Skip to main content

Advertisement

Log in

A translational medicine appraisal of specialized andrology testing in unexplained male infertility

  • Urology – Review
  • Published:
International Urology and Nephrology Aims and scope Submit manuscript

Abstract

The diagnostic and prognostic validity of sperm function biomarkers is particularly relevant for males with unexplained infertility in which routine semen analysis fails to detect subcellular sperm dysfunctions. In this general review, we examine the role and significance of specialized andrology laboratory tests from past to present and provide a glance toward the future. We concluded that the assessment of sperm DNA damage and oxidative stress provide a relatively independent measure of fertility that yields diagnostic and prognostic information complementary to, but distinct and more significant than, standard sperm parameters. Since none of the available methods for such testing have been fully translated, further research is necessary to evaluate their cost-effectiveness when applied in large scale to daily medical practice. Application of translational medicine concepts would also be useful to accelerate the clinical application of recent discoveries in the fields of genomics, proteomics and metabolomics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Thonneau P, Marchand S, Tallec A, Ferial ML, Ducot B, Lansac J et al (1991) Incidence and main causes of infertility in a resident population (1,850,000) of three French regions (1988–1989). Hum Reprod 6:811–816

    CAS  PubMed  Google Scholar 

  2. Hamada A, Esteves SC, Nizza M, Agarwal A (2012) Unexplained male infertility: diagnosis and management. Int Braz J Urol 38:576–594

    PubMed  Google Scholar 

  3. Practice Committee of American Society for Reproductive Medicine (2012) Diagnostic evaluation of the infertile female: a committee opinion. Fertil Steril 98:302–307

    Google Scholar 

  4. Moreau C, Bouyer J, Ducot B, Spira A, Slama R (2010) When do involuntarily infertile couples choose to seek medical help? Fertil Steril 93:737–744

    PubMed  Google Scholar 

  5. Boivin J, Bunting L, Collins JA, Nygren KG (2007) International estimates of infertility prevalence and treatment-seeking: potential need and demand for infertility medical care. Hum Reprod 22:1506–1512

    PubMed  Google Scholar 

  6. Hamada A, Esteves SC, Agarwak A (2012) Unexplained male infertility: looking beyond routine semen analysis. Eur Urol Rev 7:90–96

    Google Scholar 

  7. Samplaski MK, Agarwal A, Sharma R, Sabanegh E (2010) New generation of diagnostic tests for infertility: review of specialized semen tests. Int J Urol 17:839–847

    PubMed  Google Scholar 

  8. Kovac JR, Pastuszak AW, Lamb DJ (2013) The use of genomics, proteomics, and metabolomics in identifying biomarkers of male infertility. Fertil Steril 99:998–1007

    CAS  PubMed Central  PubMed  Google Scholar 

  9. Sullivan EA, Zegers-Hochschild F, Mansour R, Ishihara O, de Mouzon J, Nygren KG, Adamson GD (2013) International Committee for Monitoring Assisted ReproductiveTechnologies (ICMART) world report: assisted reproductive technology 2004. Hum Reprod 28:1375–1390

    CAS  PubMed  Google Scholar 

  10. Esteves SC, Miyaoka R, Agarwal A (2011) An update on the clinical assessment of the infertile male [corrected]. Clinics (Sao Paulo) 66:691–700. Erratum in: Clinics (Sao Paulo) (2012) 67:203

  11. Esteves SC, Hamada A, Kondray V, Pitchika A, Agarwal A (2012) What every gynecologist should know about male infertility: an update. Arch Gynecol Obstet 286:217–229

    PubMed  Google Scholar 

  12. Guzick DS, Overstreet JW, Factor-Litvak P, Brazil CK, Nakajima ST, Coutifaris C et al (2001) National Cooperative Reproductive Medicine Network. Sperm morphology, motility, and concentration in fertile and infertile men. N Engl J Med 345:1388–1393

    CAS  PubMed  Google Scholar 

  13. Esteves SC, Agarwal A (2013) Ensuring that reproductive laboratories provide high-quality services. In: Bento FC, Esteves SC, Agarwal A (eds) Quality management in ART Clinics: a practical guide, 1st edn. Springer, New York, pp 129–146

    Google Scholar 

  14. Jequier AM (2005) Is quality assurance in semen analysis still really necessary? A clinician’s viewpoint. Hum Reprod 20:2039–2042

    PubMed  Google Scholar 

  15. Moghissi KS, Wallach EE (1983) Unexplained infertility. Fertil Steril 39:5–21

    CAS  PubMed  Google Scholar 

  16. van der Steeg JW, Steures P, Eijkemans MJ, Habbema FJD, Hompes PG, Kremer JA et al (2011) Role of semen analysis in subfertile couples. Fertil Steril 95:1013–1019

    PubMed  Google Scholar 

  17. Esteves SC, Zini A, Aziz N, Alvarez JG, Sabanegh ES Jr, Agarwal A (2012) Critical appraisal of World Health Organization’s new reference values for human semen characteristics and effect on diagnosis and treatment of subfertile men. Urology 79:16–22

    PubMed  Google Scholar 

  18. Cooper TG, Noonan E, von Eckardstein S, Auger J, Baker HW, Behre HM et al (2010) World Health Organization reference values for human semen characteristics. Hum Reprod Update 16:231–245

    PubMed  Google Scholar 

  19. World Health Organization (1999) WHO laboratory manual for the examination of human semen and sperm–cervical mucus interaction, 4th edn. Cambridge University Press, Cambridge

    Google Scholar 

  20. Kruger TF, Acosta AA, Simmons KF, Swanson RJ, Matta JF, Oehninger S et al (1988) Predictive value of abnormal sperm morphology in in vitro fertilization. Fertil Steril 49:112–117

    CAS  PubMed  Google Scholar 

  21. Coetzee K, Kruge TF, Lombard CJ (1988) Predictive value of normal sperm morphology: a structured literature review. Hum Reprod Update 4:73–82

    Google Scholar 

  22. Van Waart J, Kruger TF, Lombard CJ, Ombelet W (2001) Predictive value of normal sperm morphology in intrauterine insemination (IUI): a structured literature review. Hum Reprod Update 7:495–500

    PubMed  Google Scholar 

  23. Esteves SC, Schneider DT, Verza S Jr (2007) Influence of antisperm antibodies in the semen on intracytoplasmic sperm injection outcome. Int Braz J Urol 33:795–802

    PubMed  Google Scholar 

  24. Kopa Z, Berenyi M (2010) Inflammatory parameters of the ejaculate. In: Björndahl GAL, Tournaye H, Weidner W (eds) Clinical andrology EAU/ESAU course guidelines, 1st edn. Informa Healthcare, London, pp 301–308

    Google Scholar 

  25. Ayvaliotis B, Rosenfeld D, Cooper G (1985) Conception rates in couples where autoimmunity to sperm is detected. Fertil Steril 43:739–742

    CAS  PubMed  Google Scholar 

  26. Leushuis E, van der Steeg JW, Steures P, Repping S, Schols W, van der Veen F et al (2009) Immunoglobulin G antisperm antibodies and prediction of spontaneous pregnancy. Fertil Steril 92:1659–1665

    PubMed  Google Scholar 

  27. Zini A, Fahmy N, Belzile E, Ciampi A, Al-Hathal N, Kotb A (2012) Antisperm antibodies are not associated with pregnancy rates after IVF and ICSI: systematic review and meta-analysis. Hum Reprod 26:1288–1295

    Google Scholar 

  28. Turek PJ (1997) Immunopathology and infertility. In: Lipshultz LI, Howards SS (eds) Infertility in the male, 1st edn. Mosby-Year Book Inc, St. Louis, pp 305–325

    Google Scholar 

  29. Burkman LJ (1991) Discrimination between nonhyperactivated and classical hyperactivated motility patterns in human spermatozoa using computerized analysis. Fertil Steril 55:363–371

    CAS  PubMed  Google Scholar 

  30. Mackenna A, Barratt CL, Kessopoulou E, Cooke I (1993) The contribution of a hidden male factor to unexplained infertility. Fertil Steril 59:405–411

    CAS  PubMed  Google Scholar 

  31. Garrett C, Liu DY, Clarke GN, Rushford DD, Baker HW (2003) Automated semen analysis: ‘zona pellucida preferred’ sperm morphometry and straight-line velocity are related to pregnancy rate in subfertile couples. Hum Reprod 18:1643–1649

    CAS  PubMed  Google Scholar 

  32. Pacey AA, Ladbrook MB, Barratt CL, Cooke ID (1997) The potential shortcomings of measuring hyperactivated motility by computer-aided sperm analysis when sperm motion is multiphasic. Hum Reprod Update 3:185–193

    CAS  PubMed  Google Scholar 

  33. Esteves SC, Verza S Jr (2011) Relationship of in vitro acrosome reaction to sperm function: an update. Open Reprod Sci J 3:72–84

    CAS  Google Scholar 

  34. Esteves SC, Sharma RK, Thomas AJ Jr, Agarwal A (2007) Evaluation of acrosomal status and sperm viability in fresh and cryopreserved specimens by the use of fluorescent peanut agglutinin lectin in conjunction with hypo-osmotic swelling test. Int Braz J Urol 33:364–374

    PubMed  Google Scholar 

  35. Liu DY, Baker HW (1994) Disordered acrosome reaction of spermatozoa bound to the zona pellucida: a newly discovered sperm defect causing infertility with reduced sperm–zona pellucida penetration and reduced fertilization in vitro. Hum Reprod 9:1694–1700

    CAS  PubMed  Google Scholar 

  36. Liu DY, Bourne H, Baker HW (1997) High fertilization and pregnancy rates after intracytoplasmic sperm injection in patients with disordered zona pellucida induced acrosome reaction. Fertil Steril 67:955–958

    CAS  PubMed  Google Scholar 

  37. Cedenho AP, Spaine DM, Barradas V, Srougi M, Oehninger S (2002) Adolescents with varicocele have an impaired sperm–zona pellucida binding capacity. Fertil Steril 78:1339–1340

    PubMed  Google Scholar 

  38. Oehninger S, Franken D, Alexander N, Hodgen GD (1992) Hemizona assay and its impact on the identification and treatment of human sperm dysfunctions. Andrologia 24:307–321

    CAS  PubMed  Google Scholar 

  39. Liu DY, Lopata A, ton Johns WI, Baker HW (1988) A human sperm–zona pellucida binding test using oocytes that failed to fertilize in vitro. Fertil Steril 50:782–788

    CAS  PubMed  Google Scholar 

  40. Johnson A, Bassham B, Lipshultz LI, Lamb DJ (1995) A quality control system for the optimized sperm penetration assay. Fertil Steril 64:832–837

    CAS  PubMed  Google Scholar 

  41. Liu DY, Garrett C, Baker HW (2004) Clinical application of sperm–oocyte interaction tests in in vitro fertilization–embryo transfer and intracytoplasmic sperm injection programs. Fertil Steril 82:1251–1263

    PubMed  Google Scholar 

  42. Aitken RJ, Irvine DS, Wu FC (1991) Prospective analysis of sperm–oocyte fusion and reactive oxygen species generation as criteria for the diagnosis of infertility. Am J Obstet Gynecol 164:542–551

    CAS  PubMed  Google Scholar 

  43. Freeman MR, Archibong AE, Mrotek JJ, Whitworth CM, Weitzman GA, Hill GA (2001) Male partner screening before in vitro fertilization: preselecting patients who require intracytoplasmic sperm injection with the sperm penetration assay. Fertil Steril 76:1113–1118

    CAS  PubMed  Google Scholar 

  44. Sakkas D, Urner F, Bizzaro D, Manicardi G, Bianchi PG, Shoukir Y et al (1998) Sperm nuclear DNA damage and altered chromatin structure: effect on fertilization and embryo development. Hum Reprod 13(Suppl 4):11–19

    PubMed  Google Scholar 

  45. Aitken RJ, Baker MA, Sawyer D (2003) Oxidative stress in the male germ line and its role in the aetiology of male infertility and genetic disease. Reprod Biomed Online 7:65–70

    CAS  PubMed  Google Scholar 

  46. Virro MR, Larson-Cook KL, Evenson DP (2004) Sperm chromatin structure assay (SCSA) parameters are related to fertilization, blastocyst development, and ongoing pregnancy in in vitro fertilization and intracytoplasmic sperm injection cycles. Fertil Steril 81:1289–1295

    PubMed  Google Scholar 

  47. Sakkas D, Alvarez JG (2010) Sperm DNA fragmentation: mechanisms of origin, impact on reproductive outcome, and analysis. Fertil Steril 93:1027–1036

    CAS  PubMed  Google Scholar 

  48. Bungum M, Bungum L, Giwercman A (2011) Sperm chromatin structure assay (SCSA): a tool in diagnosis and treatment of infertility. Asian J Androl 13:69–75

    CAS  PubMed Central  PubMed  Google Scholar 

  49. Agarwal A, Nallella KP, Allamaneni SS, Said TM (2004) Role of antioxidants in treatment of male infertility: an overview of the literature. Reprod Biomed Online 8:616–627

    CAS  PubMed  Google Scholar 

  50. Esteves SC, Agarwal A (2011) Novel concepts in male infertility. Int Braz J Urol 37:5–15

    PubMed  Google Scholar 

  51. Shamsi MB, Imam SN, Dada R (2011) Sperm DNA integrity assays: diagnostic and prognostic challenges and implications in management of infertility. J Assist Reprod Genet 28:1073–1085

    PubMed Central  PubMed  Google Scholar 

  52. Aitken RJ, de Iullis GN, McLachlan RI (2009) Biological and clinical significance of DNA damage in the male germ line. Int J Androl 32:46–56

    CAS  PubMed  Google Scholar 

  53. Kumar S (2010) Occupational, environmental and lifestyle factors associated with spontaneous abortion. Reprod Sci 18:915–930

    Google Scholar 

  54. Spanò M, Bonde JP, Hjøllund HI, Kolstad HA, Cordelli E, Leter G (2000) Sperm chromatin damage impairs human fertility. The Danish First Pregnancy Planner Study Team. Fertil Steril 73:43–50

    PubMed  Google Scholar 

  55. Venkatesh S, Singh A, Shamsi MB, Thilagavathi J, Kumar R, Mitra DK et al (2011) Clinical significance of sperm DNA damage threshold value in the assessment of male infertility. Reprod Sci 18:1005–1013

    CAS  PubMed  Google Scholar 

  56. Larson-Cook KL, Brannian JD, Hansen KA, Kasperson KM, Aamold ET, Evenson DP (2003) Relationship between the outcomes of assisted reproductive techniques and sperm DNA fragmentation as measured by the sperm chromatin structure assay. Fertil Steril 80:895–902

    PubMed  Google Scholar 

  57. Host E, Lindenberg S, Ernst E, Christensen F (1999) DNA strand breaks in human spermatozoa: a possible factor, to be considered in couples suffering from unexplained infertility. Acta Obstet Gynecol Scand 78:622–625

    CAS  PubMed  Google Scholar 

  58. Saleh RA, Agarwal A, Nelson DE, Nada EA, El-Tonsy MH, Alvarez JG et al (2002) Increased sperm nuclear DNA damage in normozoospermic infertile men: a prospective study. Fertil Steril 78:313–318

    PubMed  Google Scholar 

  59. Saleh RA, Agarwal A, Nada ES, El-Tonsy MH, Sharma RK, Meyer A (2003) Negative effects of increased sperm DNA damage in relation to seminal oxidative stress in men with idiopathic and male factor infertility. Fertil Steril 79:1597–1605

    PubMed  Google Scholar 

  60. Check JH, Graziano V, Cohen R, Krotec J, Check ML (2005) Effect of an abnormal sperm chromatin structural assay (SCSA) on pregnancy outcome following (IVF) with ICSI in previous IVF failures. Arch Androl 51:121–124

    CAS  PubMed  Google Scholar 

  61. Nuñez-Calonge R, Caballero P, López-Fernández C, Guijarro JA, Fernández JL, Johnston S, Gosálvez J (2012) An improved experimental model for understanding the impact of sperm DNA fragmentation on human pregnancy following ICSI. Reprod Sci 19:1163–1168

    PubMed  Google Scholar 

  62. Robinson L, Gallos ID, Conner SJ, Rajkhowa M, Miller D, Lewis S et al (2012) The effect of sperm DNA fragmentation on miscarriage rates: a systematic review and meta-analysis. Hum Reprod 27:2908–2917

    CAS  PubMed  Google Scholar 

  63. Aitken RJ, Koopman P, Lewis SE (2004) Seeds of concern. Nature 432:48–52

    CAS  PubMed  Google Scholar 

  64. Zini A, Meriano J, Kader K, Jarvi K, Laskin CA, Cadesky K (2005) Potential adverse effect of sperm DNA damage on embryo quality after ICSI. Hum Reprod 20:3476–3480

    CAS  PubMed  Google Scholar 

  65. Gosálvez J, López-Fernández C, Fernández JL (2011) Sperm chromatin dispersion (SCD) test: technical aspects and clinical applications. In: Zini A, Agarwal A (eds) Sperm DNA damage: biological and clinical applications in male infertility and assisted reproduction, 1st edn. Springer, New York, pp 151–170

    Google Scholar 

  66. Agarwal A, Hamada A, Esteves SC (2012) Insight into oxidative stress in varicocele-associated male infertility: part 1. Nat Rev Urol 9:678–690

    PubMed  Google Scholar 

  67. Aitken RJ, Buckingham D, West K, Wu FC, Zikopoulos K, Richardson DW (1992) Differential contribution of leucocytes and spermatozoa to the generation of reactive oxygen species in the ejaculates of oligozoospermic patients and fertile donors. J Reprod Fertil 94:451–462

    CAS  PubMed  Google Scholar 

  68. Dalle-Donne I, Rossi R, Giustarini D, Milzani A, Colombo R (2003) Protein carbonyl groups as biomarkers of oxidative stress. Clin Chim Acta 329:23–38

    CAS  PubMed  Google Scholar 

  69. Aitken RJ, Krausz C (2001) Oxidative stress, DNA damage and the Y chromosome. Reproduction 122:497–506

    CAS  PubMed  Google Scholar 

  70. Lewis SE, Boyle PM, McKinney KA, Young IS, Thompson W (1995) Total antioxidant capacity of seminal plasma is different in fertile and infertile men. Fertil Steril 64:868–870

    CAS  PubMed  Google Scholar 

  71. Hamada A, Esteves SC, Agarwal A (2013) Insight into oxidative stress in varicocele-associated male infertility: part 2. Nat Rev Urol 10:26–37

    CAS  PubMed  Google Scholar 

  72. Colagar AH, Pouramir M, Marzony ET, Jorsaraei SGA (2009) Relationship between seminal malondialdehyde levels and sperm quality in fertile and infertile men. Braz Arch Biol Technol 52:1387–1392

    CAS  Google Scholar 

  73. Desai N, Sharma RK, Makker K, Sabanegh E, Agarwal A (2009) Physiologic and pathologic levels of reactive oxygen species in neat semen of infertile men. Fertil Steril 92:1626–1631

    PubMed  Google Scholar 

  74. Mahfouz R, Sharma R, Sharma D, Sabanegh E, Agarwal A (2009) Diagnostic value of the total antioxidant capacity (TAC) in human seminal plasma. Fertil Steril 91:805–811

    PubMed  Google Scholar 

  75. Hayes JD, Flanagan JU, Jowsey IR (2005) Glutathione transferases. Ann Rev Pharmacol Toxicol 45:51–88

    CAS  Google Scholar 

  76. Gudmundsdottir K, Tryggvadottir L, Eyfjord JE (2001) GSTM1, GSTT1, and GSTP1 genotypes in relation to breast cancer risk and frequency of mutations in the p53 Gene. Cancer Epidemiol Biomarkers Prev 10:1169–1173

    CAS  PubMed  Google Scholar 

  77. Karageorgi S, Prescott J, Wong JYY, Lee I-M, Buring JE, De Vivo I (2011) GSTM1 and GSTT1 copy number variation in population-based studies of endometrial cancer risk. Cancer Epidemiol Biomarkers Prev 20:1447–1452

    CAS  PubMed Central  PubMed  Google Scholar 

  78. Wu C, Yang M, Lin M, Li L, Wen X (2012) GSTM1 null genotype contributes to increased risk of male infertility: a meta-analysis. J Assist Reprod Genet 29:837–845

    Google Scholar 

  79. Aydemir B, Onaran I, Kiziler AR, Alici B, Akyolcu MC (2007) Increased oxidative damage of sperm and seminal plasma in men with idiopathic infertility is higher in patients with glutathione S-transferase Mu-1 null genotype. Asian J Androl 9:108–115

    CAS  PubMed  Google Scholar 

  80. Kohno T, Shinmura K, Tosaka M, Tani M, Kim SR, Sugimura H et al (1998) Genetic polymorphisms and alternative splicing of the hOGG1 gene involved in the repair of 8-hydroxyguanine in damaged DNA. Oncogene 16:3219–3225

    CAS  PubMed  Google Scholar 

  81. Bruner SD, Norman DPG, Fromme JC, Verdine GL (2000) Structural and mechanistic studies on repair of 8-oxoguanine in mammalian cells. Cold Spring Harb Symp Quant Biol 65:103–112

    CAS  PubMed  Google Scholar 

  82. Ji G, Yan L, Liu W, Qu J, Gu A (2013) OGG1 Ser326Cys polymorphism interacts with cigarette smoking to increase oxidative DNA damage in human sperm and the risk of male infertility. Toxicol Lett 218:144–149

    CAS  PubMed  Google Scholar 

  83. Amaral A, Castillo J, Ramalho-Santos J, Oliva R (2014) The combined human sperm proteome: cellular pathways and implications for basic and clinical science. Hum Reprod Update 20:40–62

    CAS  PubMed  Google Scholar 

  84. Pilch B, Mann M (2006) Large-scale and high-confidence proteomic analysis of human seminal plasma. Genome Biol 7:R40

    PubMed Central  PubMed  Google Scholar 

  85. Redgrove KA, Nixon B, Baker MA, Hetherington L, Baker G, Liu DY et al (2012) The molecular chaperone HSPA2 plays a key role in regulating the expression of sperm surface receptors that mediate sperm–egg recognition. PLoS One 7:e50851

  86. Fujihara Y, Satouh Y, Inoue N, Isotani A, Ikawa M, Okabe M (2012) SPACA1-deficient male mice are infertile with abnormally shaped sperm heads reminiscent of globozoospermia. Development 139:3583–3589

    CAS  PubMed  Google Scholar 

  87. Sharma R, Agarwal A, Mohanty G, Hamada AJ, Gopalan B, Willard B et al (2013) Proteomic analysis of human spermatozoa proteins with oxidative stress. Reprod Biol Endocrinol 11:48

    CAS  PubMed Central  PubMed  Google Scholar 

  88. Sharma R, Agarwal A, Mohanty G, Du Plessis SS, Gopalan B, Willard B et al (2013) Proteomic analysis of seminal fluid from men exhibiting oxidative stress. Reprod Biol Endocrinol 11:85

    PubMed Central  PubMed  Google Scholar 

  89. Nicholson JK, Lindon JC (2008) Systems biology: metabonomics. Nature 455:1054–1056

    CAS  PubMed  Google Scholar 

  90. Deepinder F, Chowdary HT, Agarwal A (2007) Role of metabolomic analysis of biomarkers in the management of male infertility. Expert Rev Mol Diagn 7:351–358

    CAS  PubMed  Google Scholar 

  91. Pauling L, Robinson AB, Teranishi R, Cary P (1971) Quantitative analysis of urine vapor and breath by gas–liquid partition chromatography. Proc Natl Acad Sci 68:2374–2376

    CAS  PubMed Central  PubMed  Google Scholar 

  92. Hollywood K, Brison DR, Goodacre R (2006) Metabolomics: current technologies and futures trends. Proteomics 6:4716–4723

    CAS  PubMed  Google Scholar 

  93. Tricco AC, Cogo E, Ashoor H, Perrier L, McKibbon KA, Grimshaw JM et al (2013) Sustainability of knowledge translation interventions in healthcare decision-making: protocol for a scoping review. BMJ Open 3:e002970

    PubMed Central  PubMed  Google Scholar 

  94. Marincola FM, Sheikh JI (2012) A road map to Translational Medicine in Qatar and a model for the world. J Transl Med 10:177

    PubMed Central  PubMed  Google Scholar 

  95. Ruttenberg A, Clark T, Bug W, Samwald M, Bodenreider O, Chen H et al (2007) Advancing translational research with the Semantic Web. BMC Bioinform 8(Suppl 3):S2

    Google Scholar 

  96. Littman BH, Di Mario L, Plebani M, Marincola FM (2007) What’s next in translational medicine? Clin Sci (Lond) 112:217–227

    Google Scholar 

  97. Ashwood-Smith MJ, Edwards RG (1996) DNA repair by oocytes. Mol Hum Reprod 2:46–51

    CAS  PubMed  Google Scholar 

  98. Borini A, Tarozzi N, Bizzaro D, Bonu MA, Fava L, Flamigni C et al (2006) Sperm DNA fragmentation: paternal effect on early post-implantation embryo development in ART. Hum Reprod 21:2876–2881

    CAS  PubMed  Google Scholar 

  99. Evenson DP, Jost LK, Marshall D, Zinaman MJ, Clegg E, Purvis K et al (1999) Utility of the sperm chromatin assay as a diagnostic and prognostic tool in the human fertility clinic. Hum Reprod 14:1039–1049

    CAS  PubMed  Google Scholar 

  100. Feijo CM, Esteves SC (2014) Diagnostic accuracy of sperm chromatin dispersion (SCD) test to evaluate sperm DNA damage in men with unexplained infertility. Fertil Steril 101:58–63

    CAS  PubMed  Google Scholar 

  101. Sharma RK, Sabanegh E, Mahfouz R, Gupta S, Thiyagarajan A, Agarwal A (2010) TUNEL as a test for sperm DNA damage in the evaluation of male infertility. Urology 76:1380–1386

    PubMed  Google Scholar 

  102. Fernández JL, Muriel L, Goyanes V, Segrelles E, Gosálvez J, Enciso M et al (2005) Simple determination of human sperm DNA fragmentation with an improved sperm chromatin dispersion (SCD) test. Fertil Steril 84:833–842

    PubMed  Google Scholar 

  103. Bungum M, Humaidan P, Spano M, Jepson K, Bungum L, Giwercman A (2004) The predictive value of sperm chromatin structure assay (SCSA) parameters for the outcome of intrauterine insemination, IVF and ICSI. Hum Reprod 19:1401–1408

    CAS  PubMed  Google Scholar 

  104. Benchaib M, Lornage J, Mazoyer C, Lejeune H, Salle B, Francois Guerin J (2007) Sperm deoxyribonucleic acid fragmentation as a prognostic indicator of assisted reproductive technology outcome. Fertil Steril 87:93–100

    CAS  PubMed  Google Scholar 

  105. Huang CC, Lin DP, Tsao HM, Cheng TC, Liu CH, Lee MS (2005) Sperm DNA fragmentation negatively correlates with velocity and fertilization rates but might not affect pregnancy rates. Fertil Steril 84:130–140

    PubMed  Google Scholar 

  106. Seli E, Gardner DK, Schoolcraft WB, Moffatt O, Sakkas D (2004) Extent of nuclear DNA damage in ejaculated spermatozoa impacts on blastocyst development after in vitro fertilization. Fertil Steril 82:378–383

    PubMed  Google Scholar 

  107. Boe-Hansen GB, Fedder J, Ersboll AK, Christensen P (2006) The sperm chromatin structure assay as a diagnostic tool in the human fertility clinic. Human Reprod 21:1576–1582

    Google Scholar 

  108. Giwercman A, Lindstedt L, Larsson M, Bungum M, Spano M, Levine RJ et al (2010) Sperm chromatin structure assay as an independent predictor of fertility in vivo: a case–control study. Int J Androl 33:e221–e227

    PubMed  Google Scholar 

  109. Bungum M, Humaidan P, Axmon A, Spano M, Bungum L, Erenpreiss J, Giwercman A (2007) Sperm DNA integrity assessment in prediction of assisted reproduction technology outcome. Hum Reprod 22:174–179

    CAS  PubMed  Google Scholar 

  110. Miciński P, Pawlicki K, Wielgus E, Bochenek M, Tworkowska I (2009) The sperm chromatin structure assay (SCSA) as prognostic factor in IVF/ICSI program. Reprod Biol 9:65–70

    PubMed  Google Scholar 

  111. Simon L, Lutton D, McManus J, Lewis SE (2011) Sperm DNA damage measured by the alkaline Comet assay as an independent predictor of male infertility and in vitro fertilization success. Fertil Steril 95:652–657

    PubMed  Google Scholar 

  112. Gosálvez J, Caballero P, López-Fernández C, Ortega L, Guijarro JA, Fernández JL et al (2013) Can DNA fragmentation of neat or swim-up spermatozoa be used to predict pregnancy following ICSI of fertile oocyte donors? Asian J Androl 15:812–818

    PubMed Central  PubMed  Google Scholar 

  113. Duran EH, Morshedi M, Taylor S, Oehninger S (2002) Sperm DNA quality predicts intrauterine insemination outcome: a prospective cohort study. Hum Reprod 17:3122–3128

    CAS  PubMed  Google Scholar 

  114. Greco E, Scarselli F, Iacobelli M, Rienzi L, Ubaldi F, Ferrero S et al (2005) Efficient treatment of infertility due to sperm DNA damage by ICSI with testicular spermatozoa. Hum Reprod 20:226–230

    PubMed  Google Scholar 

  115. Kefer JC, Agarwal A, Sabanegh E (2009) Role of antioxidants in the treatment of male infertility. Int J Urol 16:449–457

    CAS  PubMed  Google Scholar 

  116. Oxisperm®, Halotech DNA, Madrid, Spain. http://www.reprocare.com.mx/index.php/oxysperm-3 (cited 25 September 2013)

  117. Pons I, Cercas R, Villas C, Braña C, Fernández-Shaw S (2013) One abstinence day decreases sperm DNA fragmentation in 90 % of selected patients. J Assist Reprod Genet 30:1211–1218

    PubMed  Google Scholar 

  118. Gosálvez J, González-Martínez M, López-Fernández C, Fernández JL, Sánchez-Martín P (2011) Shorter abstinence decreases sperm deoxyribonucleic acid fragmentation in ejaculate. Fertil Steril 96:1083–1086

    PubMed  Google Scholar 

  119. Gosálvez J, Núñez R, Fernández JL, López-Fernández C, Caballero P (2011) Dynamics of sperm DNA damage in fresh versus frozen-thawed and gradient processed ejaculates in human donors. Andrologia 43:373–377

    PubMed  Google Scholar 

  120. Plante M, de Lamirande E, Gagnon C (1994) Reactive oxygen species released by activated neutrophils, but not by deficient spermatozoa, are sufficient to affect normal sperm motility. Fertil Steril 62:387–393

    CAS  PubMed  Google Scholar 

  121. Lampiao F, Opperman CJ, Agarwal A, du Plessis SS (2012) Oxidative stress. In: Parekattil SJ, Agarwal A (eds) Male infertility: contemporary clinical approaches, andrology, ART & antioxidants, 1st edn. Springer, New York, pp 225–235

    Google Scholar 

  122. Deepinder F, Cocuzza M, Agarwal A (2008) Should seminal oxidative stress measurement be offered routinely to men presenting for infertility evaluation? Endocr Pract 14:484–491

    PubMed  Google Scholar 

  123. Hull MG, Glazener CM, Kelly NJ, Conway DI, Foster PA, Hinton RA et al (1985) Population study of causes, treatment, and outcome of infertility. Br Med J (Clin Res Ed) 291:1693–1697

    CAS  Google Scholar 

  124. Showell MG, Brown J, Yazdani A, Stankiewicz MT, Hart RJ (2011) Antioxidants for male subfertility. Cochrane Database Syst Rev 1:CD007411

    PubMed  Google Scholar 

  125. Moskovtsev SI, Jarvi K, Mullen JB, Cadesky KI, Hannam T, Lo KC (2010) Testicular spermatozoa have statistically significantly lower DNA damage compared with ejaculated spermatozoa in patients with unsuccessful oral antioxidant treatment. Fertil Steril 93:1142–1146

    CAS  PubMed  Google Scholar 

  126. Sánchez-Martín P, Sánchez-Martín F, González-Martínez M, Gosálvez J (2013) Increased pregnancy after reduced male abstinence. Syst Biol Reprod Med 59:256–260

    PubMed  Google Scholar 

  127. Payne JF, Raburn DJ, Couchman GM, Price TM, Jamison MG, Walmer DK (2005) Redefining the relationship between sperm deoxyribonucleic acid fragmentation as measured by the sperm chromatin structure assay and outcomes of assisted reproductive techniques. Fertil Steril 84:356–364

    PubMed  Google Scholar 

  128. Ménézo Y, Dale B, Cohen M (2010) DNA damage and repair in human oocytes and embryos: a review. Zygote 18:357–365

    PubMed  Google Scholar 

  129. Obe G, Pfeiffer P, Savage JR, Johannes C, Goedecke W, Jeppesen P et al (2002) Chromosomal aberrations: formation, identification and distribution. Mutat Res 504:17–36

    CAS  PubMed  Google Scholar 

Download references

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sandro C. Esteves.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Esteves, S.C., Sharma, R.K., Gosálvez, J. et al. A translational medicine appraisal of specialized andrology testing in unexplained male infertility. Int Urol Nephrol 46, 1037–1052 (2014). https://doi.org/10.1007/s11255-014-0715-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11255-014-0715-0

Keywords

Navigation