Skip to main content

Soybean [Glycine max (L.) Merr.] Breeding: History, Improvement, Production and Future Opportunities

  • Chapter
  • First Online:
Advances in Plant Breeding Strategies: Legumes

Abstract

Soybean, Glycine max (L.) Merr., has been grown as a forage and as an important protein and oil crop for thousands of years. Domestication, breeding improvements and enhanced cropping systems have made soybeans the most cultivated and utilized oilseed crop globally. Soybeans provide a high-quality protein source for livestock and aquaculture, oil for industrial uses and a valued component of human diets. Originating in China and Eastern Asia, today 8085% of the world’s soybeans, approximately 88 million ha, are grown in the Western Hemisphere. United States soybean breeding and development efforts for over 80 years have transitioned from primarily universities and United States Department of Agriculture (USDA) programs to private company-led investments in commercial cultivar development. Soybean breeders continuously adapt tools and technologies that encompass classical breeding, mutation breeding and marker-assisted selection, biotechnology and transgenic approaches, gene silencing, and genome editing. In addition to breeding technologies, improved agronomics, precision agriculture and digital agriculture have advanced soybean production and profitability. The primary goals of soybean breeding and cropping systems advances include yield improvement, increased seed protein and oil composition and quality, and yield preservation through weed, pathogen, insect pest and abiotic stress resistance and management. This chapter primarily describes the introduction and improvement of soybeans in the United States. Contributing authors describe classical and molecular breeding, biotechnology, biotic and abiotic stress management, and soybean agronomics and cropping systems improvements that maximize soybean productivity, profitability and sustainability to supply a continually increasing world demand for protein and oil for feed, fuel and food.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdel-Haleem H, Carter TE Jr, Purcell LC et al (2012) Mapping of quantitative trait loci for canopy-wilting trait in soybean (Glycine max L Merr). Theor Appl Genet 125:837–846

    Article  CAS  PubMed  Google Scholar 

  • Abdel-Majid K, Ramos L, Hyten D et al (2014) Quantitative trait loci (QTL) that underlie SCN resistance in the soybean [Glycine max (L) Merr] ‘PI438489B’ by ‘Hamilton’ recombinant inbred line population. Atlas J Plant Biol 1:29–38

    Article  Google Scholar 

  • Abney SA, Crochet WD (2007) The uniform soybean tests, northern region (2007) USDA-ARS, Dep. of Agron., Purdue Univ., West Lafayette, IN

    Google Scholar 

  • Abney SA, Crochet WD (2008) The uniform soybean tests, northern region (2008) USDA-ARS, Dep. of Agron., Purdue Univ., West Lafayette, IN

    Google Scholar 

  • Agrios GN (2005) Plant Pathology, 5th edn. Elsevier Academic Press, Amsterdam, pp 207–248

    Book  Google Scholar 

  • Ahloowalia B, Maluszynski M, Nichterlein K (2004) Global impact of mutation-derived varieties. Euphy 135(2):187–204

    Article  Google Scholar 

  • Akao S, Kouchi H (1992) A supernodulating mutant isolated from soybean cultivar Enrei. Soil Sci Plant Nut 38(1):183–187. https://doi.org/10.1080/00380768.1992.10416966

    Article  Google Scholar 

  • Akdemir D, Sanchez J (2016) Efficient breeding by genomic mating. Front Genet 7:1–12

    Article  CAS  Google Scholar 

  • Akkaya MS, Bhagwat AA, Cregan PB (1992) Length polymorphisms of simple sequence repeat DNA in soybean. Genetics 132(4):1131–1139

    CAS  PubMed  PubMed Central  Google Scholar 

  • Akpertey A, Belaffif M, Graef GL et al (2014) Effects of selective genetic introgression from wild soybean to soybean. Crop Sci 54:2683–2695

    Article  Google Scholar 

  • Akpertey A, Singh RJ, Diers BW et al (2018) Genetic introgression from Glycine tomentella to soybean to increase seed yield. Crop Sci 58:1277–1291

    Article  CAS  Google Scholar 

  • Alikamanoglu S, Yaycili O, Sen A (2011) Effect of gamma radiation on growth factors, biochemical parameters, and accumulation of trace elements in soybean plants (Glycine max L Merrill). Biol Trace Elem Res 141(1–3):283–293

    Article  CAS  PubMed  Google Scholar 

  • Allen DK, Ohlrogge JB, Shachar-Hill Y (2009) The role of light in soybean seed filling metabolism. Plant J 58(2):220–234

    Article  CAS  PubMed  Google Scholar 

  • Alt J, Ryan-Mahmutagic M (2013) Soybean aphid biotype 4 identified. Crop Sci 53:1491–1495

    Article  Google Scholar 

  • Anai T (2012) Potential of a mutant-based reverse genetic approach for functional genomics and molecular breeding in soybean. Breed Sci 61(5):462–467

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Anh-Tung P, Jeong-Dong L, Grover SJ, Bilyeu KD (2011) A novel FAD2-1A allele in a soybean plant introduction offers an alternate means to produce soybean seed oil with 85% oleic acid content. Theor Appl Genet 123:793–802

    Article  CAS  Google Scholar 

  • Arase S, Hase Y, Abe J et al (2011) Optimization of ion-beam irradiation for mutagenesis in soybean: effects on plant growth and production of visibly altered mutants. Plant Biotech 28(3):323–329. https://doi.org/10.5511/plantbiotechnology.11.0111a

    Article  CAS  Google Scholar 

  • Ashraf M, Wu L (1994) Breeding for salinity tolerance in plants. Crit Rev Plant Sci 13:17–42. https://doi.org/10.1080/07352689409701906

    Article  Google Scholar 

  • Atak C, Alikamanoglu S, Acik L, Canbolat Y (2004) Induced of plastid mutations in soybean plant (Glycine max L Merrill) with gamma radiation and determination with RAPD. Mutat Res/Fund Mol Mech Mut 556(1):35–44

    Article  CAS  Google Scholar 

  • Aziadekey M, Schapaugh WT Jr, Herald TJ (2002) Genotype by environment interaction for soymilk and tofu quality characteristics. J Food Qual 25:243–259

    Article  Google Scholar 

  • Bachleda N, Grey T, Li Z (2017) Effects of high oleic acid soybean on seed yield, protein and oil contents, and seed germination revealed by near-isogeneic lines. Plant Breed 136(4):539–547. https://doi.org/10.1111/pbr.12497

    Article  CAS  Google Scholar 

  • Bai G, Ge Y, Husain W et al (2016) A multi-sensor system for high throughput field phenotyping in soybean and wheat breeding. Comp Electron Agric 128:181–192

    Article  Google Scholar 

  • Bailey-Serres J, Lee SC, Brinton E (2012) Waterproofing Crops: Effective Flooding Survival Strategies. Plant Physiol 160:1698–1709

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baliga NS, Björkegren JLM, Boeke JD et al (2017) The state of systems genetics in 2017. Cell Syst 4(1):7–15

    Article  CAS  PubMed  Google Scholar 

  • Bandillo N, Jarquin D, Song Q et al (2015) A population structure and genome-wide association analysis on the USDA soybean germplasm collection. Plant Genome 8(3). https://doi.org/10.3835/plantgenome2015.04.0024(3)

  • Bandillo NB, Lorenz AJ, Graef GL et al (2017) Genome-wide association mapping of qualitatively inherited traits in a germplasm collection. Plant Genome 10(2). https://doi.org/10.3835/plantgenome2016.06.0054

  • Bastidas AM, Setiyono TD, Dobermann A et al (2008) Soybean sowing date: the vegetative, reproductive, and agronomic impacts. Crop Sci 48(2):727–740

    Article  Google Scholar 

  • Behrens MR, Mutlu N, Chakraborty S et al (2007) Dicamba resistance: enlarging and preserving biotechnology-based weed management strategies. Sci 316:1185–1188

    Article  CAS  Google Scholar 

  • Belhaj K, Chaparro-Garcia A, Kamoun S, Nekrasov V (2013) Plant genome editing made easy: targeted mutagenesis in model and crop plants using the CRISPR/Cas system. Plant Meth 9(1):39:1–10

    Google Scholar 

  • Benning C, Sweetlove L (2016) Synthetic biology for basic and applied plant research. Plant J 87(1):3–4. https://doi.org/10.1111/tpj.13245

    Article  CAS  PubMed  Google Scholar 

  • Bernard RL, Juvik GA, Hartwig EE, Edwards CJ Jr (1988) Origins and pedigrees of public soybean varieties in the United States and Canada.. USDA Technical Bulletin No. 1746, 68 p

    Google Scholar 

  • Bernardo R (1996) Best linear unbiased prediction of maize single-cross performance. Crop Sci 36:50–56

    Article  Google Scholar 

  • Bernardo R (2014) Genome wide selection when major genes are known. Crop Sci 54(1):68

    Article  Google Scholar 

  • Bhardwaj HL, Bhagsari AS, Joshi JM et al (1999) Yield and quality of soymilk and tofu made from soybean genotypes grown at four locations. Crop Sci 39:401–405

    Article  Google Scholar 

  • Bilyeu KD, Palavalli L, Sleper DA, Beuselinck PR (2003) Three microsomal omega-3 fatty acid desaturase genes contribute to soybean linolenic acid levels. Crop Sci 43:1833–1838

    Article  CAS  Google Scholar 

  • Bilyeu KD, Palavalli L, Sleper DA, Beuselinck PR (2005) Mutations in soybean microsomal omega-3 fatty acid desaturase genes reduce linolenic acid concentration in soybean seeds. Crop Sci 45:1830–1836

    Article  CAS  Google Scholar 

  • Bilyeu KD, Palavalli L, Sleper DA, Beuselilnck PR (2006) Molecular genetic resources for development of 1% linolenic acid soybeans. Crop Sci 46:1913–1918

    Article  CAS  Google Scholar 

  • Bilyeu KD, Gillman JD, LeRoy AR (2011) Novel FAD3 mutant allele combinations produce soybeans containing 1% linolenic acid in the seed oil. Crop Sci 61:259–264

    Article  Google Scholar 

  • Birge JR, Louveaux F (2011) Introduction to stochastic programming, 2nd edition In: Mikosch TV, Resnick SI, Robinson SM (eds) Springer series in operations research and financial engineering. Springer, New York

    Book  Google Scholar 

  • Blumel M, Dally N, Jung C (2015) Flowering time regulation in crops-what did we learn from Arabidopsis? Curr Opin Biotech 32:121–129

    Article  CAS  PubMed  Google Scholar 

  • Boles JN (1955) Linear programming and farm management analysis. J Farm Econ 37:1–37. https://doi.org/10.2307/1234071

    Article  Google Scholar 

  • Bolon YT, Joseph B, Cannon SB et al (2010) Complementary genetic and genomic approaches help characterize the linkage group I seed protein QTL in soybean. BMC Plant Biol 10:41. https://doi.org/10.1186/1471-2229-10-41

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bolon YT, Huan WJ, Xu WW et al (2011) Phenotypic and genomic analyses of a fast neutron mutant population resource in soybean. Plant Phys 156(1):240–253. https://doi.org/10.1104/pp.110.170811

    Article  CAS  Google Scholar 

  • Bolon YT, Stec AO, Michno JM et al (2014) Genome resilience and prevalence of segmental duplications following fast neutron irradiation of soybean. Genet 198(3):967–981

    Article  CAS  Google Scholar 

  • Boyer JS (1983) Environmental stress and crop yields. In: Raper CD, Kramer PJ (eds) Crop reaction to water and temperature stressors in humid, temperate climates. Westview Press, Boulder, pp 3–7

    Google Scholar 

  • Bradley C, Allen T, Chilvers M et al (2015) Soybean disease loss estimates from the United States and Ontario, Canada – 2015 Crop Protection Network. https://cropprotectionnetwork.org/2017/04/01/soybean-disease-loss-estimates-from-the-united-states-and-ontario-canada-2015/

  • Brim CA, Burton JW (1979) Recurrent selection in soybean. II. Selection for increased percent protein in seeds. Crop Sci 19:494–498

    Article  Google Scholar 

  • Brookes G, Barfoot P (2018a) Environmental impacts of genetically modified (GM) crop use 1996–2016: impacts on pesticide use and carbon emissions. GM Crops Food 8. https://doi.org/10.1080/21645698.2018.1476792

  • Brookes G, Barfoot P (2018b) Biotech crop adoption leads to greater sustainability and socioeconomic opportunities for global farmers and citizens. PG Economics Ltd, Dorchester. https://pgeconomics.co.uk/pdf/globalimpactstudyfinalreportJune2018.pdf

    Google Scholar 

  • Brown-Guedira GL, Thompson JA, Nelson RL, Warburton ML (2000) Evaluation of genetic diversity of soybean introductions and North American ancestors using RAPD and SSR markers. Crop Sci 40:815–823

    Article  CAS  Google Scholar 

  • Brumm TJ, Hurburgh CR (1990) Estimating the processed value of soybeans. J Am Oil Chem Soc 67:302–307. https://doi.org/10.1007/BF02539680

    Article  Google Scholar 

  • Brumm T, Hurburgh C, Rippke G (2005) Quality of the 2004 soybean crop from the United States. Agricultural and biosystems engineering technical reports and white papers 21. https://lib.dr.iastate.edu/abe_eng_reports/21

  • Brummer EC, Graef GL, Orf J et al (1997) Mapping QTL for seed protein and oil content in eight soybean populations. Crop Sci 37(2):370–378

    Article  Google Scholar 

  • Brzostowski L, Pruski T, Specht J, Diers B (2017) Impact of seed protein alleles from three soybean sources on seed composition and agronomic traits. Theor Appl Genet 130(11):2315–2326

    Article  CAS  PubMed  Google Scholar 

  • Bubeck DM, Fehr WR, Hammond EG (1989) Inheritance of palmitic and stearic acid mutants of soybean. Crop Sci 29(3):652–656

    Article  Google Scholar 

  • Buhr T, Sato S, Ebrahim F et al (2002) Ribozyme termination of RNA transcripts down-regulate seed fatty acid genes in transgenic soybean. Plant J 30:155–163

    Article  CAS  PubMed  Google Scholar 

  • Burton JW (1987) Quantitative genetics: Results relevant to soybean breeding In: JR Wilcox (ed) Soybean improvement, production and uses, 2nd edn. American Society of Agronomy, Madison

    Google Scholar 

  • Buzzell RI, Anderson TR, Hamill AS, Welacky TW (1991) Harovinton soybean. Can J Plant Sci 71:525–526

    Article  Google Scholar 

  • Byrum J, Davis C, Doonan G et al (2016) Advanced analytics for agricultural product development. Interfaces 46:5–17

    Article  Google Scholar 

  • Byrum J, Beavis B, Davis C et al (2017) Genetic gain performance metric accelerates agricultural productivity. Interfaces 47(5):442–453. https://doi.org/10.1287/inte.2017.0909

  • Cafaro La Menza N, Monzon JP, Specht J, Grassini P (2017) Is soybean yield limited by nitrogen supply? Field Crops Res 213:204–212

    Article  Google Scholar 

  • Cahill DJ, Schmidt DH (2004) Use of marker assisted selection in a product development breeding program In: Fischer, T et al New directions for a diverse planet: Proceedings for the 4th International Crop Science Congress, Brisbane, Australia, 26 September–1 October 2004. https://www.cropscience.org.au/icsc2004/symposia/3/4/133_schmidtdh.htm

  • Cai TD, Chang KC (1997) Comparison of bench and production scale methods for making soymilk and tofu from 13 soybean varieties. Food Res Int 30:659–668

    Article  CAS  Google Scholar 

  • Cai TD, Chang KC (1999) Processing effect on soybean storage proteins and their relationship with tofu quality. J Agric Food Chem 47:720–727

    Article  CAS  PubMed  Google Scholar 

  • Cai Y, Chen L, Liu X et al (2018) CRISPR/Cas9-medaited targeted mutagenesis of GmFT2a delays flowering time in soya bean. Plant Biotech J 16:176–185

    Article  CAS  Google Scholar 

  • Cameron JN, Han Y, Wang L, Beavis WD (2017) Systematic design for trait introgression projects. Theor Appl Genet 130(10):1993–2004

    Article  PubMed  PubMed Central  Google Scholar 

  • Campbell BW, Stupar RM (2016) Soybean (Glycine max) mutant and germplasm resources: Current status and future prospects. Curr Prot Plant Biol 1(2):307–327. https://doi.org/10.1002/cppb.20015

    Article  Google Scholar 

  • Campbell BW, Hofstad AN, Sreekanta S et al (2016) Fast neutron-induced structural rearrangements at a soybean NAP1 locus result in gnarled trichomes. Theor Appl Genet 129(9):1725–1738

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Canzar S, El-Kebir M (2011) A mathematical programming approach to marker-assisted gene pyramiding. Proceedings of the 11th workshop on algorithms in bioinformatics. Springer, New York, New York, pp 26–38

    Google Scholar 

  • Carrera CS, Reynoso CM, Funes GJ et al (2011) Amino acid composition of soybean seeds as affected by climatic variables. Pesq Agropec Bras Brasília 46(12):1579–1587

    Article  Google Scholar 

  • Carrero-Colón M, Abshire N, Sweeney D et al (2014) Mutations in SACPD-C result in a range of elevated stearic acid concentration in soybean seed. PLoS One 9(5):e97891

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carroll BJ, McNeil DL, Gresshoff PM (1985) Isolation and properties of soybean (Glycine max (L) Merr) mutants that nodulate in the presence of high nitrate concentrations. Proc Nat Acad Sci USA 82(12):4162–4166

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carter A, Tegeder M (2016) Increasing nitrogen fixation and seed development in soybean requires complex adjustments of nodule nitrogen metabolism and partitioning processes. Curr Biol 26(15):2044–2051

    Article  CAS  PubMed  Google Scholar 

  • Carter TE, Nelson RL, Sneller CH, Cui Z (2004) Genetic diversity in soybean In: Boerma HR, Specht JE (eds) Soybeans: improvement, production, and uses. American Society of Agronomy, Crop Science Society of America, Soil Science Society of America, Madison, Wis., Vol. Agronomy; no. 16, pp 303–416

    Google Scholar 

  • Carter TE, Todd SM, Gillen AM (2016) Registration of ‘USDA-N8002’ soybean cultivar with high yield and abiotic stress resistance traits. J Plant Reg 10:238–245

    Article  Google Scholar 

  • Ceron-Rojas JJ, Crossa J, Arief VN et al (2015) A genomic selection index applied to simulated and real data. G3: Genes Genom Genet 5(10):2155–2164

    Article  Google Scholar 

  • Chang H-X, Hartman GL (2017) Characterization of insect resistance loci in the USDA soybean germplasm collection using genome-wide association studies. Front Plant Sci 8:670

    Article  PubMed  PubMed Central  Google Scholar 

  • Chang RZ, Chen YW, Shao GH (1994) Effect of salt stress on agronomic characters and chemical quality of seeds in soybean. Soy Sci 13:101–105

    Google Scholar 

  • Chao H, Wang H, Wang X et al (2017) Genetic dissection of seed oil and protein content and identification of networks associated with oil content in Brassica napus. Sci Rep 7(1):46295

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chappell AS, Bilyeu KD (2007) The low linolenic acid soybean line PI 361088B contains a novel GmFAD3A mutation. Crop Sci 47:1705–1710

    Article  CAS  Google Scholar 

  • Chaves MM, Maroco JP, Pereira JS (2003) Understanding plant responses to drought from genes to the whole plant. Funct Plant Biol 30:239–264

    Article  CAS  PubMed  Google Scholar 

  • Chawla S, Bowen CR, Slaminko TL et al (2013) A public program to evaluate commercial soybean cultivars for pathogen and pest resistance. Plant Dis 97:568–578

    Article  PubMed  Google Scholar 

  • Chen P, Sneller CH, Purcell LC et al (2007) Registration of soybean germplasm lines R01-416F and R01-581F for improved yield and nitrogen fixation under drought stress. J Plant Reg 1:166–167

    Article  Google Scholar 

  • Chen H, Cui S, Fu S et al (2008) Identification of quantitative trait loci associated with salt tolerance during seedling growth in soybean (Glycine max L.). Aust J Ag Res 59:1086–1091

    Article  CAS  Google Scholar 

  • Chung J, Babka HL, Graef GL et al (2003) The seed protein, oil, and yield QTL on soybean linkage group I. Crop Sci 43(3):1053–1067

    Article  CAS  Google Scholar 

  • Cianzio SR, Cavins JF, Fehr WR (1985) Protein and oil percentage of temperate soybean genotypes evaluated in tropical environments. Crop Sci 25(4):602–606

    Article  Google Scholar 

  • Clemente TE, Cahoon EB (2009) Soybean oil: Genetic approaches for modification of functionality and total content. Plant Phys 151(3):1030–1040

    Article  CAS  Google Scholar 

  • Cober ER, Voldeng HD (2000) Developing high-protein, high-yield soybean populations and lines. Crop Sci 40:39–42

    Article  Google Scholar 

  • Cober ER, Voldeng HD, Fregeau-Reid JA (1997) Heritability of seed shape and seed size in soybean. Crop Sci 37:1767–1769

    Article  Google Scholar 

  • Cober ER, Ablett GR, Buzzell RI et al (1998) Imperfect yellow hilum color in soybean is conditioned by II rr TT. Crop Sci 38:940–941

    Article  Google Scholar 

  • Collier R, Fuchs B, Walter N (2006) Ex vitro composite plants: An inexpensive, rapid method for root biology. Plant J 43:449–457

    Article  CAS  Google Scholar 

  • Concibido VC, Lange DA, Denny RL et al (1997) Genome mapping of soybean cyst nematode resistance genes in Peking, PI 90763, and PI 88788 using DNA markers. Crop Sci 37:258–264

    Article  CAS  Google Scholar 

  • Concibido VC, Vallee BL, Mclaird P et al (2003) Introgression of a quantitative trait locus for yield from Glycine soja into commercial soybean cultivars. Theor Appl Genet 106:575–582

    Article  CAS  PubMed  Google Scholar 

  • Conko G, Kershen DL, Miller HI, Parrott WA (2016) A risk-based approach to the regulation of genetically engineered plants. Nat Biotech 34(5):493–503

    Article  CAS  Google Scholar 

  • Cook DE, Lee TG, Guo X et al (2012) Copy number variation of multiple genes at Rhg1 mediates nematode resistance in soybean. Sci 338:1206–1209

    Article  CAS  Google Scholar 

  • Cooper M, Podlich DW (2002) The E(NK) Model: Extending the NK model to incorporate gene by environment interactions and epistasis for diploid genomes. Compexity 7:31–47. https://doi.org/10.1002/cplx.10044

    Article  Google Scholar 

  • Cooper M, Podlich DW, Micallef KP et al (2002) Complexity, quantitative traits and plant breeding: A role for simulation modeling in the genetic improvement of crops In: Kang MS (ed) International symposium, quantitative genetics, genomics and plant breeding. CABI, Wallingford, pp 143–166

    Google Scholar 

  • Cooper JL, Till BJ, Laport RG et al (2008) TILLING to detect induced mutations in soybean. BMC Plant Biol 8(1):9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cregan PB, Mudge J, Fickus EW et al (1999) Two simple sequence repeat markers to select for soybean cyst nematode resistance conditioned by the Rhg1 locus. Theor Appl Genet 99(5):811–818

    Article  CAS  Google Scholar 

  • Cress CE (1967) Reciprocal recurrent selection and modifications in simulated populations. Crop Sci 7:561–567

    Article  Google Scholar 

  • Crookston RK, Kurle JE, Copeland PJ et al (1991) Rotational cropping sequence affects yield of corn and soybean. Agron J 83:108–113

    Article  Google Scholar 

  • Cui Z, Carter TE Jr, Gai J et al (1999) Origin, description and pedigrees of Chinese soybean cultivars released during 1923-1992 U.S. Department of Agriculture technical bulletin no. 1871. https://naldc.nal.usda.gov/download/CAT10879800/PDF

  • Cui Y, Barampuram S, Stacey MG et al (2013) Tnt1 retrotransposon mutagenesis: a tool for soybean functional genomics. Plant Physiol 161:36–47

    Article  CAS  PubMed  Google Scholar 

  • Curtin SJ, Voytas DF, Stupar RM (2012) Genome engineering of crops with designer nucleases. Plant Genome 5:42–50

    Article  CAS  Google Scholar 

  • Curtin SJ, Xiong Y, Michno JM et al (2018) CRISPR/Cas9 and TALENs generate heritable mutations for genes involved in small RNA processing of Glycine max and Medicago truncatula. Plant Biotech J 16(6):1125–1137

    Article  CAS  Google Scholar 

  • Daetwyler HD, Calus MPL, Pong-Wong R et al (2013) Genomic prediction in animals and plants: Simulation of data, validation, reporting and benchmarking. Genet 193:347–365

    Article  Google Scholar 

  • De Beukelaer H, De Meyer G, Fack V (2015) Heuristic exploitation of genetic structure in marker-assisted gene pyramiding problems. BMC Genetics 16:2–16. https://doi.org/10.1186/s12863-014-0154-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • De Bruin JL, Pedersen P (2009) New and old soybean cultivar responses to plant density and intercepted light. Crop Sci 49:2225–2232

    Article  Google Scholar 

  • de Ronde JA, Laurie RN, Caetano T et al (2004) Comparative study between transgenic and non-transgenic soybean lines proved transgenic lines to be more drought tolerant. Euphy 138(2):123–132

    Article  Google Scholar 

  • Demorest ZL, Coffman A, Baltes NJ et al (2016) Direct stacking of sequence-specific nuclease-induced mutation produce high oleic and low linolenic soybean oil. BMC Plant Biol 16:225–242. https://doi.org/10.1186/s12870-016-0906-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Devi JM, Sinclair TR, Chen P, Carter TE (2014) Evaluation of elite southern maturity soybean breeding lines for drought-tolerant traits. Agron J 106:1947–1954

    Article  Google Scholar 

  • Dierking EC, Bilyeu KD (2008) Association of a soybean raffinose synthase gene with low raffinose and stachyose seed phenotype. Plant Genome 1(2):135–145

    Article  CAS  Google Scholar 

  • Dierking EC, Bilyeu KD (2009a) New sources of soybean seed meal and oil composition traits identified through TILLING. BMC Plant Bio 9(1):89

    Article  CAS  Google Scholar 

  • Dierking EC, Bilyeu KD (2009b) Raffinose and stachyose metabolism are not required for efficient soybean seed germination. J Plant Physiol 166(12):1329–1335

    Article  CAS  PubMed  Google Scholar 

  • Diers BW, Keim P, Fehr WR, Shoemaker RC (1992) RFLP analysis of soybean seed protein and oil content. Theor Appl Genet 83(5):608–612

    Article  CAS  PubMed  Google Scholar 

  • Diers BW, Specht J, Rainey KM et al (2018) Genetic architecture of soybean yield and agronomic traits. G3:Genes/Genomes/Genetics. https://doi.org/10.1534/g3.118.200332

  • Dille JA, Sikkema PH, Everman WJ et al (2016) Perspectives on soybean yield losses due to weeds in North America. Weed Sci Soc Am. http://wssa.net/wp-content/uploads/WSSA-2016-Soybean-Yield-Loss-poster.pdf

  • Do TD, Chen H, Vu HTT et al (2016) Ncl Synchronously regulates Na+, K+, and Cl− in soybean and greatly increases the grain yield in saline field conditions. Sci Rep 6:19147. https://doi.org/10.1038/srep19147

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dobbels AA, Michno J-M, Campbell BW et al (2017) An induced chromosomal translocation in soybean disrupts a KASI ortholog and is associated with a high-sucrose and low-oil seed phenotype. G3 Genes Genom Genet 7(4):1215–1223. https://doi.org/10.1534/g3.116.038596

    Article  CAS  Google Scholar 

  • Dornboss DL Jr, Mullen RE (1992) Soybean seed protein and oil contents and fatty acid composition adjustments by drought and temperature. J Amer Oil Chem Soc 69:228–231. https://doi.org/10.1007/BF02635891

    Article  Google Scholar 

  • Du Q, Yang X, Zhang J et al (2018) Over-expression of the Pseudomonas syringae harpin-encoding gene hrpZm confers enhanced tolerance to Phytophthora root and stem rot in transgenic soybean. Transgenic Res 27(2):277–288

    Article  CAS  PubMed  Google Scholar 

  • Duhnen A, Gras A, Teyssèdre S et al (2017) Genomic selection for yield and seed protein content in soybean: a study of breeding program data and assessment of prediction accuracy. Crop Sci 57(3):1325–1337

    Article  CAS  Google Scholar 

  • Eathington SR, Crosbie TM, Edwards MD et al (2007) Molecular markers in a commercial breeding program. Crop Sci. 47(S3):S154–S163

    Google Scholar 

  • Eckert H, La Vallee B, Schweiger BJ et al (2006) Co-expression of the borage Delta 6 desaturase and the Arabidopsis Delta 15 desaturase results in high accumulation of stearidonic acid in the seeds of transgenic soybean. Planta 224(5):1050–1057

    Article  CAS  PubMed  Google Scholar 

  • Elshire RJ, Glaubitz JC, Sun Q et al (2011) A robust, simple genotyping-by-sequencing (GBS) approach for high diversity species. PLoS ONE 6(5):e19379

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eskandari M, Cober ER, Rajcan I (2013) Genetic control of soybean seed oil: II. QTL and genes that increase oil concentration without decreasing protein or with increased seed yield. Theor Appl Genet 126(6):1677–1687

    Article  CAS  PubMed  Google Scholar 

  • Espina MJ, Ahmed CMS, Bernardini A et al (2018) Development and phenotypic screening of an ethyl methane sulfonate mutant population in soybean. Front Plant Sci 9:394

    Article  PubMed  PubMed Central  Google Scholar 

  • Esteve Agelet L, Hurburgh CR Jr (2014) Limitations and current applications of near infrared spectroscopy for single seed analysis. Talanta 121:288–299

    Article  CAS  PubMed  Google Scholar 

  • Farmaha BS, Eskridge KM, Cassman KG et al (2016) Rotation impact on on-farm yield and input-use efficiency in high-yield irrigated corn-soybean systems. Agron J 108:1–9

    Article  Google Scholar 

  • Fasoula VA, Harris DK, Boerma HR (2004) Validation and designation of quantitative trait loci for seed protein, seed oil, and seed weight from two soybean populations. Crop Sci 44(4):1218

    Article  CAS  Google Scholar 

  • Fehr WR (1991) Principles of cultivar development Vol 1: Theory and technique. Macmillan Publishing Co, New York

    Google Scholar 

  • Fehr WR (2007) Breeding for modified fatty acid composition in soybean. Crop Sci 47(Suppl 3): S-72-S-87

    Google Scholar 

  • Fehr WR, Bahrenfus JB, Walker AK (1984) Registration of Vinton 81 soybean. Crop Sci 24:384–384

    Article  Google Scholar 

  • Fenta BA, Beebe SE, Kunert KJ et al (2014) Field phenotyping of soybean roots for drought stress tolerance. Agron J 4:418–435

    Article  Google Scholar 

  • Fillatti JJ, Keithly GE, Voelker T, Ulmasov T (2013) Soybean seed and oil compositions and methods of making same. US 8609953 B2. https://patents.google.com/patent/US9062319

  • Fisher RA (1930) The fundamental theorem of natural selection In: The genetical theory of natural selection. Oxford University Press, Oxford, Great Britain, pp 22–47

    Google Scholar 

  • Food and Agriculture Organization of the United Nations (FAO) (1991) FAO food and nutrition paper 51: protein quality evaluation. FAO, Rome

    Google Scholar 

  • Food and Agriculture Organization of the United Nations (FAO) (2013). FAOSTAT database–agricultural production [online WWW]. Available https://faostat.fao.org/

  • Food and Agriculture Organization of the United Nations (FAO)/AGL (2000) Extent and causes of salt affected soils in participating countries. FAO/AGI-global network on integrated soil management for sustainable use of salt-affected lands. https://www.fao.org/ag/agI/agII/spush/topic2.htm

  • Fox CM, Cary TR, Colgrove AL et al (2014) Estimating soybean genetic gain for yield in the northern USA – influence of cropping history. Crop Sci 53:2473–2482

    Article  Google Scholar 

  • Fox CM, Cary TR, Nelson RL, Diers BW (2015) Confirmation of a seed yield QTL in soybean. Crop Sci 55:1–7

    Article  Google Scholar 

  • Francl LJ (2001) The disease triangle: a plant pathological paradigm revisited. APS Press, The plant health instructor. https://www.apsnet.org/edcenter/instcomm/TeachingArticles/Pages/DiseaseTriangle.aspx

    Google Scholar 

  • Frasch RM, Weigand C, Peez PT et al (2010) Molecular mapping of 2 environmentally sensitive male-sterile mutants in soybean. J Hered 102(1):11–16

    Article  CAS  PubMed  Google Scholar 

  • Fraser AS, Burnell DG (1970) Computer models in genetics. McGraw-Hill, San Franscisco

    Google Scholar 

  • Fukai S, Cooper M (1995) Development of drought-resistant cultivars using physio-morphological traits in rice. Field Crops Res 40:67–86

    Article  Google Scholar 

  • Gady ALF, Hermans FWK, Van de Wal MHBJ et al (2009) Implementation of two high through-put techniques in a novel application: Detecting point mutations in large EMS mutated plant populations. Plant Meth 5(1):13

    Article  CAS  Google Scholar 

  • Gaspar AP, Mueller DS, Wise KA et al (2017) Response of broad-spectrum and target-specific seed treatments and seeding rate on soybean seed yield, profitability, and economic risk. Crop Sci 56:2251–2262

    Article  Google Scholar 

  • Gaynor RC, Gorjanc G, Bentley AR et al (2017) A two-part strategy for using genomic selection to develop inbred lines. Crop Sci 56:2372–2386

    Article  Google Scholar 

  • George M (2006) Induced mutations in soybean [Glycine max (L) Merr] parent MACS-450, screening and biochemical characterization of selected mutant lines affecting lectin levels. (Doctoral dissertation), University of Pune, India

    Google Scholar 

  • Giannoccaro E, Wang YJ, Chen P (2008) Comparison of two HPLC systems and an enzymatic method for quantification of soybean sugars. Food Chem 106(1):324–330

    Article  CAS  Google Scholar 

  • Gilchrist E, Haughn G (2010) Reverse genetics techniques: engineering loss and gain of gene function in plants. Brief Funct Genom 9(2):103–110

    Article  CAS  Google Scholar 

  • Gillman JD, Baxter I, Bilyeu K (2013) Phosphorus partitioning of soybean lines containing different mutant alleles of two soybean seed-specific adenosine triphosphate-binding cassette phytic acid transporter paralogs. Plant Genome 6(1):1–10

    Article  CAS  Google Scholar 

  • Gillman JD, Stacey MG, Cui Y et al (2014) Deletions of the SACPD-C locus elevate seed stearic acid levels but also result in fatty acid and morphological alterations in nitrogen fixing nodules. BMC Plant Biol 14(1):143

    Article  PubMed  PubMed Central  Google Scholar 

  • GISS/NASA (2002) Computer model suggests future crop loss due to potential increase in extreme rain events over next century. https://www.giss.nasa.gov/research/news/20021028/

  • Gizlice Z, Carter TE Jr, Burton JW (1994) Genetic base for North American public soybean cultivars released between 1947 and 1988. Crop Sci 34(5):1143–1151

    Article  Google Scholar 

  • Gowda VRP, Henry A, Yamauchi A et al (2011) Root biology and genetic improvement for drought avoidance in rice. Field Crops Res 122:1–13

    Article  Google Scholar 

  • Graef GL, Specht JE (1989) Fitting the niche. Food grade soybean production: a new opportunity for Nebraska soybean producers. Nebraska Department of Agriculture, Lincoln, NE, pp 18–27

    Google Scholar 

  • Graef G, LaVallee BJ, Tenopir P (2009) A high-oleic-acid and low-palmitic-acid soybean: agronomic performance and evaluation as a feedstock for biodiesel. Plant Biotech J 7(5):411–421

    Article  CAS  Google Scholar 

  • Grassini P, Specht JE, Tollenaar M et al (2014a) High-yield maize-soybean cropping systems in the US corn belt. In: Sadras VO, Calderini DF (eds) Crop physiology-applications for genetic improvement and agronomy, 2nd ed, Elsevier, Amsterdam, pp 17–41

    Google Scholar 

  • Grassini P, Torrion JA, Cassman KG et al (2014b) Drivers of spatial and temporal variation in soybean yield and irrigation requirements. Field Crops Res 163:32–46

    Article  Google Scholar 

  • Grassini P, Torrion JA, Yang HS et al (2015) Soybean yield gaps and water productivity in the western U.S. corn belt. Field Crops Res 179:150–163

    Article  Google Scholar 

  • Gremaud MF, Harper JE (1989) Selection and initial characterization of partially nitrate tolerant nodulation mutants of soybean. Plant Physiol 89(1):169–173

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gu C, Pan H, Sun Z, Qin G (2010) Effect of soybean variety on anti-nutritional factors content, and growth performance and nutrients metabolism in rat. Int J Mol Sci 11(3):1048–1056

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gupta B, Huang B (2014) Mechanism of salinity tolerance in plants: physiological, biochemical, and molecular characterization. Int J Genom. https://doi.org/10.1155/2014/701596

  • Ha B-K, Robbins RT, Han F et al (2007) SSR mapping and confirmation of soybean QTL from PI 437654 conditioning resistance to reniform nematode. Crop Sci 47:1336–1343

    Article  CAS  Google Scholar 

  • Ha B-K, Lee KJ, Velusamy V, Kim J-B (2014) Improvement of soybean through radiation-induced mutation breeding techniques in Korea. Plant Genet Res 12(S1):S54–S57

    Article  CAS  Google Scholar 

  • Hagely KB, Palmquist D, Bilyeu KD (2013) Classification of distinct seed carbohydrate profiles in soybean. J Agric Food Chem 61:1105–1111

    Article  CAS  PubMed  Google Scholar 

  • Hajduch M, Ganapathy A, Stein JW, Thelen JJ (2005) A systematic proteomic study of seed filling in soybean. Establishment of high-resolution two-dimensional reference maps, expression profiles, and an interactive proteome database. Plant Physiol 137(4):1397–1419

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hajika M, Igita K, Kitamura K (1991) A line lacking all the seed lipoxygenase isozymes in soybean [Glycine max (L.) Merrill] induced by gamma-ray irradiation. Japan J Breed 41(3):507–509. https://doi.org/10.1270/jsbbs1951.41.507

    Article  Google Scholar 

  • Hamilton MC, Davis CL, Gelin JR et al (2018) Molecular markers associated with soy iron deficiency chlorosis:US9879326. http://patentsgazette.uspto.gov/week05/OG/html/1446-5/US09879326-20180130.html

  • Hamwieh A, Tuyen DD, Cong H et al (2011) Identification and validation of a major QTL for salt tolerance in soybean. Euphy 179:451–459

    Article  Google Scholar 

  • Han Y, Cameron JN, Wang L, Beavis WD (2017) The predicted cross value for genetic introgression of multiple alleles. Genetics 205:1409–1423. https://doi.org/10.1534/genetics.116.197095

    Article  PubMed  PubMed Central  Google Scholar 

  • Hancock CN, Zhang F, Floyd K et al (2011) The rice (Oryza sativa) MITE mPing is an effective insertional mutagen in soybean (Glycine max). Plant Physiol 157:552–562

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Harlan JR, deWet JMJ (1971) Toward a rational classification of cultivated plants. Taxon 20:509–517

    Article  Google Scholar 

  • Hartman GL, Gardner ME, Hymowitz T, Naidoo GC (2000) Evaluation of perennial Glycine species for resistance to soybean fungal pathogens that cause Sclerotinia stem rot and sudden death syndrome. Crop Sci 40:545–549

    Article  Google Scholar 

  • Hartman GL, West ED, Herman TK (2011) Crops that feed the world 2. Soybean-worldwide production, use, and constraints caused by pathogens and pests. Food Secur 3(1):5–17

    Article  Google Scholar 

  • Hartman GL, Bowen CR, Haudenshield JS et al (2015a) Evaluation of disease and pest damage on soybean cultivars released from 1923 through 2008 under field conditions in central Illinois. Agron J 107:2373–2380

    Article  CAS  Google Scholar 

  • Hartman GL, Rupe JC, Sikora EJ et al (2015b) Compendium of soybean diseases and pests, fifth edition. APS Press 201 pages ISBN 978-0-89054-473-0

    Google Scholar 

  • Hartung F, Schiemann J (2014) Precise plant breeding using new genome editing techniques: opportunities, safety and regulation in the EU. Plant J 78(5):742–752

    Article  CAS  PubMed  Google Scholar 

  • Hartwig EE (1972) Utilization of soybean germplasm strains in a soybean improvement program. Crop Sci 12:856–859

    Article  Google Scholar 

  • Hartwig EE (1973) Varietal development In: Caldwell BB (ed) Soybeans: improvement, production and uses. Agron Monogr 16. ASA, CSSA, and SSSA, Madison, WI, pp 187–210

    Google Scholar 

  • Haun W, Coffman A, Clasen BM et al (2014) Improved soybean oil quality by targeted mutagenesis of the fatty acid desaturase 2 gene family. Plant Biotech J 12(7):934–940

    Article  CAS  Google Scholar 

  • Hay WT, Bihmidine S, Mutlu N et al (2017) Enhancing soybean photosynthetic CO2 assimilation using a cyanobacterial membrane protein, ictB. J Plant Physiol 212:58–68

    Article  CAS  PubMed  Google Scholar 

  • Hazel L (1943) The genetic basis for constructing selection indexes. Genet 28:476–490

    CAS  Google Scholar 

  • He Y, Schmidt MA (2016) Transgenic soybean production of bioactive human epidermal growth factor (EGF). PLoS ONE 11:e0157034. https://doi.org/10.1371/journal.pone.0157034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heady EO (1954) Simplified presentation and logical aspects of linear programming technique. Am J Ag Econ 36(5):1035–1048

    Google Scholar 

  • Heady EO, Pesek J (1954) A fertilizer production surface with specification of economic optima for corn grown on calcareous Ida Silt Loam. Am J Ag Econ 36(3):466–482

    Google Scholar 

  • Heffner EL, Sorrells ME, Jannink JL (2009) Genomic selection for crop improvement. Crop Sci 49:1–12

    Article  CAS  Google Scholar 

  • Heffner EL, Lorenz AJ, Jannink JL, Sorrells ME (2010) Plant breeding with genomic selection: gain per unit time and cost. Crop Sci 50(5):1681–1690

    Article  Google Scholar 

  • Heffner EL, Jannink JL, Iwata H et al (2011) Genomic selection accuracy for grain quality traits in biparental wheat populations. Crop Sci 51:2597–2606

    Article  Google Scholar 

  • Helms TC, Nelson BD, Chang KC (2015) Registration of ‘ND1406HP’ soybean. J Plant Reg 9:315–317

    Article  Google Scholar 

  • Henderson CR (1985) NIVQUE and REML estimation of additive and nonadditive genetic variances. J Anim Sci 61:113–121

    Article  Google Scholar 

  • Herman EM (2014) Soybean seed proteome rebalancing. Front Plant Sci 5:437

    Article  PubMed  PubMed Central  Google Scholar 

  • Herman EM, Schmidt MA (2016) The potential for engineering enhanced functional-feed soybeans for sustainable aquaculture feed. Front Plant Sci 7:440

    Article  PubMed  PubMed Central  Google Scholar 

  • Hesler LS, Chiozza MV, O’Neal ME et al (2013) Performance and prospects of Rag genes for management of soybean aphid. Entom Exp Appl 147:201–216

    Article  CAS  Google Scholar 

  • Higley LG, Boethel DJ (1994) Handbook of soybean insect pests. Entomological Society of America handbook series: issue 1

    Google Scholar 

  • Hill CB, Li Y, Hartman GL (2004a) Resistance of Glycine species and various cultivated legumes to the soybean aphid (Homoptera: Aphididae). J Econ Entom 97:1071–1077

    Article  PubMed  Google Scholar 

  • Hill CB, Li Y, Hartman GL (2004b) Resistance to the soybean aphid in soybean germplasm. Crop Sci 46:98–106

    Article  Google Scholar 

  • Hinchee MAW, Connor-Ward DV, Newell CA et al (1988) Production of transgenic soybean plants using Agrobacterium-mediated DNA transfer. Bio/Tech 6:915–922

    CAS  Google Scholar 

  • Hitz WD, Carlson TJ, Kerr PS, Sebastian SA (2002) Biochemical and molecular characterization of a mutation that confers a decreased raffinosaccharide and phytic acid phenotype on soybean seeds. Plant Phys 128:650–660

    Article  CAS  Google Scholar 

  • Ho PT (1975) The cradle of the east: an inquiry into the indigenous origins of techniques and ideas of neolithic and early historic china, 5000–1000 BC. The Chinese University of Hong Kong, Hong Kong

    Google Scholar 

  • Hossain MS, Joshi T, Stacey G (2015) System approaches to study root hairs as a single cell plant model: current status and future perspectives. Front Plant Sci 6:363

    PubMed  PubMed Central  Google Scholar 

  • Hou A, Chen P, Alloatti J et al (2009) Genetic variability of seed sugar content in worldwide soybean germplasm collections. Crop Sci 49(3):903. https://doi.org/10.2135/cropsci2008.05.0256

  • Huang M, Kaletunc G, St Martin S et al (2014) Correlations of seed traits with tofu texture in 48 soybean cultivars and breeding lines. Plant Breed 133(1):67–73

    Article  CAS  Google Scholar 

  • Huber SC, Li K, Nelson R et al (2016) Canopy position has a profound effect on soybean seed composition. Peer J 4:e2452. https://doi.org/10.7717/peerj.2452

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hudson K (2012) Soybean oil-quality variants identified by large-scale mutagenesis. Int J Agron 2012 article id 569817:7 pages. https://doi.org/10.1155/2012/569817

  • Hwang EY, Song Q, Jia G et al (2014) A genome-wide association study of seed protein and oil content in soybean. BMC Genom 15(1):1. https://doi.org/10.1186/1471-2164-15-1

    Article  CAS  Google Scholar 

  • Hwang WJ, Kim MY, Kang YJ et al (2015) Genome-wide analysis of mutations in a dwarf soybean mutant induced by fast neutron bombardment. Euphy 203(2):399–408

    Article  Google Scholar 

  • Hwang S, King CA, Chen P et al (2016) Meta-analysis to refine map position and reduce confidence intervals for delayed-canopy-wilting QTLs in soybean. Mol Breed 36:91. https://doi.org/10.1007/s11032-016-0516-5

    Article  CAS  Google Scholar 

  • Hymowitz T (2004) Speciation and cytogenetics In: Boerma HR, Specht JE (eds) Soybeans: improvement, production, and uses, Agronomy monogrraph 16, 3rd ed. ASA, CSSA, and SSSA, Madison, WI, pp 97–136

    Google Scholar 

  • Hymowitz T, Harlan JR (1983) The introduction of soybean to North America by Samuel Bowen in 1765. Econ Bot 37(4):371–379. https://doi.org/10.1007/BF02904196

    Article  Google Scholar 

  • Hyten DL, Pantalone VR, Sams CR et al (2004) Seed quality QTL in a prominent soybean population. Theor Appl Genet 109:552–561

    Article  CAS  PubMed  Google Scholar 

  • Hyten DL, Song Q, Zhu Y et al (2006) Impacts of genetic bottlenecks on soybean genome diversity. Proc Nat Acad Sci USA 103(45):16666–16671

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hyten DL, Cannon SB, Song Q et al (2010a) High-throughput SNP discovery through deep resequencing of a reduced representation library to anchor and orient scaffolds in the soybean whole genome sequence. BMC Genom 11:38. https://doi.org/10.1186/1471-2164-11-38

    Article  CAS  Google Scholar 

  • Hyten DL, Choi IY, Song Q et al (2010b) A high density integrated genetic linkage map of soybean and the development of a 1536 universal soy linkage panel for quantitative trait locus mapping. Crop Sci 50:960–968

    Article  CAS  Google Scholar 

  • International Service for the Acquisition of Agri-biotech Applications (ISAAA) (2018) Brief 53 Global status of commercialized biotech/GM crops in 2017: biotech crop adoption surges as economic benefits accumulate in 22 years. www.isaaa.org/resources/publications/briefs/53/download/isaaa-brief-53-2017.pdf

  • Iyer VV, Sriram G, Fulton DB et al (2008) Metabolic flux maps comparing the effect of temperature on protein and oil biosynthesis in developing soybean cotyledons. Plant Cell Envir 31(4):506–517. https://doi.org/10.1111/j.1365-3040.2008.01781.x

    Article  CAS  Google Scholar 

  • Jacobs TB, LaFayette PR, Schmitz RJ, Parrott WA (2015a) Targeted genome modifications in soybean with CRISPR/Cas9. BMC Biotech 15:16. https://doi.org/10.1186/s12896-015-0131-2

    Article  CAS  Google Scholar 

  • Jacobs TB, Lawler NJ, LaFayette PR et al (2015b) Simple gene silencing using the trans-acting siRNA pathway. Plant Biotech J 14(1):117–127. https://doi.org/10.1111/pbi.12362

    Article  CAS  Google Scholar 

  • Jarquin D, Kocak K, Posadas L et al (2014) Genotype by sequencing for genomic prediction in a soybean breeding population. BMC Genom 15:740

    Article  Google Scholar 

  • Jaureguy LM, Chen P, Scaboo AM (2011) Heritability and correlations among food-grade traits in soybean. Plant Breed 130:647–652

    Article  Google Scholar 

  • Jenkinson J, Tamulonis J, Narvel J et al (2014) Utility of SNP markers associated with major soybean plant maturity and growth habit genomic regions. Google Patents US20080256660A1. https://patents.google.com/patent/US20080256660/no

  • Jiao Y, Vuong TD, Liu Y et al (2015) Identification of quantitative trait loci underlying resistance to southern root-knot and reniform nematodes in soybean accession PI 567516C. Mol Breed 35:131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Johnson GR (2007) Corn breeding in the twenty-first century In: Kang MS, Pryadarshan PM (eds) Breeding major food staples. Blackwell Publishing, Hoboken, pp 227–244

    Google Scholar 

  • Johnson HW, Robinson HF, Comstock RE (1955) Genotypic and phenotypic correlations in soybeans and their implications in selection. Agron J 47(10):477–483

    Article  Google Scholar 

  • Johnson B, Gardner CO, Wrede KC (1988) Application of an optimization model to multi-trait selection programs. Crop Sci 28(5):723–728

    Article  Google Scholar 

  • Johnson WG, Hallett SG, Legleiter, TR et al (2016) 2,4-D- and dicamba-tolerant crops-some facts to consider. Purdue Extension Expert Reviewed ID-453-W

    Google Scholar 

  • Jones SI, Vodkin LO (2013) Using RNA-seq to profile soybean seed development from fertilization to maturity. PLoS ONE 8(3):e59270. https://doi.org/10.1371/journal.pone.0059270

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Joshi T, Fitzpatrick MR, Chen S et al (2013) Soybean knowledge base (SoyKB): A web resource for integration of soybean translational genomics and molecular breeding. Nucl Acids Res 42:D1245–D1252

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kabelka EA, Diers BW, Fehr WR et al (2004) Putative alleles for increased yield from soybean plant introductions. Crop Sci 44(3):784–791

    Article  Google Scholar 

  • Kaler AS, Ray JD, Schapaugh WT et al (2018) Association mapping identifies loci for canopy coverage in diverse soybean genotypes. Mol Breed 38(5):50. https://doi.org/10.1007/s11032-018-0810-5

    Article  CAS  Google Scholar 

  • Kanazashi Y, Hirose A, Takahashi I et al (2018) Simultaneous site-directed mutagenesis of duplicated loci in soybean using a single guide RNA. Plant Cell Rep 37(3):553–563

    Article  CAS  PubMed  Google Scholar 

  • Kang LJ, Matsumura Y, Mori T (1991) Characterization of texture and mechanical properties of heat-induced soy protein gels. J Amer Oil Chem Soc 68:339–345

    Article  CAS  Google Scholar 

  • Karn A, Heim C, Flint-Garcia S et al (2017) Development of rigorous fatty acid near-infrared spectroscopy quantitation methods in support of soybean oil improvement. J Amer Oil Chem Soc 94(1):69–76. https://doi.org/10.1007/s11746-016-2916-4

    Article  CAS  Google Scholar 

  • Karthika R, Lakshmi BS (2006) Effect of gamma rays and EMS on two varieties of soybean. Asian J Biol Sci 5(4):721–724

    Google Scholar 

  • Kavithamani D, Kalamani A, Banniarajan C, Uma D (2010) Development of new vegetable soybean (Glycine max L Merill) mutants with high protein and less fibre content. Electr J Plant Breed 1(4):1060–1065

    Google Scholar 

  • Keim P, Diers BW, Shoemaker RC (1990) Genetic analysis of soybean hard seededness with molecular markers. Theor Appl Genet 79:465–469

    Article  CAS  PubMed  Google Scholar 

  • Kerr PS, Sebastian SA (2000) Soybean products with improved carbohydrate composition and soybean plants.. US Patent No. 6147193. https://patents.google.com/patent/US5710365

  • Kim Y, Wicker L (2005) Soybean cultivars impact quality and function of soymilk and tofu. J Sci Food Agric 5:2514–2518. https://doi.org/10.1002/jsfa.2287

    Article  CAS  Google Scholar 

  • Kim KS, Hill CB, Hartman GL et al (2008) Discovery of soybean aphid biotypes. Crop Sci 48:923–928

    Article  Google Scholar 

  • Kim M, Song JT, Bilyeu KD, Lee J-D (2015) A new low linolenic acid allele of GmFAD3A gene in soybean PE1690. Mol Breed 35:155. https://doi.org/10.1007/s11032-015-0352-z

  • Kim KS, Vuong TD, Qiu D et al (2016a) Advancements in breeding, genetics, and genomics for resistance to three nematode species in soybean. Theor Appl Genet 129:2295–2311

    Article  CAS  PubMed  Google Scholar 

  • Kim M, Schultz S, Nelson RL, Diers BW (2016b) Identification and fine mapping of a soybean seed protein QTL from PI 407788A on chromosome 15. Crop Sci 56(1):219

    Article  CAS  Google Scholar 

  • Kinney AJ, Knowlton S (1997) Designer oils: the high oleic soybean In: Harander S, Roller S (eds) Genetic engineering for food industry: a strategy for food quality improvement. Blackie Academic, London, pp 193–213

    Google Scholar 

  • Kinney AJ, Jung R, Herman EM (2001) Cosuppression of the α subunits of β-conglycinin in transgenic soybean seeds induces the formation of endoplasmic reticulum-derived protein bodies. Plant Cell 13(5):1165. https://doi.org/10.1105/tpc.13.5.1165

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kisha TJ, Diers BW, Hoyt JM, Sneller CH (1998) Genetic diversity among soybean plant introductions and North American germplasm. Crop Sci 38(6):1669–1680

    Article  Google Scholar 

  • Klaiber JA, Shendelman JM, Hood MJ et al (2013) Molecular markers associated with soybean root-knot nematode tolerance and methods of their use CA2845522C. https://patents.google.com/patent/CA2845522C/en

  • Knowlton S (1999) Soybean oil having high oxidative stability US5981781A. https://patents.google.com/patent/US5981781A/en

  • Kosuri S, Church GM (2014) Large-scale de novo DNA synthesis: technologies and applications. Nat Meth 11(5):499–507

    Article  CAS  Google Scholar 

  • Kovalenko IV, Rippke GR, Hurburgh CR (2006a) Measurement of soybean fatty acids by near-infrared spectroscopy: linear and nonlinear calibration methods. J Amer Oil Chem Soc 83(5):421–427

    Article  CAS  Google Scholar 

  • Kovalenko IV, Rippke GR, Hurburgh CR (2006b) Determination of amino acid composition of soybeans (Glycine max) by near-infrared spectroscopy. J Agric Food Chem 54(10):3485–3491

    Article  CAS  PubMed  Google Scholar 

  • Krasileva KV, Vasquez-Gross HA, Howell T et al (2017) Uncovering hidden variation in polyploid wheat. Proc Nat Acad Sci USA 114(6):E913–E921

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar GR, Sakthivel K, Sundaram RM et al (2010) Allele mining in crops: prospects and potentials. Biotech Adv 28(4):451–461

    Article  CAS  Google Scholar 

  • Kumari A, Hada A, Subramanyam K et al (2018) RNAi-mediated resistance to yellow mosaic viruses in soybean targeting coat protein gene. Acta Phys Plant 40(2):32–44. https://doi.org/10.1007/s11738-018-2608-9

    Article  CAS  Google Scholar 

  • Kusano M, Baxter I, Fukushima A et al (2015) Assessing metabolomic and chemical diversity of a soybean lineage representing 35 years of breeding. Metabolomics 11(2):261–270

    Article  CAS  Google Scholar 

  • Kwon SH, Torrie JH (1964) Heritability and interrelationships among traits of two soybean populations. Crop Sci 4:196–198

    Article  Google Scholar 

  • Lakhssassi N, Zhou Z, Liu S et al (2017a) Characterization of the FAD2 gene family in soybean reveals the limitations of gel-based TILLING in genes with high copy number. Front Plant Sci 8:324

    Article  PubMed  PubMed Central  Google Scholar 

  • Lakhssassi N, Colantonio V, Flowers ND et al (2017b) Stearoyl-acyl carrier protein desaturase mutations uncover an impact of stearic acid in leaf and nodule structure. Plant Phys 174(3):1531–1543

    Article  CAS  Google Scholar 

  • Lam HM, Xu X, Liu X et al (2010) Resequencing of 31 wild and cultivated soybean genomes identifies patterns of genetic diversity and selection. Nat Genet 42(12):1053–1059

    Article  CAS  PubMed  Google Scholar 

  • Le BH, Cheng C, Bui AQ et al (2010) Global analysis of gene activity during Arabidopsis seed development and identification of seed-specific transcription factors. Proc Nat Acad Sci USA 107(18):8063–8070

    Article  PubMed  PubMed Central  Google Scholar 

  • Lee GJ, Boerma HR, Villagarcia MR et al (2004) A major QTL conditioning salt tolerance in S-100 soybean and descendent cultivars. Theor Appl Genet 109:1610–1619

    Article  CAS  PubMed  Google Scholar 

  • Lee J-D, Bilyeu KD, Pantalone VR et al (2012) Environmental stability of oleic acid concentration in seed oil for soybean lines with FAD2-1A and FAD2-1B mutant genes. Crop Sci 52(3):1290–1297

    Article  CAS  Google Scholar 

  • Lee JD, Kim HK, Robbins RT et al (2015a) Reaction of soybean cyst nematode resistant plant introductions to root-knot and reniform nematodes. Plant Breed Biotech 3:346–354

    Article  Google Scholar 

  • Lee C, Choi M-S, Kim H-T et al (2015b) Soybean [Glycine max (L) Merrill]: Importance as a crop and pedigree reconstruction of Korean varieties. Plant Breed Biotech 3(3):179–196. https://doi.org/10.9787/PBB.2015.3.3.179

    Article  Google Scholar 

  • Lee TG, Kumar I, Diers BW, Hudson ME (2015c) Evolution and selection of Rhg1, a copy-number variant nematode-resistance locus. Mol Ecol 24(8):1774–1791

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lempe J, Lachowiec J, Sullivan AM, Queitsch C (2013) Molecular mechanisms of robustness in plants. Curr Opin Plant Biol 16(1):62–69

    Article  CAS  PubMed  Google Scholar 

  • Leung H, Raghavan C, Zhou B et al (2015) Allele mining and enhanced genetic recombination for rice breeding. Rice 8(1):34

    Article  PubMed  PubMed Central  Google Scholar 

  • Lewers KS, St Martin SK, Hedges BR et al (1996) Hybrid soybean seed production: comparison of three methods. Crop Sci 36(6):1560–1567

    Article  Google Scholar 

  • Li Z, Nelson RL (2002) RAPD marker diversity among cultivated and wild soybean accessions from four Chinese provinces. Crop Sci 42(5):1737–1744

    Article  Google Scholar 

  • Li Z, Qiu L, Thompson JA et al (2001) Molecular genetic analysis of the U.S. and Chinese soybean ancestral lines. Crop Sci 41:1330–1336

    Article  CAS  Google Scholar 

  • Li X, Lassner M, Zhang Y (2002) Deleteagene: a fast neutron deletion mutagenesis-based gene knockout system for plants. Comp Funct Genom 3(2):158–160

    Article  CAS  Google Scholar 

  • Li D, Pfeiffer TW, Cornelius PL (2008) Soybean QTL for yield and yield components associated with Glycine soja alleles. Crop Sci 48:571–581

    Article  Google Scholar 

  • Li X, Zhu C, Wang J et al (2012) Computer simulation in plant breeding. Ann Rev Genet 35:303–339

    Google Scholar 

  • Li L, Zheng W, Zhu Y et al (2015a) QQS orphan gene regulates carbon and nitrogen partitioning across species via NF-YC interactions. Proc Nat Acad Sci USA 112(47):14734–14739

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li Z, Liu ZB, Xing A et al (2015b) Cas9-guide RNA directed genome editing in soybean. Plant Physiol 169(2):960–970

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li G, Jain R, Chern M et al (2017a) The sequences of 1,504 mutants in the model rice variety Kitaake facilitate rapid functional genomic studies. Plant Cell 29:1218–1231

    CAS  PubMed  PubMed Central  Google Scholar 

  • Li Z, Jiang L, Ma Y et al (2017b) Development and utilization of a new chemically-induced soybean library with a high mutation density. J Integr Plant Biol 59(1):60–74

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li D, Zhao X, Han Y et al (2018) Genome-wide association mapping for seed protein and oil contents using a large panel of soybean accessions. Genomics pii: S0888-7543(18)30008-30009

    Google Scholar 

  • Libault M, Farmer A, Joshi T et al (2010) An integrated transcriptome atlas of the crop model Glycine max, and its use in comparative analyses in plants. Plant J 63(1):86–99

    CAS  PubMed  Google Scholar 

  • Lieman-Hurwitz J, Rachmilevitch S, Mittler R et al (2003) Enhanced photosynthesis and growth of transgenic plants that express ictB, a gene involved in HCO3- accumulation in cyanobacteria. Plant Biotech J 1(1):43–50

    Article  CAS  Google Scholar 

  • Lim BT, DeMan JM, DeMan L, Buzzel RI (1990) Yield and quality of tofu as affected by soybean and soymilk characteristics. calcium sulfate coagulant. J Food Sci 55:1088–1107. https://doi.org/10.1111/j.1365-2621.1990.tb01605.x

    Article  Google Scholar 

  • Linkemer G, Board JE, Musgrave ME (1998) Waterlogging effects on growth and yield components in late-planted soybean. Crop Sci 38:1576–1584

    Article  CAS  PubMed  Google Scholar 

  • Liu KS (1997) Food use of whole soybeans In: Johnson LA, White PJ, Galloway R (eds) Soybeans. AOCS Press, Urbana, pp 441–482

    Book  Google Scholar 

  • Liu KS (2008) Food use of whole soybeans In: Johnson LA, White PJ, Galloway, R (eds) Soybeans: chemistry, production, processing, and utilization. AOCS Press, Urbana, pp 441–481

    Google Scholar 

  • Liu W, Stewart CN Jr (2015) Plant synthetic biology. Trends Plant Sci 20(5):309–317

    Article  CAS  PubMed  Google Scholar 

  • Liu J, Hua W, Yang H-L et al (2012a) The BnGRF2 gene (GRF2-like gene from Brassica napus) enhances seed oil production through regulating cell number and plant photosynthesis. J Exp Bot 63(10):3727–3740

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu S, Kandoth PK, Warren SD et al (2012b) A soybean cyst nematode resistance gene points to a new mechanism of plant resistance to pathogens. Nature 492:256–260

    Article  CAS  PubMed  Google Scholar 

  • Lobell DB, Cassman KG, Field CB (2009) Crop yield gaps: their importance, magnitudes, and causes. Ann Rev Envir Resour 34:179–204

    Article  Google Scholar 

  • Longin CFH, Utz HF, Reif JC et al (2007) Hybrid maize breeding with doubled haploids: III. Efficiency of early testing prior to doubled haploid production in two-stage selection for testcross performance. Theor Appl Genet 115(4):519–527

    Article  PubMed  Google Scholar 

  • Ludlow MM, Muchow RC (1990) A critical evaluation of traits for improving crop yields in water-limited environments. Adv Agron 43:107–153

    Article  Google Scholar 

  • Lush JL (1943) Animal breeding plans. Iowa State College Press, Ames, 457 p

    Google Scholar 

  • Mansur LM, Lark KG, Cross H, Oliveira A (1993) Interval mapping of quantitative trait loci for reproductive, morphological, and seed traits of soybean (Glycine max L.). Theor Appl Genet 86:907–913

    Article  CAS  PubMed  Google Scholar 

  • Mao T, Jiang Z, Han Y et al (2013) Identification of quantitative trait loci underlying seed protein and oil contents of soybean across multi-genetic backgrounds and environments. Plant Breed 132:630–641. https://doi.org/10.1111/pbr.12091

    Article  CAS  Google Scholar 

  • Mathieu M, Winters EK, Kong F et al (2009) Establishment of a soybean (Glycine max Merr L.) transposon-based mutagenesis repository. Planta 229(2):279–289

    Article  CAS  PubMed  Google Scholar 

  • Mayta J, Chen P, Popp MP et al (2014) Break-even analysis of productivity and profitability for food-grade specialty soybeans. Agric Sci 2(2):1–11

    Google Scholar 

  • McCabe DE, Swain WF, Martinell BJ, Christou P (1988) Stable transformation of soybean (Glycine max) by particle acceleration. Biotech 6:923–926

    Google Scholar 

  • McCarville MT, O’Neal ME, Potter BD et al (2014) One gene versus two: a regional study on the efficacy of single gene versus pyramided resistance for soybean aphid management. J Econ Entom 107:1680–1687

    Article  CAS  PubMed  Google Scholar 

  • McHale LK, Haun WJ, Xu WW et al (2012) Structural variants in the soybean genome localize to clusters of biotic stress-response genes. Plant Phys 159(4):1295–1308

    Article  CAS  Google Scholar 

  • Meis SJ, Fehr WR, Schnebly SR (2003) Seed source effect on field emergence of soybean lines with reduced phytate and raffinose saccharides. Crop Sci 43(4):1336–1339

    Article  Google Scholar 

  • Men AE, Laniya ST, Searle IR et al (2002) Fast neutron mutagenesis of soybean (Glycine soja L.) produces a supernodulating mutant containing a large deletion in linkage group H. Genome Lett 1(3):147–155

    Article  CAS  Google Scholar 

  • Mian MAR, McHale L, Li Z, Dorrance AE (2017) Registration of ‘Highpro1’soybean with high protein and high yield developed from a North×South cross. J Plant Reg 11(1):51–54

    Article  Google Scholar 

  • Mickelbart MV, Hasegawa PM, Bailey-Serres J (2015) Genetic mechanisms of abiotic stress tolerance that translate to crop yield stability. Nat Rev Genet 16(4):237–251

    Article  CAS  PubMed  Google Scholar 

  • Mikel MA, Diers BW, Nelson RL, Smith HH (2010) Genetic diversity and agronomic improvement of North American soybean germplasm. Crop Sci 50:1219–1229

    Article  Google Scholar 

  • Mittler R (2006) Abiotic stress, the field environment and stress combination. Trends Plant Sci 11(1):15–19

    Article  CAS  PubMed  Google Scholar 

  • Mizrachi E, Verbeke L, Christie N et al (2017) Network-based integration of systems genetics data reveals pathways associated with lignocellulosic biomass accumulation and processing. Proc Nat Acad Sci USA 114(5):1195–1200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morse WJ, Cartter JL (1939) Soybeans: culture and varieties. US Dept Agric Farmers’ Bulletin 1520

    Google Scholar 

  • Mortensen DA, Egan JF, Maxwell BD et al (2012) Navigating a critical juncture for sustainable weed management. Biosci 62(1):75–84. https://doi.org/10.1525/bio.2012.62.1.12

    Article  Google Scholar 

  • Mounts TL, Warner K, List GR et al (1994) Low-linolenic acid soybean oils—alternatives to frying oils. J Amer Oil Chem Soc 71(5):495–499

    Article  CAS  Google Scholar 

  • Mourtzinis S, Conley SP (2017) Delineating soybean maturity groups across the United States. Agron J 109(4):1397–1403

    Article  Google Scholar 

  • Mourtzinis S, Specht JE, Lindsey LE et al (2015) Climate-induced reduction in US-wide soybean yields underpinned by region- and in-season specific responses. Nat Plants 1:14026

    Article  PubMed  Google Scholar 

  • Mourtzinis S, Gaspar AP, Naeve SL, Conley SP (2017) Planting date, maturity, and temperature effects on soybean seed yield and composition. Agron J 109(5):2040–2050

    Article  CAS  Google Scholar 

  • Mourtzinis S, Rattalino Edreira JI, Grassini P et al (2018) Sifting and winnowing: Analysis of farmer field data for soybean in the US North-Central region. Field Crops Res 221:130–141

    Article  Google Scholar 

  • Mueller D, Robertson A, Sisson A, Tylka G (2010) Soybean diseases. Iowa State University Extension and Outreach CSI 0004

    Google Scholar 

  • Mujoo R, Trinh DT, Ng PK (2003) Characterization of storage proteins in different soybean varieties and their relationship to tofu yield and texture. Food Chem 82(2):265–273

    Article  CAS  Google Scholar 

  • Mullin WJ, Xu W (2001) Study of soybean seed coat components and their relationship to water absorption. J Agric Food Chem 49(11):5331–5335

    Article  CAS  PubMed  Google Scholar 

  • Munns R, Tester M (2008) Mechanisms of salinity tolerance. Ann Rev Plant Biol 59:651–656

    Article  CAS  Google Scholar 

  • Murphy PA, Chen HP, Hauck C, Wilson L (1997) Soybean storage protein composition and tofu quality. Food Tech 51(3):86–110

    CAS  Google Scholar 

  • Nadeau JH, Dudley AM (2011) Systems genetics. Sci 331(6020):1015–1016

    Article  Google Scholar 

  • Narvel J, Concibido V, Cerny L et al (2012) Methods and compositions for selecting soybean plants resistant to southern root knot nematode EP218971B1. https://patents.google.com/patent/EP2184971B1/en

  • Nelson RL, Johnson EOC (2012) Registration high-yielding soybean germplasm line LG04-6000. J Plant Reg 6:1–4

    Article  Google Scholar 

  • Nguyen VT, Vuong TD, Van Toai T et al (2012) Mapping of quantitative trait loci associated with resistance to Phytophthora sojae and flooding tolerance in soybean. Crop Sci 52:2481–2493

    Article  CAS  Google Scholar 

  • Nichols DM, Glover KD, Carlson SR et al (2006) Fine mapping of a seed protein QTL on soybean linkage group I and its correlated effects on agronomic traits. Crop Sci 46(2):834–839

    Article  Google Scholar 

  • Nishinari K, Kohyama K, Zhang Y et al (1991) Rheological study on the effect of the A5 subunit on the gelation characteristics of soybean proteins. Agric Biol Chem 55(2):351–355

    CAS  Google Scholar 

  • O’Neal ME, Varenhorst AJ, Kaiser MC (2018) Rapid evolution to host plant resistance by an invasive herbivore: soybean aphid (Aphis glycines) virulence in North America to aphid resistant cultivars. Curr Opin Insect Sci 26:1–7

    Article  PubMed  Google Scholar 

  • Obendorf RL, Kosina SM (2011) Soluble carbohydrates in soybean In: Ng T-B (ed) Soybean – biochemistry, chemistry and physiology. InTechOpen, pp 201–228

    Google Scholar 

  • Obendorf RL, Zimmerman AD, Ortiz PA et al (2008) Imbibitional chilling sensitivity and soluble carbohydrate composition of low raffinose, low stachyose soybean. Seed Crop Sci 48(6):2396–2403

    Article  CAS  Google Scholar 

  • Obendorf RL, Zimmerman AD, Zhang Q et al (2009) Accumulation of soluble carbohydrates during seed development and maturation of low-raffinose, low-stachyose soybean. Crop Sci 49(1):329–341

    Article  CAS  Google Scholar 

  • Oltmans SE, Fehr WR, Welke GA et al (2005) Agronomic and seed traits of soybean lines with low-phytate phosphorus. Crop Sci 45:593–598

    Article  CAS  Google Scholar 

  • Oosterhuis DM, Scott HD, Hampton RE, Wullschleter SD (1990) Physiological response of two soybean [Glycine max, L. Merr] cultivars to short-term flooding. Envir Exp Bot 30:85–93

    Article  Google Scholar 

  • Ortega MA, All JN, Boerma HR, Parrott WA (2016) Pyramids of QTLs enhance host-plant resistance and Bt-mediated resistance to leaf-chewing insects in soybean. Theor Appl Genet 129:703–715

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Padgette SR, Kolacz KH, Delannay X et al (1995) Development, identification, and characterization of a glyphosate-tolerant soybean line. Crop Sci 35(5):1451–1461

    Article  CAS  Google Scholar 

  • Paek NC, Imsande J, Shoemaker RC, Shibles R (1997) Nutritional control of soybean seed storage protein. Crop Sci 37(2):498–503

    Article  Google Scholar 

  • Painter RH (1941) The economic value and biologic significance of insect resistance in plants. J Econ Entom 34:358–367

    Article  Google Scholar 

  • Palmer RG, Pfeiffer TW, Buss GR, Kilen TC (2004) Qualitative genetics In: Boerma HR, Specht JE (eds) Soybeans: improvement, production, and uses. ASA-CSSA-ASSA, Madison, pp 137–233

    Google Scholar 

  • Panthee DR, Pantalone VR, Sams CE et al (2006) Quantitative trait loci controlling sulfur containing amino acids, methionine and cysteine, in soybean seeds. Theor Appl Genet 112(3):546–553

    Article  CAS  PubMed  Google Scholar 

  • Papiernik SK, Grieve CM, Lesch SM, Yates SR (2005) Effects of salinity, imazethapyr, and chlorimuron application on soybean growth and yield. Comm Soil Sci Plant Anal 36:951–967

    Article  CAS  Google Scholar 

  • Park H, Weier S, Razvi F et al (2016) Towards the development of a sustainable soybean-based feedstock for aquaculture. Plant Biotech J 15(2):227–236

    Article  CAS  Google Scholar 

  • Parrott W (2018) Outlaws, old laws and no laws: The prospects of gene editing for agriculture in United States. Physiol Plant. https://doi.org/10.1111/ppl.12756

  • Parrott W, Walker D, Zhu S et al (2008) Genomics of insect-soybean interactions In: Stacey G (ed) Genetics and genomics of soybean. Springer, New York, pp 269–191

    Google Scholar 

  • Passioura JB (2012) Phenotyping for drought tolerance in grain crops: when is it useful to breeders? Funct Plant Biol 39:851–859

    Article  PubMed  Google Scholar 

  • Pathan MS, Lee JD, Sleper DA et al (2014) Two soybean plant introductions display slow leaf wilting and reduced yield loss under drought. J Agro Crop Sci 200:231–236

    Article  Google Scholar 

  • Patil G, Chaudhary J, Vuong TD et al (2017) Development of SNP genotyping assays for seed composition traits in soybean. Int J Plant Genom Article ID 6572969:1–12. https://doi.org/10.1155/2017/6572969

    Article  CAS  Google Scholar 

  • Pavadai P, Girija M, Dhanavel D (2010) Effect of gamma rays on some yield parameters and protein content of soybean in M2, M3 and M4 generation. J Exp Sci 1(6)

    Google Scholar 

  • Pazdernik DL, Killam AS, Orf JH (1997) Analysis of amino and fatty acid composition in soybean seed, using near infrared reflectance spectroscopy. Agron J 89(4):679–685

    Article  CAS  Google Scholar 

  • Peccoud J, Vander Velden K, Podlich D et al (2004) The selective values of alleles in a molecular network model are context dependent. Genet 166:1715–1725

    Article  CAS  Google Scholar 

  • Pelletier JM, Kwong RW, Park S et al (2017) LEC1 sequentially regulates the transcription of genes involved in diverse developmental processes during seed development. Proc Nat Acad Sci USA 114(32):E6710–E6719

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pham AT, Lee JD, Shannon JG, Bilyeu KD (2010) Mutant alleles of FAD2-1A and FAD2-1B combine to produce soybeans with the high oleic acid seed oil trait. BMC Plant Biol 10(1):195

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pham AT, Shannon GJ, Bilyeu KD (2012) Combinations of mutant FAD2 and FAD3 genes to produce high oleic acid and low linolenic acid soybean oil. Theor Appl Genet 125:503–515

    Article  CAS  PubMed  Google Scholar 

  • Phansak P, Soonsuwon W, Hyten DL et al (2016) Multi-population selective genotyping to identify soybean [Glycine max (L) Merr] seed protein and oil QTLs. G3:Genes/Genom/Genet 6(6):1635–1648

    Article  CAS  Google Scholar 

  • Pierce EC, LaFayette PR, O’rtega MA et al (2015) Ketocarotinoid production in soybean seeds through metabolic engineering. PLoS ONE 10(9):e0138196.doi https://doi.org/10.1371/J.pone.0138196

  • Pimentel D, Berger B, Filiberto D et al (2004) Water resources: agricultural and environmental issues. Biosci 54(10):909–918

    Article  Google Scholar 

  • Piper E, Boote K (1999) Temperature and cultivar effects on soybean seed oil and protein concentrations. J Amer Oil Chem Soc 76(10):1233–1241

    Article  CAS  Google Scholar 

  • Podlich DW, Cooper M (1998) Qu-GENE: a simulation platform for quantitative analysis of genetic models. Bioinfor 14(7):632–653

    Article  CAS  Google Scholar 

  • Porter JE, Herrmann KM, Ladisch MR (1990) Integral kinetics of alpha-galactosidase purified from Glycine max for simultaneous hydrolysis of stachyose and raffinose. Biotech Bioeng 35(1):15–22

    Article  CAS  Google Scholar 

  • Poysa V, Woodrow L (2002) Stability of soybean seed composition and its effect on soymilk and tofu yield and quality. Food Res Int 35(4):337–345

    Article  CAS  Google Scholar 

  • Poysa V, Woodrow L, Yu K (2006) Effect of soy protein subunit composition on tofu quality. Food Res Int 39(3):309–317

    Article  CAS  Google Scholar 

  • Poysa V, Woodrow L, Yu K (2008) Nature soybean. Can J Plant Sci 88(5):929–931. https://doi.org/10.4141/CJPS07197

    Article  Google Scholar 

  • Price KR, Lewis J, Wyatt GM, Fenwick GR (1988) Flatulence: Causes, relation to diet and remedies. Nahrung 32:609–623

    Article  CAS  PubMed  Google Scholar 

  • Prince SJ, Song L, Qiu D et al (2015) Genetic variants in root architecture-related genes in wild soybeans, a potential resource to improve cultivated soybean. BMC Genom 16:132. https://doi.org/10.1186/s12864-015-1334-6

    Article  CAS  Google Scholar 

  • Punjabi M, Bharadvaja N, Jolly M et al (2018) Development and evaluation of low phytic acid soybean by si-RNA triggered seed specific silencing of inositol polyphosphate 6-/3-/5-kinase gene. Front Plant Sci 9:804. https://doi.org/10.3389/fpls.2018.00804

    Article  PubMed  PubMed Central  Google Scholar 

  • Qi Z, Zhang Z, Wang Z et al (2018) Meta-analysis and transcriptome profiling reveal hub genes for soybean seed storage composition during seed development. Plant Cell Envir 2018:1–19

    Google Scholar 

  • Qin D, Zhao CL, Liu XY, Wang PW (2017) Transgenic soybeans expressing betaine aldehyde dehydrogenase from Atriplex canescens show increased drought tolerance. Plant Breed 136:699–709

    Article  CAS  Google Scholar 

  • Qiu D, Vuong T, Valliyodan B et al (2015) Identification and characterization of a stachyose synthase gene controlling reduced stachyose content in soybean. Theor Appl Genet 128(11):2167–2176

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ragsdale DW, Landis DA, Brodeur J et al (2011) Ecology and management of the soybean aphid in North America. Ann Rev Entom 56:375–399

    Article  CAS  PubMed  Google Scholar 

  • Rasmusson DC, Phillips RL (1997) Plant breeding progress and genetic diversity from de novo variation and elevated epistasis. Crop Sci 37:303–310

    Article  Google Scholar 

  • Rattalino Edreira JI, Mourtzinis S, Conley SP et al (2017) Assessing causes of yield gaps in agricultural areas with diversity in climate and soils. Agric For Meteoro 247:170–180

    Article  Google Scholar 

  • Ravindran V, Abdollahi MR, Bootwalla SM (2014) Nutrient analysis, metabolizable energy, and digestible amino acids of soybean meals of different origins for broilers. Poult Sci 93(10):2567–2577

    Article  CAS  PubMed  Google Scholar 

  • Reddy KN, Nandula VK (2012) Herbicide resistant crops: history, development and current technologies. Ind J Agron 57(1):1–7

    CAS  Google Scholar 

  • Reinprecht Y, Luk-Labey S-Y, Larsen J et al (2009) Molecular basis of the low linolenic acid trait in soybean EMS mutant line RG10. Plant Breed 128(3):253–258. https://doi.org/10.1111/j.1439-0523.2008.01571.x

    Article  CAS  Google Scholar 

  • Ren S, Lyle C, Jiang G, Penumala A (2016) Soybean salt tolerance 1 (GmST1) reduces ROS production, enhances ABA sensitivity, and abiotic stress tolerance in Arabidopsis thaliana. Front Plant Sci 7:445

    PubMed  PubMed Central  Google Scholar 

  • Rendel JM, Robertson A (1950) Estimation of genetic gain in milk yield by selection in a closed herd of dairy cattle. J Genet 50:1–8

    Article  CAS  PubMed  Google Scholar 

  • Rigola D (2009) High-throughput detection of induced mutations and natural variation using KeyPoint™ technology. PLoS One 4(3):e4761. https://doi.org/10.1371/journal.pone.0004761

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rincker K, Nelson R, Specht J et al (2014) Genetic improvement of soybean in maturity groups II, III, and IV. Crop Sci 54:1419–1432

    Google Scholar 

  • Robertson A (1957) Optimum group size in progeny testing and family selection. Biometr 13:442–450

    Article  Google Scholar 

  • Roesler K, Shen B, Bermudez E et al (2016) An improved variant of soybean type 1 diacylglycerol acyltransferase increases the oil content and decreases the soluble carbohydrate content of soybeans. Plant Phys 171(2):878–893

    Google Scholar 

  • Rotundo JL, Westgate ME (2009) Meta-analysis of environmental effects on soybean seed composition. Field Crops Res 110(2):147–156

    Article  Google Scholar 

  • Rowntree SC, Suhre JJ, Weidenbenner NH et al (2013) Genetic gain x management interactions in soybean: I. Planting date. Crop Sci 53:1128–1138

    Article  Google Scholar 

  • Roy SJ, Negrão S, Tester M (2014) Salt resistant crop plants. Curr Opin Biotech 26:115–124

    Article  CAS  PubMed  Google Scholar 

  • Sacks WJ, Kucharik CJ (2011) Crop management and phenology trends in the U.S. Corn Belt: Impacts on yields, evapotranspiration and energy balance. Agric For Meteoro. 151(7):882–894

    Article  Google Scholar 

  • Sadeghipour O, Abbasi S (2012) Soybean response to drought and seed inoculation. World Appl Sci J 17(1):55–60

    CAS  Google Scholar 

  • Salvagiotti F, Specht JE, Cassman KG et al (2009) Growth and nitrogen fixation in high-yielding soybean: impact of nitrogen fertilization. Agron J 101(4):958–970

    Article  CAS  Google Scholar 

  • Santos JVM, Valliyodan B, Joshi T et al (2016) Evaluation of genetic variation among Brazilian soybean cultivars through genome resequencing. BMC Genom 17:110

    Article  CAS  Google Scholar 

  • Sato T, Zahlner V, Berghofer E et al (2012) Near-infrared reflectance calibrations for determining sucrose content in soybean breeding using artificial reference samples. Plant Breed 131:531–534

    Article  CAS  Google Scholar 

  • Schlueter D, Scofield S (2014) The uniform soybean tests: Northern region 2014. USDA-ARS, Depatment of Agronomy, Purdue University, West Lafayette, IN

    Google Scholar 

  • Schmidt MA, Herman EM (2008) Proteome rebalancing in soybean seeds can be exploited to enhance foreign protein accumulation. Plant Biotech J 6:832–842

    Article  CAS  Google Scholar 

  • Schmidt MA, Barbazuk WB, Sandford M et al (2011) Silencing of soybean seed storage proteins results in a rebalanced protein composition preserving seed protein content without major collateral changes in the metabolome and transcriptome. Plant Phys 156(1):330–345

    Article  CAS  Google Scholar 

  • Schmutz J, Cannon SB, Schlueter J et al (2010) Genome sequence of the palaeopolyploid soybean. Nature 463:178–183

    Article  CAS  PubMed  Google Scholar 

  • Schneider R, Rolling W, Song Q et al (2016) Genome-wide association mapping of partial resistance to Phytophthora sojae in soybean plant introductions from the Republic of Korea. BMC Genom 17(1):607

    Article  CAS  Google Scholar 

  • Schoener CS, Fehr WR (1979) Utilization of plant introductions in soybean breeding populations. Crop Sci 19:185–188

    Article  Google Scholar 

  • Scofield S, Schemerhorn BJ, Nowling GL (2015) The uniform soybean tests, northern region (2015) USDA-ARS. Purdue Univ, West Lafayette, IN, Dep. of Agron

    Google Scholar 

  • Sebastian SA, Chaleff RS (1987) Soybean mutants with increased tolerance for sulfonylurea herbicides. Crop Sci 27(5):948–952

    Article  CAS  Google Scholar 

  • Sebastian SA, Kerr PS, Pearlstein RW, Hitz WD (2000) Soybean germplasm with novel genes for improved digestibility In: JK Drackley (ed) Soy in animal nutrition. Federation of Animal Science Societies, Savoy, pp 56–74

    Google Scholar 

  • Sebastian S, Lu H, Han F et al (2009). Genetic loci associated with iron deficiency tolerance in soybean US7582806B2. https://patents.google.com/patent/US7582806B2/en

  • Sebastian SA, Feng L, Kuhlman LC (2012) 16 – accelerated yield technology™: a platform for marker assisted selection of simple and complex traits In: Wilson RF (ed) Designing soybeans for 21st century markets. AOCS Press, Urbana, pp 297–305

    Google Scholar 

  • Sebolt AM, Shoemaker RC, Diers BW (2000) Analysis of a quantitative trait locus allele from wild soybean that increases seed protein concentration in soybean. Crop Sci 40(5):1438–1444

    Article  CAS  Google Scholar 

  • Serretti C, Schapaugh WT Jr, Leffel RC (1994) Amino acid profile of high seed protein soybean. Crop Sci 34(1):207–209

    Article  CAS  Google Scholar 

  • Servin B, Martin OC, Mezard M, Hospital F (2004) Toward a theory of marker-assisted gene pyriamiding. Genet 168(1):513–523

    Article  CAS  Google Scholar 

  • Setiyono TD, Cassman KG, Specht JE et al (2010) Simulation of soybean growth and yield in near-optimal growth conditions. Field Crop Res 119:161–174

    Article  Google Scholar 

  • Severin AJ, Woody JL, Yung-Tsi B et al (2010) RNA-seq atlas of Glycine max: a guide to the soybean transcriptome. BMC Plant Biol 10:160. https://www.biomedcentral.com/1471-2229/10/160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shannon JG, Wilcox JR, Probst AH (1972) Estimated gains from selection for protein and yield in the F4 generation of six soybean populations. Crop Sci 12(6):824–826

    Article  Google Scholar 

  • Shannon JG, Stevens WE, Wiebold WJ et al (2005) Breeding soybeans for improved tolerance to flooding. Proceedings of the 30th Soybean Research Conference, Chicago, IL, 7 December 2005. American Seed Trade Association, Alexandria

    Google Scholar 

  • Shi X, Yan L, Yang CY et al (2018) Identification of a major quantitative trait locus underlying salt tolerance in ‘Jidou 12’ soybean cultivar. BMC Res Notes 11:95. https://doi.org/10.1186/s13104-018-3202-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shih MC, Hou HJ, Chang KC (1997) Process optimization for soft tofu. J Food Sci 62:833–837

    Article  CAS  Google Scholar 

  • Shih MC, Yang KT, Kuo SJ (2002) Quality and antioxidative activity of black soybean tofu as affected by bean cultivar. J Food Sci 67:480–484

    Article  CAS  Google Scholar 

  • Shiming L, Lakhssassi N, Zhou Z et al (2017) Soybean genomic libraries, TILLING, and genetic resources In: Nguyen H, Bhattacharyya M (eds) The soybean genome. Compendium of Plant Genomes, Springer, Cham, pp 131–149

    Google Scholar 

  • Shu QY, Manjaya JG (2007) Generation, characterization, and application of mutant genetic resources in soybean. Israel J Plant Sci 55(2):147–157

    Article  Google Scholar 

  • Shu QY, Forster BP, Nakagawa H (eds) (2012) Plant mutation breeding and biotechnology, CABI. Plant Breeding and Genetics Section. Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture. International Atomic Energy Agency, Vienna, Austria. ISBN 978-92-5-105000-0

    Google Scholar 

  • Sinclair TR, Rufty TW (2012) Nitrogen and water resources commonly limit crop yield increases, not necessarily plant genetics. Glob Food Sec 1(2):94–98

    Article  Google Scholar 

  • Sinclair TR, Messina CD, Beatty A, Samples M (2010) Assessment across the United States of the benefits of altered soybean drought traits. Agron J 102:475–482

    Article  Google Scholar 

  • Singh RJ, Nelson RL (2014) Methodology for creating alloplasmic soybean lines by using Glycine tomentella as a maternal parent. Plant Breed 133:624–631

    Article  CAS  Google Scholar 

  • Singh RJ, Nelson RL (2015) Intersubgeneric hybridization between Glycine max and G tomentella: production of F 1, amphidiploid, BC 1, BC 2, BC 3, and fertile soybean plants. Theor Appl Genet 128(6):1117–1136

    Article  CAS  PubMed  Google Scholar 

  • Skurray G, Cunich J, Carter O (1980) The effect of different varieties of soybean and calcium ion concentration on the quality of tofu. Food Chem 6(2):89–95

    Article  CAS  Google Scholar 

  • Sleper JA, Bernardo R (2018) Genomewide selection for unfavorably correlated traits in maize. Crop Sci 58(4):1587–1593

    Article  Google Scholar 

  • Smith HF (1936) A discriminant function for plant selections. Ann Eugenet 7:240–250

    Article  Google Scholar 

  • Sneller CH (1994) Pedigree analysis of elite soybean lines. Crop Sci 34(6):1515–1522

    Article  Google Scholar 

  • Sneller CH (2003) Impact of transgenic genotypes and subdivision on diversity within elite North American soybean germplasm. Crop Sci 43(1):409–414

    Article  Google Scholar 

  • Song Q, Hyten DL, Gaofeng J et al (2013) Development and evaluation of SoySNP50K, a high-density genotyping array for soybean. PLoS One 8(1):e54985. https://doi.org/10.1371/journal.pone.0054985

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Song Q, Hyten DL, Jia G et al (2015) Fingerprinting soybean germplasm and its utility in genomic research. G3:Genes/Genom/Genet 5(10):1999–2006

    Article  Google Scholar 

  • Song Q, Jenkins JW, Jia G et al (2016) Construction of high resolution genetic linkage maps to improve the soybean genome sequence assembly Glyma1.01. BMC Genom 17(1):1–11

    Google Scholar 

  • Specht JE, Hume DJ, Kumudini SV (1999) Soybean yield potential – a genetic and physiological perspective. Crop Sci 39:1560–1570

    Article  Google Scholar 

  • Specht JE, Diers BW, Nelson RL et al (2014) Soybean (Glycine max (L) Merr) In: Smith S, Diers B, Specht J, Carver B (eds) Genetic gains of major US field crops. Amer Soc Agron, Madison, pp 311–356

    Google Scholar 

  • St Martin SA, Skavaril RV (1984) Computer simulation as a tool in teaching introductory plant breeding. J Agron Educ 13:43–47

    Google Scholar 

  • St Martin SK, Calip-DuBois AJ, Fioritto RJ et al (1996a) Ohio FG1 and Ohio FG2 soybean varieties. Special Circular 151. The Ohio State University OARDC, Wooster

    Google Scholar 

  • St Martin SK, Calip-DuBois AJ, Fioritto RJ et al (1996b) Registration of ‘Ohio FG1’ soybean. Crop Sci 36:813

    Article  Google Scholar 

  • St Martin SK, Mills GR, Fioritto RJ, McIntyre SA (2006) Registration of ‘Ohio FG5’ soybean. Crop Sci 46:2709

    Article  Google Scholar 

  • Stobaugh B, Florez-Palacios L, Chen P, Orazaly M (2017) Agronomic evaluation of high-protein and high-oil soybean genotypes for specialty markets. J Crop Improv 31:247–260

    CAS  Google Scholar 

  • Strategic Marketing Research and Planning (SMR&P) (2016) USSEC Non-GMO food-grade soybean quantification study

    Google Scholar 

  • Sugg Z (2007) Assessing U.S. farm drainage: can GIS lead to better estimates of subsurface drainage extent? World Resources Institute, Washington, DC [online WWW]. https://pdf.wri.org/assessing_farm_drainage.pdf

  • Sun X, Peng T, Mumm RH (2011) The role and basics of computer simulation in support of critical decision in plant breeding. Mol Breed 28:421–436

    Article  Google Scholar 

  • Swarm SA (2017) Overcoming the domestication bottleneck in soybean: Mapping domestication traits and using wild soybean to improve diversity. Ph.D. diss. University of Illinois at Urbana-Champaign. Theor Appl Genet 128:1117–1136

    Google Scholar 

  • Taira H (1990) Quality of soybeans for processed foods in Japan. Japan Agric Res Quart 24:224–230

    Google Scholar 

  • Takagi Y (1998) Construction of novel fatty acid composition in soybean oil by induced mutation. Gamma Field Symposia

    Google Scholar 

  • Takahashi M, Shimada S, Nakayama N, Arihara J (2005) Characteristics of nodulation and nitrogen fixation in the improved supernodulating soybean (Glycine max L. Merr.) cultivar Sakukei 4. Plant Prod Sci 8(4):405–411

    Article  Google Scholar 

  • Talukdar D (2014) Mutagenesis as functional biology tool in the improvement of legumes In: Tomlekova NB, Kozgar MI, Wani MR (eds) Mutagenesis: exploring novel genes and pathways. Wageningen Academic Publishers, Wageningen, pp 945–957

    Google Scholar 

  • Tamang BG, Magliozzi JO, Maroof MA, Fukao T (2014) Physiological and transcriptomic characterization of submergence and reoxygenation responses in soybean seedlings. Plant Cell Environ 37(10):2350–2365

    CAS  PubMed  Google Scholar 

  • Tat ME, Wang PS, Van Gerpen JH, Clemente TE (2007) Exhaust emissions from an engine fueled with biodiesel from high-oleic soybeans. J Amer Oil Chem Soc 84:865–869

    Article  CAS  Google Scholar 

  • Teng W, Feng L, Li W et al (2017) Dissection of the genetic architecture for soybean seed weight across multiple environments. Crop Past Sci 68(4):358–365

    Article  Google Scholar 

  • Thakur M, Hurburgh CR (2007) Quality of US soybean meal compared to the quality of soybean meal from other origins. J Amer Oil Chem Soc 84(9):835–843

    Article  CAS  Google Scholar 

  • Thapa R, Carrero-Colon M, Crowe M et al (2016) Novel FAD2-1A alleles confer an elevated oleic acid phenotype in soybean seeds. Crop Sci 56:1–6

    Article  CAS  Google Scholar 

  • Thompson JA, Nelson RL (1998a) Core set of primers to evaluate genetic diversity in soybean. Crop Sci 38(5):1356–1362

    Article  CAS  Google Scholar 

  • Thompson JA, Nelson RL (1998b) Utilization of diverse germplasm for soybean yield improvement. Crop Sci 38(5):1362–1368

    Article  Google Scholar 

  • Thompson JA, Amdor PJ, Nelson RL (1999) Registration of LG90-2550 and LG91-7350R Soybean Germplasm. Crop Sci 39:302–303

    Article  Google Scholar 

  • Thorne JC, Fehr WR (1970) Exotic germplasm for yield improvement in 2-way and 3-way soybean crosses. Crop Sci 10:677–678

    Article  Google Scholar 

  • Thrane M, Paulsen PV, Orcutt MW, Krieger TM (2017) Soy Protein: Impacts, Production, and Applications In: Nadathur S, Wanasundara JPD, Scanlin L (eds) Sustainable protein sources, 1st edn. Elsevier, Inc., Amsterdam, pp 23–45

    Google Scholar 

  • Tilmon KJ, Hodgson EW, O’Neal ME, Ragsdale DW (2011) Biology of the soybean aphid, Aphis glycines (Hemiptera: Aphididae) in the United States. J Integ Pest Manag 2:2011

    Article  Google Scholar 

  • Tinker NA, Mather DE (1993) GREGOR: Software for genetic simulation. J Hered 84(3):237

    Article  Google Scholar 

  • Tompkins C, Perkins EG (2000) Frying performance of low-linolenic acid soybean oil. J Amer Oil Chem Soc 77(3):223–229

    Article  CAS  Google Scholar 

  • Tsuda M, Kaga A, Anai T et al (2015) Construction of a high-density mutant library in soybean and development of a mutant retrieval method using amplicon sequencing. BMC Genomics 16(1):1014. https://doi.org/10.1186/s12864-015-2079-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tulmann Neto A, Alves M (1997) Induction of mutations for earliness in the soybean cultivar Parana. Braz J Genet 20(1). https://doi.org/10.1590/S0100-84551997000100009

  • United Soybean Board. https://unitedsoybean.org/article/high-oleic-soybean-oil-opens-up-new-opportunities-for-industrial-uses

  • USDA-APHIS (2011) Monsanto improved fatty acid profile MON 87705 soybean petition 09-201p: final environment assessment. US Department of Agriculture, Animal and Plant Health Inspection Service, Biotechnology Regulatory Services, Riverdale

    Google Scholar 

  • USDA-Economic Research Service (ERS) (2005) Crop production practices (online WWW). Available URL: https://www.ers.usda.gov/Data/ARMS/

    Google Scholar 

  • USDA-Economic Research Service (ERS) (2017) Recent trends in GE adoption. https://www.ers.usda.gov/data-products/adoption-of-genetically-engineered-crops-in-the-us/recent-trends-in-ge-adoption.aspx/

  • USDA-Foreign Agricultural Service (FAS) (2018a) World agricultural production. Circular Series WAP5-18, Table 11, p 24

    Google Scholar 

  • USDA-Foreign Agricultural Service (FAS) (2018b) World agricultural production. Circular Series WAP8-18. 34 pp

    Google Scholar 

  • USDA-National Agricultural Statistics Service (NASS) (2014) Agricultural resource management survey: U.S. soybean industry. United States Department of Agriculture National Statistics Service. No. 2014–1

    Google Scholar 

  • USDA-National Agricultural Statistics Service (NASS) (2016) Crop Production Historical Track Records, p 168 ISSN: 2157–8990

    Google Scholar 

  • USDA-National Agricultural Statistics Service (NASS) (2018) Crops U.S. state and county databases. Washington DC [online WWW]. https://www.nass.usda.gov/index.asp

  • Utsumi S, Kinsella JE (1985) Structure-function relationship in food proteins: Subunit interactions in heat-induced gelation of 7S, 11S and soy isolate proteins. J Agric Food Chem 33:297–303

    Article  CAS  Google Scholar 

  • Valencia R, Chen P, Ishibashi T, Conatser M (2008) A rapid and effective method for screening salt tolerance in soybean. Crop Sci 48:1773–1779

    Article  CAS  Google Scholar 

  • Valentine MF, De Tar JR, Mookkan M et al (2017) Silencing of soybean raffinose synthase gene reduced raffinose family oligosaccharides and increased true metabolizable energy of poultry feed. Front Plant Sci 16(8):692. https://doi.org/10.3389/fpls.2017.00692

    Article  Google Scholar 

  • Valliyodan B, Shi H, Nguyen HT (2015) A simple analytical method for high-throughput screening of major sugars from soybean by normal-phase HPLC with evaporative light scattering detection. Chromatogr Res Int 757649. https://doi.org/10.1155/2015/757649

  • van Ittersum MK, Cassman KG, Grassini P et al (2013) Yield gap analysis with local to global relevance – a review. Field Crop Res 143:4–17

    Article  Google Scholar 

  • Van K, McHale LK (2017) Meta-analyses of QTLs associated with protein and oil contents and compositions in soybean [Glycine max (L) Merr] seed. Int J Mol Sci 18:1180

    Article  CAS  PubMed Central  Google Scholar 

  • Vaughn JN, Nelson RL, Song Q et al (2014) The genetic architecture of seed composition in soybean is refined by genome-wide association scans across multiple populations. G3: Genes/Genomes/Genetics 4(11):2283–2294

    Article  Google Scholar 

  • Villamil MB, Davis VM, Nafziger ED (2012) Estimating factor contributions to soybean yield from farm field data. Agron J 104(4):881–887

    Article  Google Scholar 

  • Vinh MQ, Thinh DK, Bang DT et al (2009) Current status and research directions of induced mutation application to seed crops improvement in Vietnam In: Shu QY (ed) Induced plant mutations in the genomics era. FAO, Rome, pp 341–345

    Google Scholar 

  • Vollmann J, Fritz CN, Wagentristl H, Rukenbauer P (2000) Environmental and genetic variation of soybean seed protein content under central European growing conditions. J Sci Food Agric 80:1300–1306

    Article  CAS  Google Scholar 

  • Vuong TD, Sleper DA, Shannon JG et al (2011) Confirmation of quantitative trait loci for resistance to multiple-HG types of soybean cyst nematode (Heterodera glycines Ichinohe). Euphytica 181:101–113

    Article  Google Scholar 

  • Vuong TD, Jiao Y, Shannon JG, Nguyen HT (2013) Nematode resistance in soybean. Transl Genom Crop Breed Biotic Stress 11:95–124

    Article  Google Scholar 

  • Wang CCR, Chang SKC (1995) Physiochemical properties and tofu quality of soybean cultivar Proto. J Agric Food Chem 43(12):3029–3034

    Article  CAS  Google Scholar 

  • Wang J, van Ginkel M, Podlich D et al (2003) Comparison of two breeding strategies by computer simulation. Crop Sci 43:1764–1773

    Article  Google Scholar 

  • Wang J, van Ginkel M, Trethowan R et al (2004) Simulating the effects of dominance and epistasis on selection response in the CIMMYT wheat breeding program using QuCim. Crop Sci 44:2006–2018

    Article  Google Scholar 

  • Wang RY, Kritzman A, Hershman DE, Ghabrial SA (2006) Aphis glycines as a vector of persistently and nonpersistently transmitted viruses and potential risks for soybean and other crops. Plant Dis 90:920–926

    Article  CAS  PubMed  Google Scholar 

  • Wang J, Chapman SC, Bonnett D et al (2007) Application of population genetic theory and simulation models to efficiently pyramid multiple genes via marker-assisted selection. Crop Sci 47:580–588

    Google Scholar 

  • Wang N, Zhang W, Qin M et al (2017) Drought tolerance conferred in soybean (Glycine max. L) by GmMYB84, a novel R2R3-MYB transcription factor. Plant Cell Phys 58(10):1764–1776

    Article  CAS  Google Scholar 

  • Wang B, Sumit R, Sahu BB et al (2018a) Arabidopsis novel glycine-rich plasma membrane PSSI protein enhances disease resistance in transgenic soybean plants. Plant Phys 176:865–878

    Article  CAS  Google Scholar 

  • Wang Y, Jiang L, Chen J et al (2018b) Overexpression of the alfalfa WRKY11 gene enhances salt tolerance in soybean. PLoS One 13(2):e0192382. https://doi.org/10.1371/journal.pone.0192382

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Warner K, Fehr W (2008) Mid-oleic/ultra-low linolenic acid soybean oil: A healthful new alternative to hydrogenated oil for frying. J Amer Oil Chem Soc 85:945–951

    Article  CAS  Google Scholar 

  • Warrington CV, Abdel-Haleem H, Hyten D et al (2015) QTL for seed protein and amino acids in the Benning x Danbaekkong soybean population. Theor Appl Genet 128(5):839–850

    Article  CAS  PubMed  Google Scholar 

  • Watanabe S (2006) About natto In: S. Watanabe (ed) Making and playing natto. Nobunkyo, Tokyo, pp 3–36

    Google Scholar 

  • Watanabe S, Tajuddin T, Yamanaka N et al (2004) Analysis of QTLs for reproductive development and seed quality traits in soybean using recombinant inbred lines. Breed Sci 54:399–407

    Article  CAS  Google Scholar 

  • Watanabe S, Hideshima R, Xia Z et al (2009) Map-based cloning of the gene associated with the soybean maturity locus E3. Genetics 182(4):1251–1262

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Webb DM (1996) Soybean cyst nematode resistant soybeans and methods of breeding and identifying resistant plants. US5491081A. https://patents.google.com/patent/US5491081

  • Weber H, Borisjuk L, Wobus U (2005) Molecular physiology of legume seed development. Ann Rev Plant Biol 56(1):253–279

    Article  CAS  Google Scholar 

  • Wehrmann VK, Fehr WR, Cianzio SR, Cavins JF (1987) Transfer of high seed protein to high-yielding soybean cultivars. Crop Sci 27(5):927–931

    Article  Google Scholar 

  • Wenger JA, Michel AP (2013) Implementing an evolutionary framework for understanding genetic relationships of phenotypically defined insect biotypes in the invasive soybean aphid (Aphis glycines). Evol Appl 6:1041–1053

    PubMed  PubMed Central  Google Scholar 

  • White JW, Andrade-Sanchez P, Gore MA et al (2012) Field-based phenomics for plant genetics research. Field Crops Res 133:101–112

    Article  Google Scholar 

  • Widholm JM, Finer JJ, Vodkin LO et al (2010) Soybean. In: Kempken F, Jung CC (eds) Genetic modification of plants, biotechnology in agriculture and forestry. Springer, Berlin/Heidelberg, pp 473–498

    Chapter  Google Scholar 

  • Wilcox JR (2004) World distribution and trade of soybean In: Boerma HR, Specht JE (ed) Soybeans: improvement, production, and uses 3rd ed, Agron. Monogr. 16. ASA, CSSA, and SSSA. Madison, WI, pp 1–14

    Google Scholar 

  • Wilcox JR, Guodong Z (1997) Relationships between seed yield and seed protein in determinate and indeterminate soybean populations. Crop Sci 37(2):361–364

    Article  Google Scholar 

  • Wilcox JR, Premachandra GS, Young KA, Raboy V (2000) Isolation of high seed inorganic P, low-phytate soybean mutants. Crop Sci 40(6):1601–1605

    Article  Google Scholar 

  • Wilkes RS, Bringe NA (2015) Applications of trait enhanced soybean oils In: Orthoefer FT, List GR (eds) Trait-modified oils in foods. FT Press Series, Wiley Online Library, pp 71–92

    Google Scholar 

  • Williams JS (1962) The evaluation of a selection index. Biometr 18(3):375–393

    Article  Google Scholar 

  • Wilson LA (1995) Soy foods In: Erickson DR (ed) Practical handbook of soybean processing and utilization. AOCS Press/United Soybean Board, Urbana/St. Louis, pp 428–459

    Book  Google Scholar 

  • Wilson RF (2004) Seed composition. In: Boerma HR, Specht JE (eds) Soybeans: improvement, production and uses. Agronomy Society of America, Madison, pp 621–677

    Google Scholar 

  • Wu F, Hanzawa Y (2018) A simple method for isolation of soybean protoplasts and application to transient gene expression analysis. J Vis Exp 131:e57258. https://doi.org/10.3791/57258

    Article  CAS  Google Scholar 

  • Wu C, Zeng A, Chen P et al (2017) Evaluation and development of flood-tolerant soybean cultivars. Plant Breed 136:913–923

    Article  CAS  Google Scholar 

  • Wu D, Zhan Y, Sun Q et al (2018) Identification of quantitative trait loci underlying soybean (Glycine max [L] Merr) seed weight including main, epistatic and QTL× environment effects in different regions of Northeast China. Plant Breed 137:194–202

    Article  CAS  Google Scholar 

  • Xavier A, Muir WM, Rainey KM (2016) Assessing predictive properties of genome-wide selection in soybeans. G3: Genes/Genomes/Genetics 6(8):2611–2616

    Article  Google Scholar 

  • Xavier A, Hall B, Hearst AA et al (2017) Genetic architecture of phenomic-enabled canopy coverage in Glycine max. Genetics 206(2):1081–1089

    Article  PubMed  PubMed Central  Google Scholar 

  • Xia Z, Watanabe S, Yamada T et al (2012) Positional cloning and characterization reveal the molecular basis for soybean maturity locus E1 that regulates photoperiodic flowering. Proc Natl Acad Sci U S A 109(32):E2155–E2164. https://doi.org/10.1073/pnas.1117982109

    Article  PubMed  PubMed Central  Google Scholar 

  • Xu P, Wang L, Beavis WD (2011) An optimization approach to gene stacking. Eur J Oper Res 214(1):168–178

    Article  Google Scholar 

  • Xu X, Zeng L, Tao Y et al (2013) Pinpointing genes underlying the quantitative trait loci for root-knot nematode resistance in palaeopolyploid soybean by whole genome resequencing. Proc Natl Acad Sci U S A 110:13469–13474

    Article  PubMed  PubMed Central  Google Scholar 

  • Xue CC, Xu JY, Wang C et al (2018) Molecular cloning and functional characterization of a soybean GmGMP1 gene reveals its involvement in ascorbic acid biosynthesis and multiple abiotic stress tolerance in transgenic plants. J Integr Agric 17(3):539–553

    Article  CAS  Google Scholar 

  • Yamaguchi H (2018) Mutation breeding of ornamental plants using ion beams. Breed Sci 68(1):71–78

    Article  PubMed  PubMed Central  Google Scholar 

  • Yang K, Jeong N, Moon JK et al (2010) Genetic analysis of genes controlling natural variation of seed coat and flower colors in soybean. J Hered 101:757–768

    Article  CAS  PubMed  Google Scholar 

  • Yang Y, Zhou Y, Chi Y et al (2017a) Characterization of soybean WRKY gene family and identification of soybean WRKY genes that promote resistance to soybean cyst nematode. Sci Rep 7:17804. https://doi.org/10.1038/s41598-017-18235-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang X, Niu L, Zhang W et al (2017b) Robust RNAi-mediated resistance to infection of seven potyvirids in soybean expressing an intron hairpin NIb RNA. Transgenic Res 26(5):665–676

    Article  CAS  PubMed  Google Scholar 

  • Yoshikawa Y, Chen P, Zhang B et al (2014) Evaluation of seed chemical quality traits and sensory properties of natto soybean. Food Chem 153:186–192

    Article  CAS  PubMed  Google Scholar 

  • Yu K, Woodrow L, Poysa V (2014) AAC Stern soybean. Can J Plant Sci 94(2):457–459

    Article  Google Scholar 

  • Yu J-K, Bowers G, Breitinger BW, Chakraborty N (2016a) Markers associated with soybean rust resistance and methods of use therefor, US20100192247A1, https://patents.google.com/patent/US20100192247

  • Yu X, Li X, Guo T et al (2016b) Genomic prediction contributing to a promising global strategy to turbocharge gene banks. Nat Plants 2:16150. https://www.nature.com/articles/nplants2016150

    Article  CAS  PubMed  Google Scholar 

  • Yu Y, Hou WS, Hacham Y et al (2018) Constitutive expression of feedback-insensitive cystathionine gamma-synthase increases methionine levels in soybean leaves and seeds. J Integ Agric 17:54–62

    Article  CAS  Google Scholar 

  • Yuan FJ, Zhao HJ, Ren XL et al (2007) Generation and characterization of two novel low phytate mutations in soybean (Glycine max L Merr). Theor Appl Genet 115(7):945–957

    Article  CAS  PubMed  Google Scholar 

  • Zeng A, Lara L, Chen P et al (2017) Quantitative trait loci for chloride tolerance in ‘Osage’ soybean. Crop Sci 57:2345–2353

    Article  CAS  Google Scholar 

  • Zhang J, Wang X (2018) Genome-wide scan for seed composition provides insights into soybean quality improvement and the impacts of domestication and breeding. Mol Plant 11(3):460–472

    Article  CAS  PubMed  Google Scholar 

  • Zhang B, Chen P, Chen CY et al (2008) Quantitative trait loci mapping of seed hardness in soybean. Crop Sci 48:1341–1349

    Article  Google Scholar 

  • Zhang M, Wu Y-H, Lee M-K et al (2010) Numbers of genes in the NBS and RLK families vary by more than four-fold within a plant species and are regulated by multiple factors. Nucleic Acids Res 38:6513–6525

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang XC, Sato S, Ye X et al (2011) Robust RNAi-based resistance to mixed infection of three viruses in soybean plants expressing short hairpins from a single transgene. Phytopathology 101:1264–1269

    Article  CAS  PubMed  Google Scholar 

  • Zhang L, Yang XD, Zhang YY et al (2014) Changes in oleic acid content of transgenic soybeans by antisense RNA mediated posttranscriptional gene silencing. Int J Genom Article ID 921950. https://doi.org/10.1155/2014/921950

  • Zhang H, Li C, Davis EL et al (2016) Genome-wide association study of resistance to soybean cyst nematode (Heterodera glycines) HG Type 2.5.7 in wild soybean (Glycine soja). Front. Plant Sci 7:1214. https://doi.org/10.3389/fpls.2016.01214

    Article  Google Scholar 

  • Zhe Y, Lauer JG, Borges R, de Leon N (2010) Effects of genotype x environment interaction on agronomic traits in soybean. Crop Sci 50(2):696–702

    Article  Google Scholar 

  • Zhou X, Carter TE, Cui Z et al (2000) Genetic base of Japanese soybean cultivars released during 1950 to 1988. Crop Sci 40:1794–1802

    Article  Google Scholar 

  • Zhu B, Sun Y (2006) Inheritance of the four-seeded-pod trait in a soybean mutant and marker-assisted selection for this trait. Plant Breed 125(4):405–407

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edwin J. Anderson .

Editor information

Editors and Affiliations

Appendix I: Research Institutes in the US Relevant to Soybean

Appendix I: Research Institutes in the US Relevant to Soybean

Institute

Areas of specialization

Website

Auburn University

Breeding, Agronomy, Basic Research

auburn.edu

BASF Company

Seed and Crop Protection

basf.com

Bayer Company

Seed and Crop Protection

cropscience.bayer.us

Clemson University

Breeding, Agronomy, Basic Research

clemson.edu

Cornell University

Breeding, Agronomy, Basic Research

cornell.edu

Corteva Agriscience

Seed and/or Crop Protection

corteva.com

FMC Corporation

Crop Protection

fmccrop.com

Iowa State University

Breeding, Agronomy, Basic Research

iastate.edu

Kansas State University

Breeding, Agronomy, Basic Research

k-state.edu

Louisiana State University

Breeding, Agronomy, Basic Research

lsu.edu

Michigan State University

Breeding, Agronomy, Basic Research

msu.edu

Mississippi State University

Breeding, Agronomy, Basic Research

msstate.edu

North Carolina State University

Breeding, Agronomy, Basic Research

ncsu.edu

North Dakota State University

Breeding, Agronomy, Basic Research

ndsu.edu

Oklahoma State University

Breeding, Agronomy, Basic Research

go.okstate.edu

Pennsylvania State University

Breeding, Agronomy, Basic Research

psu.edu

Purdue University

Breeding, Agronomy, Basic Research

purdue.edu

Rutgers University

Breeding, Agronomy, Basic Research

rutgers.edu

South Dakota State University

Breeding, Agronomy, Basic Research

sdstate.edu

Syngenta Company

Seed and Crop Protection

syngenta.com

Texas A&M University

Breeding, Agronomy, Basic Research

tamu.edu

The Ohio State University

Breeding, Agronomy, Basic Research

osu.edu

University of Arkansas

Breeding, Agronomy, Basic Research

uark.edu

University of Delaware

Breeding, Agronomy, Basic Research

udel.edu

University of Georgia

Breeding, Agronomy, Basic Research

uga.edu

University of Illinois

Breeding, Agronomy, Basic Research

illinois.edu

University of Kentucky

Breeding, Agronomy, Basic Research

uky.edu

University of Maryland

Breeding, Agronomy, Basic Research

umd.edu

University of Minnesota

Breeding, Agronomy, Basic Research

umn.edu

University of Missouri

Breeding, Agronomy, Basic Research

missouri.edu

University of Nebraska

Breeding, Agronomy, Basic Research

unl.edu

University of Tennessee

Breeding, Agronomy, Basic Research

utk.edu

University of Wisconsin

Breeding, Agronomy, Basic Research

wisc.edu

Virginia Tech University

Breeding, Agronomy, Basic Research

vt.edu

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Anderson, E.J. et al. (2019). Soybean [Glycine max (L.) Merr.] Breeding: History, Improvement, Production and Future Opportunities. In: Al-Khayri, J., Jain, S., Johnson, D. (eds) Advances in Plant Breeding Strategies: Legumes. Springer, Cham. https://doi.org/10.1007/978-3-030-23400-3_12

Download citation

Publish with us

Policies and ethics