

  • Valentim, J. M., N. Vaz, H. Silva, B. Duarte, I. Caçador & J. M. Dias, 2013. Tagus estuary and Ria de Aveiro salt marsh dynamics and the impact of sea level rise. Estuarine, Coastal and Shelf Science 130: 138–151.

    Article  Google Scholar 

  • Wang, Y., L. Zhou, X. Zheng, P. Qian & Y. Wu, 2013. Influence of Spartina alterniflora on the mobility of heavy metals in salt marsh sediments of the Yangtze River Estuary, China. Environmental Science and Pollution Research 20: 1675–1685.

    Article  CAS  PubMed  Google Scholar 

  • Watanabe, F. S. & S. R. Olsen, 1965. Test of an ascorbic acid method for determining phosphorus in water and NaHCO3 extracts from soil. Soil Science Society of America Journal 29: 677–678.

    Article  CAS  Google Scholar 

  • Weis, J. S. & P. Weis, 2004. Metal uptake, transport and release by wetland plants: implications for phytoremediation and restoration. Environment International 30: 685–700.

    Article  CAS  PubMed  Google Scholar 

  • Windham, L., J. S. Weis & P. Weis, 2003. Uptake and distribution of metals in two dominant salt marsh macrophytes, Spartina alterniflora (cordgrass) and Phragmites australis (common reed). Estuarine, Coastal and Shelf Science 56: 63–72.

    Article  CAS  Google Scholar 

  • Zapperi, G., P. Pratolongo, M. J. Piovan & J. E. Marcovecchio, 2015. Benthic-pelagic coupling in an intertidal mudflat in the Bahía Blanca Estuary (SW Atlantic). Journal of Coastal Research. doi:10.2112/JCOASTRES-D-14-00064.1.

    Google Scholar 

  • Zilio, M. I., S. London, G. M. E. Perillo & M. C. Piccolo, 2013. The social cost of dredging: the Bahia Blanca Estuary case. Ocean and Coastal Management 71: 195–202.

    Article  Google Scholar 

  • Zotelo, C., 2011. Variabilidad Climática y Ciclos Naturales. Anales 2011 de la Academia Nacional de Agronomía y Veterinaria, Tomo LXV: 374–381.

Download references

Acknowledgments

We thank an anonymous reviewer, who carefully read the manuscript, and we thank Dr. Valeria Guinder for their useful comments to improve the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vanesa L. Negrin.

Additional information

Guest editors: Pierluigi Viaroli, Marco Bartoli & Jan Vymazal / Wetlands Biodiversity and Processes: Tools for Management and Conservation

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Negrin, V.L., Botté, S.E., Pratolongo, P.D. et al. Ecological processes and biogeochemical cycling in salt marshes: synthesis of studies in the Bahía Blanca estuary (Argentina). Hydrobiologia 774, 217–235 (2016). https://doi.org/10.1007/s10750-015-2582-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-015-2582-9

Keywords

Navigation