Skip to main content
Log in

Nature of telomere dimers and chromosome looping in human spermatozoa

  • Published:
Chromosome Research Aims and scope Submit manuscript

Abstract

Specific and well-organized chromosome architecture in human sperm cells is supported by the prominent interactions between centromeres and between telomeres. The telomere-telomere interactions result in telomere dimers that are positioned at the nuclear periphery. It is unknown whether composition of sperm telomere dimers is random or specific. We now report that telomere dimers result from specific interactions between the two ends of each chromosome. FISH using pairs of subtelomeric DNA probes that correspond to the small and long arms of seven human chromosomes demonstrates that subtelomeres of one chromosome are brought together. Statistical analysis confirmed that telomere associations could not result from the random proximity of DNA sequences. Therefore, chromosomes in human sperm nuclei adopt a looped conformation. This higher-order chromosome structure is most likely required for chromosome withdrawal/decondensation during the early fertilization events leading to zygote formation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Reference

  • Celik-Ozenci C, Catalanotti J, Jakab A et al. (2003) Human sperm maintain their shape following decondensation and denaturation for fluorescent in situ hybridization: shape analysis and objective morphometry. Biol Reprod 69: 347–355.

    Article  CAS  Google Scholar 

  • Chambeyron S, BBickmore WA (2004) Chromatin decondensation and nuclear reorganization of the HoxB locus upon induction of transcription. Genes Dev 18: 1119–1130.

    Article  PubMed  CAS  Google Scholar 

  • Cremer T, Cremer C (2001) Chromosome territories, nuclear architecture and gene regulation in mammalian cells. Nat Rev Genet 2: 292–301.

    Article  PubMed  CAS  Google Scholar 

  • Dietzel S, Eils R, Satzler K et al. (1998) Evidence against a looped structure of the inactive human X-chromosome territory. Exp Cell Res 240: 187–196.

    Article  PubMed  CAS  Google Scholar 

  • Greaves I, Rens KW, Ferguson-Smith MA, Griffin D. Marshall Graves JA (2003) Conservation of chromosome arrangement and position of the X in mammalian sperm suggests functional significance. Chromosome Res 11: 503–512.

    Article  PubMed  CAS  Google Scholar 

  • Haaf T, Schmid M (1989) Centromeric association and non-random distribution of centromeres in human tumour cells. Hum Genet 81: 137–143.

    Article  PubMed  CAS  Google Scholar 

  • Haaf T, Ward DC (1995) Higher order nuclear structure in mammalian sperm revealed by in situ hybridization and extended chromatin fibers. Exp Cell Res 219: 604–611.

    Article  PubMed  CAS  Google Scholar 

  • Haaf T, Grunenberg H, Schmid M (1990) Paired arrangement of nonhomologous centromeres during vertebrat spermiogenesis. Exp Cell Res 187: 157–161.

    Article  PubMed  CAS  Google Scholar 

  • Hadlaczky G, Went M, Ringertz NR (1986) Direct evidence for the non-random localization of mammalian chromosomes in the interphase nucleus. Exp Cell Res 167: 1–15.

    Article  PubMed  CAS  Google Scholar 

  • Hazzouri M, Rousseaux S, Mongelard F et al. (2000) Genome organization in the human sperm nucleus studied by FISH and confocal microscopy. Mol Reprod Dev 55: 307–315.

    Article  PubMed  CAS  Google Scholar 

  • Hinton T (1945) A study of chromosome ends in salivary gland nuclei of Drosophila. Biol Bull 88: 144–165.

    Google Scholar 

  • Kingsley K, Wirth J, van der Maarel S, Freier S, Ropers HH, Haaf T (1997) Complex FISH probes for the subtelomeric regions of all human chromosomes: comparative hybridization of CEPH YACs to chromosomes of the Old World monkey Presbytis cristata and great apes. Cytogenet Cell Genet 78: 12–19.

    Article  PubMed  CAS  Google Scholar 

  • Knight SJ, Flint J (2000) Perfect endings: a review of subtelomeric probes and their use in clinical diagnosis. J Med Genet 37: 401–409.

    Article  PubMed  CAS  Google Scholar 

  • Knight SJ, Horsley SW, Regan R et al. (1997) Development and clinical application of an innovative fluorescence in situ hybridization technique which detects submicroscopic rearrangements involving telomeres. Eur J Hum Genet 5: 1–8.

    PubMed  CAS  Google Scholar 

  • Metzler-Guillemain C, Usson Y, Mignon C et al. (2000) Organization of the X and Y chromosomes in human, chimpanzee and mouse pachytene nuclei using molecular cytogenetics and three-dimensional confocal analyses. Chromosome Res 8: 571–584.

    Article  PubMed  CAS  Google Scholar 

  • Meyer-Ficca M, Muller-Navia J, Scherthan H (1998) Clustering of pericentromeres initiates in step 9 of spermiogenesis of the rat (Rattus norvegicus) and contributes to a well defined genome architecture in the sperm nucleus. J Cell Sci 111: 363–1370.

    Google Scholar 

  • Paul AL, Ferl RJ (1999) Higher-order chromatin structure: looping long molecules. Plant Mol Biol 41: 713–720.

    Article  PubMed  CAS  Google Scholar 

  • Ragoczy T, Telling A, Sawado T, Groudine M, Kosak ST (2003) A genetic analysis of chromosome territory looping: diverse roles for distal regulatory elements. Chromosome Res 11: 513–525.

    Article  PubMed  CAS  Google Scholar 

  • Scherthan H (2001) A bouquet makes ends meet. Nat Rev Mol Cell Biol 2: 621–627.

    Article  PubMed  CAS  Google Scholar 

  • Scherthan H (2003) Knockout mice provide novel insights into meiotic chromosome and telomere dynamics. Cytogenet Genome Res. 103: 235–244.

    PubMed  CAS  Google Scholar 

  • Taddei A, Gasser SM (2004) Multiple pathways for telomere tethering: functional implications of subnuclear position for heterochromatin formation. Biochim Biophys Acta 1677: l20-l28.

    Google Scholar 

  • Walker CL, Cargile CB, Floy KM, Delannoy M, Migeon BR (1991) The Barr body is a looped X chromosome formed by telomere association. Proc Natl Acad Sci USA 88: 6191–6195.

    PubMed  CAS  Google Scholar 

  • Zalenskaya IA, Zalensky AO (2004) Non-random positioning of chromosomes in human sperm nuclei. Chromosome Res 12(2): 163–173.

    Article  PubMed  CAS  Google Scholar 

  • Zalensky AO, Breneman J, Zalenskaya IA, Brinkley BR, Bradbury EM (1993) Organization of centromeres in the decondensed nuclei of mature human sperm. Chromosoma 102: 509–518.

    Article  PubMed  CAS  Google Scholar 

  • Zalensky AO, Allen MJ, Kobayashi A, Zalenskaya IA, Balhorn R, Bradbury EM (1995) Well-defined genome architecture in the human sperm nucleus. Chromosoma 103: 577–590.

    PubMed  CAS  Google Scholar 

  • Zalensky AO, Tomilin NV, Zalenskaya IA, Teplitz R, Bradbury EM (1997) Telomere-telomere interactions and telomere binding proteins in mammalian sperm. Exp Cell Res 232: 29–41.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrei O. Zalensky.

Additional information

These individuals contributed equally to the work

Rights and permissions

Reprints and permissions

About this article

Cite this article

Solov’eva, L., Svetlova, M., Bodinski, D. et al. Nature of telomere dimers and chromosome looping in human spermatozoa. Chromosome Res 12, 817–823 (2004). https://doi.org/10.1007/s10577-005-5513-1

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10577-005-5513-1

Key words

Navigation