Skip to main content

Sperm Chromatin Integrity Tests and Indications

  • Chapter
  • First Online:
Male Infertility

Abstract

Semen analysis is used routinely to evaluate infertile men. A significant overlap in sperm concentration, motility, and morphology between fertile and infertile men has been demonstrated. Abnormalities in the male genome characterized by damaged sperm DNA may be indicative of male subfertility in the setting of normal semen parameters. Standard semen analysis cannot discern subtle sperm defects such as DNA damage. Sperm chromatin structure evaluation is an independent measure of sperm quality that provides clear diagnostic and prognostic capabilities. There are a number of assays available to measure sperm chromatin integrity and sperm DNA fragmentation. Among them, SCSA, TUNEL assay, and sperm chromatin dispersion assay are more common. Sperm DNA integrity has been shown to be an underlying factor in men with varicocele, unexplained infertility, recurrent pregnancy loss, intrauterine insemination failures, and in IVF and ICSI failures. There are multiple factors affecting pregnancy outcome in addition to sperm DNA fragmentation. The lack of established thresholds and conflicting pregnancy outcomes prevent the use of sperm DNA fragmentation as a marker of pregnancy failure. However, it is recommended that sperm DNA fragmentation analysis should be included in the evaluation of the infertile male.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Jarow J, Sigman M. The optimal evaluation of the infertile male: AUA best practice statement. American Urological Association, Education and Research, Inc. 2010;1–38.

    Google Scholar 

  2. Patel AS, Leong JY, Ramasamy R. Prediction of male infertility by the World Health Organization laboratory manual for assessment of semen analysis: a systematic review. Arab J Urol. 2018;16(1):96–102.

    Article  PubMed  Google Scholar 

  3. Leuchtenberger C, Schrader F, Weir DR, Gentile DP. The deoxyribosenucleic acid (DNA) content in spermatozoa of fertile and infertile human males. Chromosoma. 1953;6(1):61–78.

    Article  CAS  PubMed  Google Scholar 

  4. Tremellen K. Oxidative stress and male infertility—a clinical perspective. Hum Reprod Update. 2008;14(3):243–58.

    CAS  PubMed  Google Scholar 

  5. Majzoub A, Esteves SC, Gosálvez J, Agarwal A. Specialized sperm function tests in varicocele and the future of andrology laboratory. Asian J Androl. 2016;18(2):205–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Agarwal A, Majzoub A, Esteves SC, Ko E, Ramasamy R, Zini A. Clinical utility of sperm DNA fragmentation testing: practice recommendations based on clinical scenarios. Transl Androl Urol. 2016;5(6):935–50.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Agarwal A, Sharma RK, Nallella KP, Thomas AJ, Alvarez JG, Sikka SC. Reactive oxygen species as an independent marker of male factor infertility. Fertil Steril. 2006;86(4):878–85.

    Article  CAS  PubMed  Google Scholar 

  8. Guzick DS, Overstreet JW, Factor-Litvak P, Brazil CK, Nakajima ST, Coutifaris C, et al. Sperm morphology, motility, and concentration in fertile and infertile men. N Engl J Med. 2001;345(19):1388–93.

    Article  CAS  PubMed  Google Scholar 

  9. Barratt CL, Mansell S, Beaton C, Tardif S, Oxenham SK. Diagnostic tools in male infertility—the question of sperm dysfunction. Asian J Androl. 2011;13(1):53.

    Article  PubMed  Google Scholar 

  10. Hwang K, Lipshultz LI, Lamb DJ. Use of diagnostic testing to detect infertility. Curr Urol Rep. 2011;12(1):68–76.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Su T-W, Erlinger A, Tseng D, Ozcan A. Compact and light-weight automated semen analysis platform using lensfree on-chip microscopy. Anal Chem. 2010;82(19):8307–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Segerink LI, Sprenkels AJ, ter Braak PM, Vermes I, van den Berg A. On-chip determination of spermatozoa concentration using electrical impedance measurements. Lab Chip. 2010;10(8):1018–24.

    Article  CAS  PubMed  Google Scholar 

  13. Gou H-L, Zhang X-B, Bao N, Xu J-J, Xia X-H, Chen H-Y. Label-free electrical discrimination of cells at normal, apoptotic and necrotic status with a microfluidic device. J Chromatogr A. 2011;1218(33):5725–9.

    Article  CAS  PubMed  Google Scholar 

  14. Huang X-Y, Sha J-H. Proteomics of spermatogenesis: from protein lists to understanding the regulation of male fertility and infertility. Asian J Androl. 2011;13(1):18.

    Article  CAS  PubMed  Google Scholar 

  15. Hansen M, Kurinczuk JJ, Bower C, Webb S. The risk of major birth defects after intracytoplasmic sperm injection and in vitro fertilization. N Engl J Med. 2002;346(10):725–30.

    Article  PubMed  Google Scholar 

  16. Schieve LA, Meikle SF, Ferre C, Peterson HB, Jeng G, Wilcox LS. Low and very low birth weight in infants conceived with use of assisted reproductive technology. N Engl J Med. 2002;346(10):731–7.

    Article  PubMed  Google Scholar 

  17. Moll AC, Imhof SM, Cruysberg JR, Schouten-van Meeteren AY, Boers M, van Leeuwen FE. Incidence of retinoblastoma in children born after in-vitro fertilisation. Lancet. 2003;361(9354):309–10.

    Article  PubMed  Google Scholar 

  18. Ørstavik K, Eiklid K, Van Der Hagen C, Spetalen S, Kierulf K, Skjeldal O, et al. Another case of imprinting defect in a girl with Angelman syndrome who was conceived by intracytoplasmic sperm injection. Am J Hum Genet. 2003;72(1):218.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Agarwal A, Said TM. Role of sperm chromatin abnormalities and DNA damage in male infertility. Hum Reprod Update. 2003;9(4):331–45.

    Article  CAS  PubMed  Google Scholar 

  20. Agarwal A, Allamaneni SS. Sperm DNA damage assessment: a test whose time has come. Fertil Steril. 2005;84(4):850–3.

    Article  PubMed  Google Scholar 

  21. Erenpreiss J, Spano M, Erenpreisa J, Bungum M, Giwercman A. Sperm chromatin structure and male fertility: biological and clinical aspects. Asian J Androl. 2006;8(1):11–29.

    Article  CAS  PubMed  Google Scholar 

  22. Evenson D, Wixon R. Meta-analysis of sperm DNA fragmentation using the sperm chromatin structure assay. Reprod Biomed Online. 2006;12(4):466–72.

    Article  CAS  PubMed  Google Scholar 

  23. Borini A, Tarozzi N, Bizzaro D, Bonu M, Fava L, Flamigni C, et al. Sperm DNA fragmentation: paternal effect on early post-implantation embryo development in ART. Hum Reprod. 2006;21(11):2876–81.

    Article  CAS  PubMed  Google Scholar 

  24. Aitken RJ, De Iuliis GN. Origins and consequences of DNA damage in male germ cells. Reprod Biomed Online. 2007;14(6):727–33.

    Article  CAS  PubMed  Google Scholar 

  25. Bungum M, Humaidan P, Axmon A, Spano M, Bungum L, Erenpreiss J, et al. Sperm DNA integrity assessment in prediction of assisted reproduction technology outcome. Hum Reprod. 2006;22(1):174–9.

    Article  CAS  PubMed  Google Scholar 

  26. Ozmen B, Koutlaki N, Youssry M, Diedrich K, Al-Hasani S. DNA damage of human spermatozoa in assisted reproduction: origins, diagnosis, impacts and safety. Reprod Biomed Online. 2007;14(3):384–95.

    Article  CAS  PubMed  Google Scholar 

  27. Tarozzi N, Bizzaro D, Flamigni C, Borini A. Clinical relevance of sperm DNA damage in assisted reproduction. Reprod Biomed Online. 2007;14(6):746–57.

    Article  CAS  PubMed  Google Scholar 

  28. Lopes S, Jurisicova A, Sun J-G, Casper RF. Reactive oxygen species: potential cause for DNA fragmentation in human spermatozoa. Hum Reprod. 1998;13(4):896–900.

    Article  CAS  PubMed  Google Scholar 

  29. Sakkas D, Tomlinson M. Assessment of sperm competence. Semin Reprod Med. 2000;18(02):133–40.

    Article  CAS  PubMed  Google Scholar 

  30. De Jonge C. Paternal conributions to embryogenesis. Reprod Med Rev. 2000;8(3):203–14.

    Article  Google Scholar 

  31. Corzett M, Mazrimas J, Balhorn R. Protamine 1: protamine 2 stoichiometry in the sperm of eutherian mammals. Mol Reprod Dev. 2002;61(4):519–27.

    Article  CAS  PubMed  Google Scholar 

  32. Lewis JD, Song Y, de Jong ME, Bagha SM, Ausió J. A walk though vertebrate and invertebrate protamines. Chromosoma. 2003;111(8):473–82.

    Article  PubMed  Google Scholar 

  33. Bellve AR, McKay DJ, Renaux BS, Dixon GH. Purification and characterization of mouse protamines, P1 and P2. Amino-acid sequence of P. Biochemistry. 1988;27(8):2890–7.

    Article  CAS  PubMed  Google Scholar 

  34. Steven Ward W, Coffey DS. DNA packaging and organization in mammalian spermatozoa: comparison with somatic cell. Biol Reprod. 1991;44(4):569–74.

    Article  Google Scholar 

  35. Gatewood J, Cook G, Balhorn R, Bradbury E, Schmid C. Sequence-specific packaging of DNA in human sperm chromatin. Science. 1987;236(4804):962–4.

    Article  CAS  PubMed  Google Scholar 

  36. Bench GS, Friz AM, Corzett MH, Morse DH, Balhorn R. DNA and total protamine masses in individual sperm from fertile mammalian subjects. Cytometry. 1996;23(4):263–71.

    Article  CAS  PubMed  Google Scholar 

  37. Fuentes-Mascorro G, Serrano H, Rosado A. Sperm chromatin. Arch Androl. 2000;45(3):215–25.

    Article  CAS  PubMed  Google Scholar 

  38. Steven Ward W. Deoxyribonucleic acid loop domain tertiary structure in mammalian spermatozoa1. Biol Reprod. 1993;48(6):1193–201.

    Article  Google Scholar 

  39. Solov’eva L, Svetlova M, Bodinski D, Zalensky AO. Nature of telomere dimers and chromosome looping in human spermatozoa. Chromosom Res. 2004;12(8):817–23.

    Article  CAS  Google Scholar 

  40. Ward WS, Zalensky AO. The unique, complex organization of the transcriptionally silent sperm chromatin. Crit Rev Eukaryot Gene Expr. 1996;6:2–3.

    Article  Google Scholar 

  41. Jager S. Sperm nuclear stability and male infertility. Arch Androl. 1990;25(3):253–9.

    Article  CAS  PubMed  Google Scholar 

  42. Balhorn R, Reed S, Tanphaichitr N. Aberrant protamine 1/protamine 2 ratios in sperm of infertile. Experientia. 1988;44(1):52–5.

    Article  CAS  PubMed  Google Scholar 

  43. Bench G, Corzett MH, De Yebra L, Oliva R, Balhorn R. Protein and DNA contents in sperm from an infertile human male possessing protamine defects that vary over tim. Mol Reprod Dev. 1998;50(3):345–53.

    Article  CAS  PubMed  Google Scholar 

  44. de Yebra Ls BJ-L, Vanrell JA, Corzett M, Balhorn R, Oliva R. Detection of P2 precursors in the sperm cells of infertile patients who have reduced protamine P2 levels 55Funded by grants from Dirección General de Investigación Cientifica y Técnica (DGICYT# PB92-0810) and Fondo de Investigaciones Sanitarias (FIS93/0670) to R.O. and by a fellowship from the Generalitat de Catalunya to L. de Y. Fertil Steril. 1998;69(4):755–9.

    Article  Google Scholar 

  45. Nasr-Esfahani MH, Salehi M, Razavi S, Mardani M, Bahramian H, Steger K, et al. Effect of protamine-2 deficiency on ICSI outcome. Reprod Biomed Online. 2004;9(6):652–8.

    Article  CAS  PubMed  Google Scholar 

  46. Aoki VW, Liu L, Carrell DT. Identification and evaluation of a novel sperm protamine abnormality in a population of infertile males. Hum Reprod. 2005;20(5):1298–306.

    Article  CAS  PubMed  Google Scholar 

  47. García-Peiró A, Martínez-Heredia J, Oliver-Bonet M, Abad C, Amengual MJ, Navarro J, et al. Protamine 1 to protamine 2 ratio correlates with dynamic aspects of DNA fragmentation in human sperm. Fertil Steril. 2011;95(1):105–9.

    Article  CAS  PubMed  Google Scholar 

  48. Nanassy L, Liu L, Griffin J, T Carrell D. The clinical utility of the protamine 1/protamine 2 ratio in sperm. Protein Pept Lett. 2011;18(8):772–7.

    Article  CAS  PubMed  Google Scholar 

  49. Payne JF, Raburn DJ, Couchman GM, Price TM, Jamison MG, Walmer DK. Redefining the relationship between sperm deoxyribonucleic acid fragmentation as measured by the sperm chromatin structure assay and outcomes of assisted reproductive techniques. Fertil Steril. 2005;84(2):356–64.

    Article  PubMed  Google Scholar 

  50. Tomlinson M, Moffatt O, Manicardi GC, Bizzaro D, Afnan M, Sakkas D. Interrelationships between seminal parameters and sperm nuclear DNA damage before and after density gradient centrifugation: implications for assisted conception. Hum Reprod. 2001;16(10):2160–5.

    Article  CAS  PubMed  Google Scholar 

  51. Seli E, Gardner DK, Schoolcraft WB, Moffatt O, Sakkas D. Extent of nuclear DNA damage in ejaculated spermatozoa impacts on blastocyst development after in vitro fertilization. Fertil Steril. 2004;82(2):378–83.

    Article  PubMed  Google Scholar 

  52. Lewis SEM. Should sperm DNA fragmentation testing be included in the male infertility work-up? Reprod Biomed Online. 2015;31(2):134–7.

    Article  CAS  PubMed  Google Scholar 

  53. Agarwal A, Cho C-L, Esteves SC, Majzoub A. Current limitation and future perspective of sperm DNA fragmentation tests. Transl Androl Urol. 2017;6(Suppl 4):S549–S52.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Cozzubbo T, Neri QV, Rosenwaks Z, Palermo GD. To what extent can oocytes repair sperm DNA fragmentation? Fertil Steril. 2014;102(3):e61.

    Article  Google Scholar 

  55. Meseguer M, Santiso R, Garrido N, García-Herrero S, Remohí J, Fernandez JL. Effect of sperm DNA fragmentation on pregnancy outcome depends on oocyte quality. Fertil Steril. 2011;95(1):124–8.

    Article  CAS  PubMed  Google Scholar 

  56. Ashwood-Smith M, Edwards R. Genetics and human conception: DNA repair by oocytes. MHR: Basic Sci Reprod Med. 1996;2(1):46–51.

    CAS  Google Scholar 

  57. Sergerie M, Laforest G, Bujan L, Bissonnette F, Bleau G. Sperm DNA fragmentation: threshold value in male fertility. Hum Reprod. 2005;20(12):3446–51.

    Article  CAS  PubMed  Google Scholar 

  58. Saleh RA, Agarwal A, Nada EA, El-Tonsy MH, Sharma RK, Meyer A, et al. Negative effects of increased sperm DNA damage in relation to seminal oxidative stress in men with idiopathic and male factor infertility. Fertil Steril. 2003;79:1597–605.

    Article  PubMed  Google Scholar 

  59. Bungum M, Humaidan P, Spano M, Jepson K, Bungum L, Giwercman A. The predictive value of sperm chromatin structure assay (SCSA) parameters for the outcome of intrauterine insemination, IVF and ICSI. Hum Reprod. 2004;19(6):1401–8.

    Article  CAS  PubMed  Google Scholar 

  60. Tomlinson MJ, Moffatt O, Manicardi GC, Bizzaro D, Afnan M, Andrology SD. Interrelationships between seminal parameters and sperm nuclear DNA damage before and after density gradient centrifugation: implications for assisted conceptio. Hum Reprod. 2001;16(10):2160–5.

    Article  CAS  PubMed  Google Scholar 

  61. McKelvey-Martin V, Melia N, Walsh I, Johnston S, Hughes C, Lewis S, et al. Two potential clinical applications of the alkaline single-cell gel electrophoresis assay:(1) human bladder washings and transitional cell carcinoma of the bladder; and (2) human sperm and male infertility. Mutat Res/Fundam Mol Mech Mutagen. 1997;375(2):93–104.

    Article  CAS  Google Scholar 

  62. Esteves SC, Gosálvez J, López-Fernández C, Núñez-Calonge R, Caballero P, Agarwal A, et al. Diagnostic accuracy of sperm DNA degradation index (DDSi) as a potential noninvasive biomarker to identify men with varicocele-associated infertility. Int Urol Nephrol. 2015;47(9):1471–7.

    Article  CAS  PubMed  Google Scholar 

  63. Cho C-L, Esteves S, Agarwal A. Novel insights into the pathophysiology of varicocele and its association with reactive oxygen species and sperm DNA fragmentation. Asian J Androl. 2016;18(2):186–93.

    Article  CAS  PubMed  Google Scholar 

  64. Aitken RJ, Krausz C. Oxidative stress, DNA damage and the Y chromosome. Reproduction. 2001;122(4):497–506.

    Article  CAS  PubMed  Google Scholar 

  65. Hamada A, Esteves SC, Nizza M, Agarwal A. Unexplained male infertility: diagnosis and management. Int Braz J Urol. 2012;38(5):576–94.

    Article  PubMed  Google Scholar 

  66. Ahmad G, Moinard N, Esquerré-Lamare C, Mieusset R, Bujan L. Mild induced testicular and epididymal hyperthermia alters sperm chromatin integrity in men. Fertil Steril. 2012;97(3):546–53.

    Article  PubMed  Google Scholar 

  67. Tiseo B, Esteves S, Cocuzza M. Summary evidence on the effects of varicocele treatment to improve natural fertility in subfertile men. Asian J Androl. 2016;18(2):239–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Wang Y-J, Zhang R-Q, Lin Y-J, Zhang R-G, Zhang W-L. Relationship between varicocele and sperm DNA damage and the effect of varicocele repair: a meta-analysis. Reprod Biomed Online. 2012;25(3):307–14.

    Article  CAS  PubMed  Google Scholar 

  69. Zini A, Dohle G. Are varicoceles associated with increased deoxyribonucleic acid fragmentation? Fertil Steril. 2011;96(6):1283–7.

    Article  CAS  PubMed  Google Scholar 

  70. Agarwal A, Hamada A, Esteves SC. Insight into oxidative stress in varicocele-associated male infertility: part 1. Nat Rev Urol. 2012;9:678.

    Article  CAS  PubMed  Google Scholar 

  71. Blumer CG, Restelli AE, Giudice PTD, Soler TB, Fraietta R, Nichi M, et al. Effect of varicocele on sperm function and semen oxidative stress. BJU Int. 2012;109(2):259–65.

    Article  CAS  PubMed  Google Scholar 

  72. Chen S-S, Huang William J, Chang Luke S, Wei Y-H. Attenuation of oxidative stress after varicocelectomy in subfertile patients with varicocele. J Urol. 2008;179(2):639–42.

    Article  CAS  PubMed  Google Scholar 

  73. Esteves S, Roque M, Agarwal A. Outcome of assisted reproductive technology in men with treated and untreated varicocele: systematic review and meta-analysis. Asian J Androl. 2016;18(2):254–8.

    Article  PubMed  Google Scholar 

  74. Kadioglu TC, Aliyev E, Celtik M. Microscopic varicocelectomy significantly decreases the sperm DNA fragmentation index in patients with infertility. Biomed Res Int. 2014;2014:695713.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Smit M, Romijn Johannes C, Wildhagen Mark F, Veldhoven Joke LM, Weber Robertus FA, Dohle Gert R. Decreased sperm DNA fragmentation after surgical varicocelectomy is associated with increased pregnancy rate. J Urol. 2013;189(1):S146–S50.

    Article  PubMed  Google Scholar 

  76. Kumar M, Kumar K, Jain S, Hassan T, Dada R. Novel insights into the genetic and epigenetic paternal contribution to the human embryo. Clin (Sao Paulo, Brazil). 2013;68 Suppl 1(Suppl 1):5–14.

    Article  Google Scholar 

  77. Lewis SEM, Aitken RJ. DNA damage to spermatozoa has impacts on fertilization and pregnancy. Cell Tissue Res. 2005;322(1):33–41.

    Article  CAS  PubMed  Google Scholar 

  78. Esteves SC. Novel concepts in male factor infertility: clinical and laboratory perspectives. J Assist Reprod Genet. 2016;33(10):1319–35.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Agarwal A, Cho C-L, Esteves SC. Should we evaluate and treat sperm DNA fragmentation? Curr Opin Obstet Gynecol. 2016;28(3):164–71.

    Article  PubMed  Google Scholar 

  80. Gosálvez J, Rodríguez-Predreira M, Mosquera A, López-Fernández C, Esteves S, Agarwal A, et al. Characterisation of a subpopulation of sperm with massive nuclear damage, as recognised with the sperm chromatin dispersion test. Andrologia. 2014;46(6):602–9.

    Article  CAS  PubMed  Google Scholar 

  81. Zini A. Are sperm chromatin and DNA defects relevant in the clinic? Syst Biol Reprod Med. 2011;57(1–2):78–85.

    Article  PubMed  Google Scholar 

  82. Buck Louis GM, Sundaram R, Schisterman EF, Sweeney A, Lynch CD, Kim S, et al. Semen quality and time to pregnancy: the longitudinal investigation of fertility and the environment study. Fertil Steril. 2014;101(2):453–62.

    Article  PubMed  Google Scholar 

  83. Spanò M, Bonde JP, Hjøllund HI, Kolstad HA, Cordelli E, Leter G. Sperm chromatin damage impairs human fertility‡‡the Danish first pregnancy planner study is a collaborative follow-up study on environmental and biological determinants of fertility. The project is coordinated by the Steno Institute of Public Health, Aarhus University and is undertaken in collaboration with the Department of Growth and Reproduction, National University Hospital, Copenhagen. The team includes Jens Peter E. Bonde, Niels Henrik I. Hjøllund, Tina Kold Jensen, Tine Brink Henriksen, Henrik A. Kolstad, Erik Ernst, Aleksander Giwercman, Niels Erik Skakkebæk, and Jørn Olsen. Fertil Steril. 2000;73(1):43–50.

    Article  PubMed  Google Scholar 

  84. Wiweko B, Utami P. Predictive value of sperm deoxyribonucleic acid (DNA) fragmentation index in male infertility. Basic Clin Androl. 2017;27(1):1.

    Article  PubMed  PubMed Central  Google Scholar 

  85. Chenlo PH, Curi SM, Pugliese MN, Ariagno JI, Sardi-Segovia M, Furlan MJ, et al. Fragmentación del ADN espermático empleando el método de TUNEL. Actas Urol Esp. 2014;38(9):608–12.

    Article  CAS  PubMed  Google Scholar 

  86. Bungum M, Humaidan P, Axmon A, Spano M, Bungum L, Erenpreiss J, et al. Sperm DNA integrity assessment in prediction of assisted reproduction technology outcome. Hum Reprod. 2007;22(1):174–9.

    Article  CAS  PubMed  Google Scholar 

  87. Duran EH, Morshedi M, Taylor S, Oehninger S. Sperm DNA quality predicts intrauterine insemination outcome: a prospective cohort stud. Hum Reprod. 2002;17(12):3122–8.

    Article  CAS  PubMed  Google Scholar 

  88. Robinson L, Gallos ID, Conner SJ, Rajkhowa M, Miller D, Lewis S, et al. The effect of sperm DNA fragmentation on miscarriage rates: a systematic review and meta-analysis. Hum Reprod. 2012;27(10):2908–17.

    Article  CAS  PubMed  Google Scholar 

  89. Zhao J, Zhang Q, Wang Y, Li Y. Whether sperm deoxyribonucleic acid fragmentation has an effect on pregnancy and miscarriage after in vitro fertilization/intracytoplasmic sperm injection: a systematic review and meta-analysis. Fertil Steril. 2014;102(4):998–1005.e8.

    Article  CAS  PubMed  Google Scholar 

  90. Carlini T, Paoli D, Pelloni M, Faja F, Dal Lago A, Lombardo F, et al. Sperm DNA fragmentation in Italian couples with recurrent pregnancy loss. Reprod Biomed Online. 2017;34(1):58–65.

    Article  PubMed  Google Scholar 

  91. Hammadeh M, Zeginiadov T, Rosenbaum P, Georg T, Schmidt W, Strehler E. Predictive value of sperm chromatin condensation (aniline blue staining) in the assessment of male fertility. Arch Androl. 2001;46(2):99–104.

    Article  CAS  PubMed  Google Scholar 

  92. Baker H, Liu D. Assessment of nuclear maturity. London: CRC Press; 1996.

    Google Scholar 

  93. Wong A, Chuan SS, Patton WC, Jacobson JD, Corselli J, Chan PJ. Addition of eosin to the aniline blue assay to enhance detection of immature sperm histones. Fertil Steril. 2008;90(5):1999–2002.

    Article  PubMed  Google Scholar 

  94. Foresta C, Zorzi M, Rossato M, Varotto A. Sperm nuclear instability and staining with aniline blue: abnormal persistance of histones in spermatozoa in infertile men. Int J Androl. 1992;15(4):330–7.

    Article  CAS  PubMed  Google Scholar 

  95. Kim H-S, Kang MJ, Kim SA, Oh SK, Kim H, Ku S-Y, et al. The utility of sperm DNA damage assay using toluidine blue and aniline blue staining in routine semen analysis. Clin Exp Reprod Med. 2013;40(1):23–8.

    Article  PubMed  PubMed Central  Google Scholar 

  96. Kazerooni T, Asadi N, Jadid L, Kazerooni M, Ghanadi A, Ghaffarpasand F, et al. Evaluation of sperm’s chromatin quality with acridine orange test, chromomycin A3 and aniline blue staining in couples with unexplained recurrent abortion. J Assist Reprod Genet. 2009;26(11–12):591–6.

    Article  PubMed  PubMed Central  Google Scholar 

  97. Kodama H, Yamaguchi R, Fukuda J, Kasai H, Tanaka T. Increased oxidative deoxyribonucleic acid damage in the spermatozoa of infertile male patients. Fertil Steril. 1997;68(3):519–24.

    Article  CAS  PubMed  Google Scholar 

  98. de Jager C, Aneck-Hahn NH, Bornman MS, Farias P, Leter G, Eleuteri P, et al. Sperm chromatin integrity in DDT-exposed young men living in a malaria area in the Limpopo Province, South Africa. Hum Reprod. 2009;24(10):2429–38.

    Article  CAS  PubMed  Google Scholar 

  99. Agarwal A, Sharma R, Ahmad G. Sperm chromatin assessment. In: Textbook of assisted reproductive techniques. 5th ed. Boca Raton: CRC Press; 2017. p. 65–87.

    Google Scholar 

  100. Marchesi DE, Biederman H, Ferrara S, Hershlag A, Feng HL. The effect of semen processing on sperm DNA integrity: comparison of two techniques using the novel toluidine blue assay. Eur J Obstet Gynecol Reprod Biol. 2010;151(2):176–80.

    Article  CAS  PubMed  Google Scholar 

  101. Erenpreiss J, Bars J, Lipatnikova V, Erenpreisa J, Zalkalns J. Comparative study of cytochemical tests for sperm chromatin integrity. J Androl. 2001;22(1):45–53.

    CAS  PubMed  Google Scholar 

  102. Erenpreiss J, Jepson K, Giwercman A, Tsarev I, Erenpreisa J, Spano M. Toluidine blue cytometry test for sperm DNA conformation: comparison with the flow cytometric sperm chromatin structure and TUNEL assays. Hum Reprod. 2004;19(10):2277–82.

    Article  CAS  PubMed  Google Scholar 

  103. Tsarev I, Bungum M, Giwercman A, Erenpreisa J, Ebessen T, Ernst E, et al. Evaluation of male fertility potential by toluidine blue test for sperm chromatin structure assessment. Hum Reprod. 2009;24(7):1569–74.

    Article  CAS  PubMed  Google Scholar 

  104. Talebi AR, Moein MR, Tabibnejad N, Ghasemzadeh J. Effect of varicocele on chromatin condensation and DNA integrity of ejaculated spermatozoa using cytochemical tests. Andrologia. 2008;40(4):245–51.

    Article  CAS  PubMed  Google Scholar 

  105. Shamsi MB, Imam SN, Dada R. Sperm DNA integrity assays: diagnostic and prognostic challenges and implications in management of infertility. J Assist Reprod Genet. 2011;28(11):1073–85.

    Article  PubMed  PubMed Central  Google Scholar 

  106. Hosseinifar H, Yazdanikhah S, Modarresi T, Totonchi M, Sadighi Gilani MA, Sabbaghian M. Correlation between sperm DNA fragmentation index and CMA3 positive spermatozoa in globozoospermic patients. Andrology. 2015;3(3):526–31.

    Article  CAS  PubMed  Google Scholar 

  107. Erenpreisa J, Erenpreiss J, Freivalds T, Slaidina M, Krampe R, Butikova J, et al. Toluidine blue test for sperm DNA integrity and elaboration of image cytometry algorithm. Cytometry A. 2003;52A(1):19–27.

    Article  CAS  Google Scholar 

  108. Manicardi GC, Bianchi P, Pantano S, Azzoni P, Bizzaro D, Bianchi U, et al. Presence of endogenous nicks in DNA of ejaculated human spermatozoa and its relationship to chromomycin A3 accessibility. Biol Reprod. 1995;52(4):864–7.

    Article  CAS  PubMed  Google Scholar 

  109. Zini A, Fischer MA, Sharir S, Shayegan B, Phang D, Jarvi K. Prevalence of abnormal sperm DNA denaturation in fertile and infertile men. Urology. 2002;60(6):1069–72.

    Article  PubMed  Google Scholar 

  110. Esterhuizen A, Franken D, Lourens J, Prinsloo E, Van Rooyen L. Sperm chromatin packaging as an indicator of in-vitro fertilization rates. Hum Reprod. 2000;15(3):657–61.

    Article  CAS  PubMed  Google Scholar 

  111. Sakkas D, Urner F, Bizzaro D, Manicardi G, Bianchi P, Shoukir Y, et al. Sperm nuclear DNA damage and altered chromatin structure: effect on fertilization and embryo development. Hum Reprod. 1998;13(suppl_4):11–9.

    Article  PubMed  Google Scholar 

  112. Franco J Jr, Mauri A, Petersen C, Massaro F, Silva L, Felipe V, et al. Large nuclear vacuoles are indicative of abnormal chromatin packaging in human spermatozoa. Int J Androl. 2012;35(1):46–51.

    Article  PubMed  Google Scholar 

  113. Manochantr S, Chiamchanya C, Sobhon P. Relationship between chromatin condensation, DNA integrity and quality of ejaculated spermatozoa from infertile men. Andrologia. 2012;44(3):187–99.

    Article  CAS  PubMed  Google Scholar 

  114. Hosseinifar H, Yazdanikhah S, Modarresi T, Totonchi M, Sadighi Gilani M, Sabbaghian M. Correlation between sperm DNA fragmentation index and CMA 3 positive spermatozoa in globozoospermic patients. Andrology. 2015;3(3):526–31.

    Article  CAS  PubMed  Google Scholar 

  115. Mohammed E-EM, Mosad E, Zahran AM, Hameed DA, Taha EA, Mohamed MA. Acridine orange and flow cytometry: which is better to measure the effect of varicocele on sperm DNA integrity? Adv Urol. 2015;2015:814150.

    Article  PubMed  PubMed Central  Google Scholar 

  116. Hoshi K, Katayose H, Yanagida K, Kimura Y, Sato A. The relationship between acridine orange fluorescence of sperm nuclei and the fertilizing ability of human sperm. Fertil Steril. 1996;66(4):634–9.

    Article  CAS  PubMed  Google Scholar 

  117. Gorczyca W, Gong J, Darzynkiewicz Z. Detection of DNA strand breaks in individual apoptotic cells by the in situ terminal deoxynucleotidyl transferase and nick translation assays. Cancer Res. 1993;53(8):1945–51.

    CAS  PubMed  Google Scholar 

  118. Skowronek F, Casanova G, Alciaturi J, Capurro A, Cantu L, Montes J, et al. DNA sperm damage correlates with nuclear ultrastructural sperm defects in teratozoospermic men. Andrologia. 2012;44(1):59–65.

    Article  CAS  PubMed  Google Scholar 

  119. Zini A, Blumenfeld A, Libman J, Willis J. Beneficial effect of microsurgical varicocelectomy on human sperm DNA integrity. Hum Reprod. 2005;20(4):1018–21.

    Article  CAS  PubMed  Google Scholar 

  120. Zini A, Bielecki R, Phang D, Zenzes MT. Correlations between two markers of sperm DNA integrity, DNA denaturation and DNA fragmentation, in fertile and infertile men. Fertil Steril. 2001;75(4):674–7.

    Article  CAS  PubMed  Google Scholar 

  121. Evenson DP, Jost LK, Marshall D, Zinaman MJ, Clegg E, Purvis K, et al. Utility of the sperm chromatin structure assay as a diagnostic and prognostic tool in the human fertility clini. Hum Reprod. 1999;14(4):1039–49.

    Article  CAS  PubMed  Google Scholar 

  122. Gopalkrishnan K, Hurkadli K, Padwal V, Balaiah D. Use of acridine orange to evaluate chromatin integrity of human spermatozoa in different groups of infertile me. Andrologia. 1999;31(5):277–82.

    Article  CAS  PubMed  Google Scholar 

  123. Virant-Klun I, Tomazevic T, Meden-Vrtovec H. Sperm single-stranded DNA, detected by acridine orange staining, reduces fertilization and quality of ICSI-derived embryos. J Assist Reprod Genet. 2002;19(7):319–28.

    Article  PubMed  PubMed Central  Google Scholar 

  124. Katayose H, Yanagida K, Hashimoto S, Yamada H, Sato A. Use of diamide–acridine orange fluorescence staining to detect aberrant protamination of human-ejaculated sperm nuclei. Fertil Steril. 2003;79:670–6.

    Article  PubMed  Google Scholar 

  125. Lazaros LA, Vartholomatos GA, Hatzi EG, Kaponis AI, Makrydimas GV, Kalantaridou SN, et al. Assessment of sperm chromatin condensation and ploidy status using flow cytometry correlates to fertilization, embryo quality and pregnancy following in vitro fertilization. J Assist Reprod Genet. 2011;28(10):885–91.

    Article  PubMed  PubMed Central  Google Scholar 

  126. Spanò M, Kolstad AH, Larsen SB, Cordelli E, Leter G, Giwereman A, et al. The applicability of the flow cytometric sperm chromatin structure assay in epidemiological studie. Hum Reprod. 1998;13(9):2495–505.

    Article  PubMed  Google Scholar 

  127. Nijs M, De Jonge C, Cox A, Janssen M, Bosmans E, Ombelet W. Correlation between male age, WHO sperm parameters, DNA fragmentation, chromatin packaging and outcome in assisted reproduction technology. Andrologia. 2011;43(3):174–9.

    Article  CAS  PubMed  Google Scholar 

  128. Evenson DP, Kasperson K, Wixon RL. Analysis of sperm DNA fragmentation using flow cytometry and other techniques. Soc Reprod Fertil Suppl. 2007;65:93–113.

    CAS  PubMed  Google Scholar 

  129. Evenson DP, Larson KL, Jost LK. Sperm chromatin structure assay: its clinical use for detecting sperm DNA fragmentation in male infertility and comparisons with other techniques. J Androl. 2002;23(1):25–43.

    Article  PubMed  Google Scholar 

  130. Castilla J, Zamora S, Gonzalvo M, Del Castillo JL, Roldan-Nofuentes J, Clavero A, et al. Sperm chromatin structure assay and classical semen parameters: systematic review. Reprod Biomed Online. 2010;20(1):114–24.

    Article  CAS  PubMed  Google Scholar 

  131. Giwercman A, Lindstedt L, Larsson M, Bungum M, Spano M, Levine RJ, et al. Sperm chromatin structure assay as an independent predictor of fertility in vivo: a case–control study. Int J Androl. 2010;33(1):e221–e7.

    Article  PubMed  Google Scholar 

  132. Bungum M, Spanò M, Humaidan P, Eleuteri P, Rescia M, Giwercman A. Sperm chromatin structure assay parameters measured after density gradient centrifugation are not predictive for the outcome of ART. Hum Reprod. 2008;23(1):4–10.

    Article  CAS  PubMed  Google Scholar 

  133. Miciński P, Pawlicki K, Wielgus E, Bochenek M, Tworkowska I. The sperm chromatin structure assay (SCSA) as prognostic factor in IVF/ICSI program. Reprod Biol. 2009;9(1):65–70.

    Article  PubMed  Google Scholar 

  134. Li Z, Wang L, Cai J, Huang H. Correlation of sperm DNA damage with IVF and ICSI outcomes: a systematic review and meta-analysis. J Assist Reprod Genet. 2006;23(9):367–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Lin M-H, Kuo-Kuang Lee R, Li S-H, Lu C-H, Sun F-J, Hwu Y-M. Sperm chromatin structure assay parameters are not related to fertilization rates, embryo quality, and pregnancy rates in in vitro fertilization and intracytoplasmic sperm injection, but might be related to spontaneous abortion rates. Fertil Steril. 2008;90(2):352–9.

    Article  PubMed  Google Scholar 

  136. Collins JA, Barnhart KT, Schlegel PN. Do sperm DNA integrity tests predict pregnancy with in vitro fertilization? Fertil Steril. 2008;89(4):823–31.

    Article  PubMed  Google Scholar 

  137. Lewis SEM, Agbaje I, Alvarez J. Sperm DNA tests as useful adjuncts to semen analysis. Syst Biol Reprod Med. 2008;54(3):111–25.

    Article  CAS  PubMed  Google Scholar 

  138. Henkel R, Hoogendijk CF, Bouic PJD, Kruger TF. TUNEL assay and SCSA determine different aspects of sperm DNA damage. Andrologia. 2010;42(5):305–13.

    Article  PubMed  Google Scholar 

  139. Shen H-M, Ong C-N. Detection of oxidative DNA damage in human sperm and its association with sperm function and male infertility. Free Radic Biol Med. 2000;28(4):529–36.

    Article  CAS  PubMed  Google Scholar 

  140. Aitken RJ, De Iuliis GN, Finnie JM, Hedges A, McLachlan RI. Analysis of the relationships between oxidative stress, DNA damage and sperm vitality in a patient population: development of diagnostic criteria. Hum Reprod. 2010;25(10):2415–26.

    Article  CAS  PubMed  Google Scholar 

  141. De Iuliis GN, Thomson LK, Mitchell LA, Finnie JM, Koppers AJ, Hedges A, et al. DNA damage in human spermatozoa is highly correlated with the efficiency of chromatin remodeling and the formation of 8-hydroxy-2′-deoxyguanosine, a marker of oxidative Stress1. Biol Reprod. 2009;81(3):517–24.

    Article  CAS  PubMed  Google Scholar 

  142. Ishikawa T, Fujioka H, Ishimura T, Takenaka A, Fujisawa M. Increased testicular 8-hydroxy-2′-deoxyguanosine in patients with varicocele. BJU Int. 2007;100(4):863–6.

    Article  CAS  PubMed  Google Scholar 

  143. Loft S, Kold-Jensen T, Hjollund NH, Giwercman A, Gyllemborg J, Ernst E, et al. Oxidative DNA damage in human sperm influences time to pregnancy. Hum Reprod. 2003;18(6):1265–72.

    Article  CAS  PubMed  Google Scholar 

  144. Agarwal A, Varghese AC, Sharma RK. Markers of oxidative stress and sperm chromatin integrity. In: Park-Sarge O-K, Curry TE, editors. Molecular endocrinology: methods and protocols. Totowa: Humana Press; 2009. p. 377–402.

    Chapter  Google Scholar 

  145. Singh NP, McCoy MT, Tice RR, Schneider EL. A simple technique for quantitation of low levels of DNA damage in individual cells. Exp Cell Res. 1988;175(1):184–91.

    Article  CAS  PubMed  Google Scholar 

  146. Singh NP, Danner DB, Tice RR, McCoy MT, Collins GD, Schneider EL. Abundant alkali-sensitive sites in DNA of human and mouse sperm. Exp Cell Res. 1989;184(2):461–70.

    Article  CAS  PubMed  Google Scholar 

  147. Cortés-Gutiérrez EI, Fernández JL, Dávila-Rodríguez MI, López-Fernández C, Gosálvez J. Two-tailed comet assay (2T-comet): simultaneous detection of DNA single and double strand breaks. In: Pellicciari C, Biggiogera M, editors. Histochemistry of single molecules: methods and protocols. New York: Springer; 2017. p. 285–93.

    Chapter  Google Scholar 

  148. Hellman B, Vaghef H, Boström B. The concepts of tail moment and tail inertia in the single cell gel electrophoresis assay. Mutat Res/DNA Repair. 1995;336(2):123–31.

    Article  CAS  Google Scholar 

  149. Benchaib M, Braun V, Lornage J, Hadj S, Salle B, Lejeune H, et al. Sperm DNA fragmentation decreases the pregnancy rate in an assisted reproductive techniqu. Hum Reprod. 2003;18(5):1023–8.

    Article  PubMed  Google Scholar 

  150. Enciso M, Sarasa J, Agarwal A, Fernández JL, Gosálvez J. A two-tailed comet assay for assessing DNA damage in spermatozoa. Reprod Biomed Online. 2009;18(5):609–16.

    Article  PubMed  Google Scholar 

  151. Duty SM, Singh NP, Ryan L, Chen Z, Lewis C, Huang T, et al. Andrology. Reliability of the comet assay in cryopreserved human. Hum Reprod. 2002;17(5):1274–80.

    Article  CAS  PubMed  Google Scholar 

  152. Morris ID, Ilott S, Dixon L, Brison DR. Andrology. The spectrum of DNA damage in human sperm assessed by single cell gel electrophoresis (comet assay) and its relationship to fertilization and embryo developmen. Hum Reprod. 2002;17(4):990–8.

    Article  CAS  PubMed  Google Scholar 

  153. Tomsu M, Sharma V, Miller D. Embryo quality and IVF treatment outcomes may correlate with different sperm comet assay parameter. Hum Reprod. 2002;17(7):1856–62.

    Article  CAS  PubMed  Google Scholar 

  154. Lewis SEM, Agbaje IM. Using the alkaline comet assay in prognostic tests for male infertility and assisted reproductive technology outcomes. Mutagenesis. 2008;23(3):163–70.

    Article  CAS  PubMed  Google Scholar 

  155. Shamsi M, Venkatesh S, Tanwar M, Singh G, Mukherjee S, Malhotra N, et al. Comet assay : a prognostic tool for DNA integrity assessment in infertile men opting for assisted reproduction. Indian J Med Res. 2010;131(5):675–81.

    CAS  PubMed  Google Scholar 

  156. Simon L, Lutton D, McManus J, Lewis SEM. Sperm DNA damage measured by the alkaline comet assay as an independent predictor of male infertility and in vitro fertilization success. Fertil Steril. 2011;95(2):652–7.

    Article  PubMed  Google Scholar 

  157. Lewis SEM, Simon L. Clinical implications of sperm DNA damage. Hum Fertil. 2010;13(4):201–7.

    Article  Google Scholar 

  158. Abu-Hassan D, Koester F, Shoepper B, Schultze-Mosgau A, Asimakopoulos B, Diedrich K, et al. Comet assay of cumulus cells and spermatozoa DNA status, and the relationship to oocyte fertilization and embryo quality following ICSI. Reprod Biomed Online. 2006;12(4):447–52.

    Article  CAS  PubMed  Google Scholar 

  159. Fernández JL, Muriel L, Rivero MT, Goyanes V, Vazquez R, Alvarez JG. The sperm chromatin dispersion test: a simple method for the determination of sperm DNA fragmentation. J Androl. 2003;24(1):59–66.

    PubMed  Google Scholar 

  160. Ankem MK, Mayer E, Ward WS, Cummings KB, Barone JG. Novel assay for determining DNA organization in human spermatozoa: implications for male factor infertility. Urology. 2002;59(4):575–8.

    Article  PubMed  Google Scholar 

  161. Muriel L, Meseguer M, Fernández JL, Alvarez J, Remohí J, Pellicer A, et al. Value of the sperm chromatin dispersion test in predicting pregnancy outcome in intrauterine insemination: a blind prospective study∗. Hum Reprod. 2006;21(3):738–44.

    Article  PubMed  Google Scholar 

  162. Muriel L, Garrido N, Fernández JL, Remohí J, Pellicer A, de los Santos MJ, et al. Value of the sperm deoxyribonucleic acid fragmentation level, as measured by the sperm chromatin dispersion test, in the outcome of in vitro fertilization and intracytoplasmic sperm injection. Fertil Steril. 2006;85(2):371–83.

    Article  CAS  PubMed  Google Scholar 

  163. Muriel L, Goyanes V, Segrelles E, Gosálvez J, Alvarez JG, Fernández JL. Increased aneuploidy rate in sperm with fragmented DNA as determined by the sperm chromatin dispersion (SCD) test and FISH analysis. J Androl. 2007;28(1):38–49.

    Article  CAS  PubMed  Google Scholar 

  164. Fernández JL, Muriel L, Goyanes V, Segrelles E, Gosálvez J, Enciso M, et al. Halosperm® is an easy, available, and cost-effective alternative for determining sperm DNA fragmentation. Fertil Steril. 2005;84(4):860.

    Article  PubMed  Google Scholar 

  165. Feijó CM, Esteves SC. Diagnostic accuracy of sperm chromatin dispersion test to evaluate sperm deoxyribonucleic acid damage in men with unexplained infertility. Fertil Steril. 2014;101(1):58–63.e3.

    Article  CAS  PubMed  Google Scholar 

  166. Zhang L-h, Qiu Y, Wang K-h, Wang Q, Tao G, L-g W. Measurement of sperm DNA fragmentation using bright-field microscopy: comparison between sperm chromatin dispersion test and terminal uridine nick-end labeling assay. Fertil Steril. 2010;94(3):1027–32.

    Article  CAS  PubMed  Google Scholar 

  167. Meseguer M, Santiso R, Garrido N, Gil-Salom M, Remohí J, Fernandez JL. Sperm DNA fragmentation levels in testicular sperm samples from azoospermic males as assessed by the sperm chromatin dispersion (SCD) test. Fertil Steril. 2009;92(5):1638–45.

    Article  PubMed  Google Scholar 

  168. Balasuriya A, Speyer B, Serhal P, Doshi A, Harper JC. Sperm chromatin dispersion test in the assessment of DNA fragmentation and aneuploidy in human spermatozoa. Reprod Biomed Online. 2011;22(5):428–36.

    Article  CAS  PubMed  Google Scholar 

  169. Santiso R, Tamayo M, Gosálvez J, Meseguer M, Garrido N, Fernández JL. Simultaneous determination in situ of DNA fragmentation and 8-oxoguanine in human sperm. Fertil Steril. 2010;93(1):314–8.

    Article  CAS  PubMed  Google Scholar 

  170. Fernández JL, Cajigal D, López-Fernández C, Gosálvez J. Assessing sperm DNA fragmentation with the sperm chromatin dispersion test. In: Didenko VV, editor. DNA damage detection in situ, ex vivo, and in vivo: methods and protocols. Totowa: Humana Press; 2011. p. 291–301.

    Chapter  Google Scholar 

  171. Velez de la Calle JF, Muller A, Walschaerts M, Clavere JL, Jimenez C, Wittemer C, et al. Sperm deoxyribonucleic acid fragmentation as assessed by the sperm chromatin dispersion test in assisted reproductive technology programs: results of a large prospective multicenter study. Fertil Steril. 2008;90(5):1792–9.

    Article  PubMed  Google Scholar 

  172. Sharma R, Ahmad G, Esteves SC, Agarwal A. Terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay using bench top flow cytometer for evaluation of sperm DNA fragmentation in fertility laboratories: protocol, reference values, and quality control. J Assist Reprod Genet. 2016;33(2):291–300.

    Article  PubMed  PubMed Central  Google Scholar 

  173. Gupta S, Sharma R, Agarwal A. Inter-and intra-laboratory standardization of TUNEL assay for assessment of sperm DNA fragmentation. Curr Protoc Toxicol. 2017;74(1):16.1.1-.1.22.

    Article  CAS  Google Scholar 

  174. Agarwal A, Gupta S, Sharma R. Measurement of DNA fragmentation in spermatozoa by TUNEL assay using bench top flow cytometer. In: Andrological evaluation of male infertility. New York: Springer; 2016. p. 181–203.

    Chapter  Google Scholar 

  175. Sharma R, Gupta S, Henkel R, Agarwal A. Critical evaluation of two models of flow cytometers for the assessment of sperm DNA fragmentation: an appeal for performance verification. Asian J Androl. 2019;21(5):438–44.

    Article  PubMed  PubMed Central  Google Scholar 

  176. Mitchell LA, De Iuliis GN, Aitken RJ. The TUNEL assay consistently underestimates DNA damage in human spermatozoa and is influenced by DNA compaction and cell vitality: development of an improved methodology. Int J Androl. 2011;34(1):2–13.

    Article  CAS  PubMed  Google Scholar 

  177. Carrell DT, Liu L, Peterson C, Jones K, Hatasaka H, Erickson L, et al. Sperm DNA fragmentation is increased in couples with unexplained recurrent pregnancy loss. Arch Androl. 2003;49(1):49–55.

    Article  CAS  PubMed  Google Scholar 

  178. Aitken RJ. The amoroso lecture the human spermatozoon–a cell in crisis? J Reprod Fertil. 1999;115(1):1–7.

    Article  CAS  PubMed  Google Scholar 

  179. Sun J-G, Jurisicova A, Casper RF. Detection of deoxyribonucleic acid fragmentation in human sperm: correlation with fertilization in vitro. Biol Reprod. 1997;56(3):602–7.

    Article  CAS  PubMed  Google Scholar 

  180. Sharma RK, Sabanegh E, Mahfouz R, Gupta S, Thiyagarajan A, Agarwal A. TUNEL as a test for sperm DNA damage in the evaluation of male infertility. Urology. 2010;76(6):1380–6.

    Article  PubMed  Google Scholar 

  181. Cui Z-L, Zheng D-Z, Liu Y-H, Chen L-Y, Lin D-H, Feng-Hua L. Diagnostic accuracies of the TUNEL, SCD, and comet based sperm DNA fragmentation assays for male infertility: a meta-analysis study. Clin Lab. 2015;61(5–6):525–35.

    CAS  PubMed  Google Scholar 

  182. Muratori M, Tamburrino L, Tocci V, Costantino A, Marchiani S, Giachini C, et al. Small variations in crucial steps of TUNEL assay coupled to flow cytometry greatly affect measures of sperm DNA fragmentation. J Androl. 2010;31(4):336–45.

    Article  CAS  PubMed  Google Scholar 

  183. Ribeiro S, Sharma R, Gupta S, Cakar Z, De Geyter C, Agarwal A. Inter- and intra-laboratory standardization of TUNEL assay for assessment of sperm DNA fragmentation. Andrology. 2017;5(3):477–85.

    Article  CAS  PubMed  Google Scholar 

  184. Esteves SC, Agarwal A, Cho C-L, Majzoub A. A strengths-weaknesses-opportunities-threats (SWOT) analysis on the clinical utility of sperm DNA fragmentation testing in specific male infertility scenarios. Transl Androl Urol. 2017;6(Suppl 4):S734–S60.

    Article  PubMed  PubMed Central  Google Scholar 

  185. Esteves SC, Majzoub A, Agarwal A. The importance of quality control and quality assurance in SDF testing. Transl Androl Urol. 2017;6(Suppl 4):S604–S6.

    Article  PubMed  PubMed Central  Google Scholar 

  186. Esteves SC, Sharma RK, Gosálvez J, Agarwal A. A translational medicine appraisal of specialized andrology testing in unexplained male infertility. Int Urol Nephrol. 2014;46(6):1037–52.

    Article  PubMed  Google Scholar 

  187. Rilcheva VS, Ayvazova NP, Ilieva LO, Ivanova SP, Konova EI. Sperm DNA integrity test and assisted reproductive technology (art) outcome. J Biomed Clin Res. 2016;9(1):21–9.

    Article  Google Scholar 

  188. Esteves SC, Agarwal A, Majzoub A. The complex nature of the sperm DNA damage process. Transl Androl Urol. 2017;6(Suppl 4):S557–S9.

    Article  PubMed  PubMed Central  Google Scholar 

  189. Agarwal A, Cho C-L, Esteves SC, Majzoub A. Implication of sperm processing during assisted reproduction on sperm DNA integrity. Transl Androl Urol. 2017;6(Suppl 4):S583–S5.

    Article  PubMed  PubMed Central  Google Scholar 

  190. Zini A, Nam RK, Mak V, Phang D, Jarvi K. Influence of initial semen quality on the integrity of human sperm DNA following semen processing. Fertil Steril. 2000;74(4):824–7.

    Article  CAS  PubMed  Google Scholar 

  191. Niu Z-H, Shi H-J, Zhang H-Q, Zhang A-J, Sun Y-J, Feng Y. Sperm chromatin structure assay results after swim-up are related only to embryo quality but not to fertilization and pregnancy rates following IVF. Asian J Androl. 2011;13(6):862.

    Article  PubMed  PubMed Central  Google Scholar 

  192. Zini A, Finelli A, Phang D, Jarvi K. Influence of semen processing technique on human sperm DNA integrity. Urology. 2000;56(6):1081–4.

    Article  CAS  PubMed  Google Scholar 

  193. Agarwal A, Cho C-L, Majzoub A, Esteves SC. The Society for Translational Medicine: clinical practice guidelines for sperm DNA fragmentation testing in male infertility. Transl Androl Urol. 2017;6(Suppl 4):S720–S33.

    Article  PubMed  PubMed Central  Google Scholar 

  194. Esteves SC, Majzoub A, Agarwal A. Further evidence supports the clinical utility of sperm DNA fragmentation testing in male infertility workup and assisted reproductive technology. Transl Androl Urol. 2017;6(Suppl 4):S428–S36.

    Article  PubMed  PubMed Central  Google Scholar 

  195. Werthman P, Wixon R, Kasperson K, Evenson DP. Significant decrease in sperm deoxyribonucleic acid fragmentation after varicocelectomy. Fertil Steril. 2008;90(5):1800–4.

    Article  PubMed  Google Scholar 

  196. Abdelbaki SA, Sabry JH, Al-Adl AM, Sabry HH. The impact of coexisting sperm DNA fragmentation and seminal oxidative stress on the outcome of varicocelectomy in infertile patients: a prospective controlled study. Arab J Urol. 2017;15(2):131–9.

    Article  PubMed  PubMed Central  Google Scholar 

  197. Telli O, Sarici H, Kabar M, Ozgur B, Resorlu B, Bozkurt S. Does varicocelectomy affect DNA fragmentation in infertile patients? Indian J Urol. 2015;31(2):116–9.

    Article  PubMed  PubMed Central  Google Scholar 

  198. Park Y-S, Lee S-H, Choi HW, Lee HS, Lee JS, Seo JT. Abnormal human sperm parameters contribute to sperm DNA fragmentation in men with varicocele. World J Mens Health. 2018;36(3):239–47.

    Article  PubMed  PubMed Central  Google Scholar 

  199. Agarwal A, Cho C-L, Majzoub A, Esteves SC. Frontiers in clinical andrology. Transl Androl Urol. 2017;6(Suppl 4):S343–S5.

    Article  PubMed  PubMed Central  Google Scholar 

  200. Vandekerckhove FWRC, De Croo I, Gerris J, Vanden Abbeel E, De Sutter P. Sperm chromatin dispersion test before sperm preparation is predictive of clinical pregnancy in cases of unexplained infertility treated with intrauterine insemination and induction with clomiphene citrate. Front Med. 2016;3:63.

    Article  Google Scholar 

  201. Das M, Al-Hathal N, San-Gabriel M, Phillips S, Kadoch I-J, Bissonnette F, et al. High prevalence of isolated sperm DNA damage in infertile men with advanced paternal age. J Assist Reprod Genet. 2013;30(6):843–8.

    Article  PubMed  PubMed Central  Google Scholar 

  202. Giwercman A, Richthoff J, Hjøllund H, Bonde JP, Jepson K, Frohm B, et al. Correlation between sperm motility and sperm chromatin structure assay parameters. Fertil Steril. 2003;80(6):1404–12.

    Article  PubMed  Google Scholar 

  203. Zini A, Boman JM, Belzile E, Ciampi A. Sperm DNA damage is associated with an increased risk of pregnancy loss after IVF and ICSI: systematic review and meta-analysis. Hum Reprod. 2008;23(12):2663–8.

    Article  CAS  PubMed  Google Scholar 

  204. Cissen M, van Wely M, Scholten I, Mansell S, de Bruin JP, Mol BW, et al. Measuring sperm DNA fragmentation and clinical outcomes of medically assisted reproduction: a systematic review and meta-analysis. PLoS One. 2016;11(11):e0165125.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  205. Simon L, Zini A, Dyachenko A, Ciampi A, Carrell D. A systematic review and meta-analysis to determine the effect of sperm DNA damage on <i>in vitro</i> fertilization and intracytoplasmic sperm injection outcome. Asian J Androl. 2017;19(1):80–90.

    PubMed  Google Scholar 

  206. Agarwal A, Cho C-L, Majzoub A, Esteves SC. The role of female factors in the management of sperm DNA fragmentation. Transl Androl Urol. 2017;6(Suppl 4):S488–S90.

    Article  PubMed  PubMed Central  Google Scholar 

  207. Jin J, Pan C, Fei Q, Ni W, Yang X, Zhang L, et al. Effect of sperm DNA fragmentation on the clinical outcomes for in vitro fertilization and intracytoplasmic sperm injection in women with different ovarian reserves. Fertil Steril. 2015;103(4):910–6.

    Article  CAS  PubMed  Google Scholar 

  208. Majzoub A, Agarwal A. Systematic review of antioxidant types and doses in male infertility: benefits on semen parameters, advanced sperm function, assisted reproduction and live-birth rate. Arab J Urol. 2018;16(1):113–24.

    Article  PubMed  PubMed Central  Google Scholar 

  209. Stenqvist A, Oleszczuk K, Leijonhufvud I, Giwercman A. Impact of antioxidant treatment on DNA fragmentation index: a double-blind placebo-controlled randomized trial. Andrology. 2018;6(6):811–6.

    Article  CAS  PubMed  Google Scholar 

  210. Greco E, Romano S, Iacobelli M, Ferrero S, Baroni E, Minasi MG, et al. ICSI in cases of sperm DNA damage: beneficial effect of oral antioxidant treatment. Hum Reprod. 2005;20(9):2590–4.

    Article  CAS  PubMed  Google Scholar 

  211. Majzoub A, Agarwal A, Esteves SC. Antioxidants for elevated sperm DNA fragmentation: a mini review. Transl Androl Urol. 2017;6(Suppl 4):S649–S53.

    Article  PubMed  PubMed Central  Google Scholar 

  212. Sharma R, Agarwal A. Laboratory evaluation of sperm chromatin: TUNEL assay. In: Sperm chromatin. New York: Springer; 2011. p. 201–15.

    Chapter  Google Scholar 

  213. Sharma R, Masaki J, Agarwal A. Sperm DNA fragmentation analysis using the TUNEL assay. In: Carrell DT, Aston KI, editors. Spermatogenesis: methods and protocols. Totowa: Humana Press; 2013. p. 121–36.

    Chapter  Google Scholar 

  214. Ribeiro SC, Muratori M, De Geyter M, De Geyter C. TUNEL labeling with BrdUTP/anti-BrdUTP greatly underestimates the level of sperm DNA fragmentation in semen evaluation. PLoS One. 2017;12(8):e0181802.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  215. Muratori M, Tamburrino L, Marchiani S, Cambi M, Olivito B, Azzari C, et al. Investigation on the origin of sperm DNA fragmentation: role of apoptosis, immaturity and oxidative Stres. Mol Med. 2015;21(1):109–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  216. Lewis SEM, John Aitken R, Conner SJ, Iuliis GD, Evenson DP, Henkel R, et al. The impact of sperm DNA damage in assisted conception and beyond: recent advances in diagnosis and treatment. Reprod Biomed Online. 2013;27(4):325–37.

    Article  CAS  PubMed  Google Scholar 

  217. Cho C-L, Agarwal A, Majzoub A, Esteves SC. The debate on sperm DNA fragmentation test goes on. Transl Androl Urol. 2017;6(Suppl 4):S702–S3.

    Article  PubMed  PubMed Central  Google Scholar 

  218. Practice Committee of the American Society for Reproductive Medicine. Diagnostic evaluation of the infertile male: a committee opinion. Fertil Steril. 2015;103(3):e18–25.

    Article  Google Scholar 

  219. Majzoub A, Agarwal A, Cho C-L, Esteves SC. Sperm DNA fragmentation testing: a cross sectional survey on current practices of fertility specialists. Transl Androl Urol. 2017;6(Suppl 4):S710–S9.

    Article  PubMed  PubMed Central  Google Scholar 

  220. Cho C-L, Agarwal A, Majzoub A, Esteves SC. Future direction in sperm DNA fragmentation testing. Transl Androl Urol. 2017;6(Suppl 4):S525–S6.

    Article  PubMed  PubMed Central  Google Scholar 

  221. Evenson DP. The Sperm Chromatin Structure Assay (SCSA®) and other sperm DNA fragmentation tests for evaluation of sperm nuclear DNA integrity as related to fertility. Anim Reprod Sci. 2016;169:56–75.

    Article  CAS  PubMed  Google Scholar 

  222. Fernández JL, Muriel L, Goyanes V, et al. Simple determination of human sperm DNA fragmentation with an improved sperm chromatin dispersion test. Fertil Steril. 2005;84(4):833–42.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ashok Agarwal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sharma, R., Martinez, M.P., Agarwal, A. (2020). Sperm Chromatin Integrity Tests and Indications. In: Parekattil, S., Esteves, S., Agarwal, A. (eds) Male Infertility. Springer, Cham. https://doi.org/10.1007/978-3-030-32300-4_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-32300-4_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-32299-1

  • Online ISBN: 978-3-030-32300-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics