Advertisement

Spelt (Triticum spelta L.) In Vitro Androgenesis Breeding for Special Food Quality Parameters

  • János PaukEmail author
  • Csaba Lantos
  • Katalin Ács
  • Gyöngyvér Gell
  • Sándor Tömösközi
  • Kornélia Hajdú Búza
  • Ferenc Békés
Chapter

Abstract

Consuming gluten-containing foods derived from wheat, barley, rye and possibly oats can result in health problems for a significant proportion of people. However, in the case of several types of disorders related to consuming gluten-containing cereals, not only the gluten components are trigger compounds. According to medical experts the majority of people suffering from health problems because of gluten— except for celiac disease patients—instead of consuming gluten-free food have the option to choose food products containing healthier, low levels of fermentable oligosaccharides abbreviated FODMAP. In order to meet the health-related special needs of these particular consumer groups, cereal breeders aim to develop new germplasm, suitable for the food industry to produce healthier products. This chapter provides a summary of the latest developments in this booming research field, including: (i) describing the actual knowledge on cereal-related health problems, (ii) describing the current status of celiac-safe cereal breeding, (iii) enhancing the importance of developing healthier spelt-based cereal products through the advancement of an ongoing spelt breeding program and finally (iv) developing plant biotechnology improvements relative to special food quality parameters.

Keywords

Celiac disease Irritable bowel syndrome (IBS) In vitro androgenesis Non-celiac gluten sensitivity Spelt Wheat allergy 

Notes

Acknowledgement

This study was supported within project OTKA-K_16-119835, funded by the National Research, Development and Innovation Office. The experiments were interlocked with GINOP project (GINOP-2.2.1.-15-2016-00026). This project was supported by the János Bolyai Research Scholarship of the Hungarian Academy of Sciences and by the ÚNKP-18-4-BME-393 National Excellence Program of the Ministry of Human Capacities. The work is connected to fulfil of the scientific goals of BME-Biotechnology FIKP grant of EMMI (BME FIKP-BIO).

References

  1. Abdel-Aal SM, Hucl P (2002) Amino acid composition and in vitro protein digestibility of selected ancient wheats and their end products. J Food Comp Anal 15:737–747CrossRefGoogle Scholar
  2. Ács K, Békés F, Lantos CS et al (2017) The role of carbohydrates in the development of food intolerance: is the low FODMAP diet the solution in the IBS treatment? GK Fórum 2017 02 01-02, GK. Szeged, Hungary. (in Hungarian)Google Scholar
  3. Akagawa M, Handoyo T, Ishii T (2007) Proteomic analysis of wheat flour allergens. J Agr Food Chem 55:6863–6870CrossRefGoogle Scholar
  4. Altenbach SB, Tanaka CT, Allen PV (2014a) Quantitative proteomic analysis of wheat grain proteins reveals differential effects of silencing of omega-5 gliadin genes in transgenic lines. J Cereal Sci 59:118–125CrossRefGoogle Scholar
  5. Altenbach SB, Tanaka CT, Seabourn BW (2014b) Silencing of omega-5 gliadins in transgenic wheat eliminates a major source of environmental variability and improves dough mixing properties of flour. BMC Plant Biol 14(1):1–13PubMedCentralCrossRefGoogle Scholar
  6. Aman P (1987) The variation in chemical composition of Swedish oats. Acta Agric Scand 37:347–352CrossRefGoogle Scholar
  7. Aman P, Hesselman K, Tilly AC (1985) The variation in chemical composition of Swedish barleys. J Cereal Sci 3:73–77CrossRefGoogle Scholar
  8. Amano MH, Ogawa K, Kojima T et al (1998) Identification of the major allergens in wheat flour, responsible for baker's asthma. Biochem J 330:1229–1234PubMedPubMedCentralCrossRefGoogle Scholar
  9. An X, Li Q, Yan Y et al (2005) Genetic diversity of European spelt wheat (Triticum aestivum ssp. spelta L. em. Thell.) revealed by glutenin subunit variations at the Glu-1 and Glu-3 loci. Euphytica 146:193–201CrossRefGoogle Scholar
  10. Anderson RP, Wieser H (2006) Medical applications of gluten-composition knowledge. In: Wrigley CW, Békés F, Bushuk W (eds) Gliadin and glutenin: the unique balance of wheat quality. AACCI Press, St Paul MN, pp 387–409CrossRefGoogle Scholar
  11. Anderson JA, Churchilll GA, Autrique JE et al (1993) Optimizing parental selection for genetic linkage maps. Genome 36:181–186PubMedCrossRefPubMedCentralGoogle Scholar
  12. Anderson RP, Degano P, Godkin AJ et al (2000) In vivo antigen challenge in celiac disease identifies a single transglutaminase-modified peptide as the dominant a gliadin t-cell epitope. Nat Med 6:337–342PubMedCrossRefPubMedCentralGoogle Scholar
  13. Andersson R, Fransson G, Tietjen M et al (2009) Content and molecular-weight distribution of dietary fiber components in whole-grain rye flour and bread. J Agric Food Chem 57:2004–2008PubMedCrossRefPubMedCentralGoogle Scholar
  14. Andersson AAM, Andersson R, Piironen V et al (2013) Contents of dietary fibre components and their relation to associated bioactive components in whole grain wheat samples from the HEALTHGRAIN diversity screen. Food Chem 136:1243–1248PubMedCrossRefPubMedCentralGoogle Scholar
  15. Armentia A, Martin-Santos JM, Blanco M (1990) Exercise induced anaphylaxis reaction to grain flours. Ann Allerg 65:149–151PubMedPubMedCentralGoogle Scholar
  16. Armentia A, Martin-Santos JM, Diaz-Perales A et al (2012) A possible hypoallergenic cereal in wheat food allergy and baker’s asthma. Amer J Plant Sci 3:1779–1781CrossRefGoogle Scholar
  17. Balakireva A, Zamyatnin AA (2016) Properties of gluten intolerance: gluten structure, evolution, pathogenicity and detoxification capabilities. Nutrients 8:644PubMedCentralCrossRefGoogle Scholar
  18. Békés F (2015) Health related quality attributes of wheat. In: Pauk J (ed) Proceedings 3rd conference of cereal biotechnology and breeding (cbb3) Aekadémiai Kiadó, Budapest, pp 1–3Google Scholar
  19. Békés F, Southan MS, Tömösközi S, et al (2000) Comparative studies on a new micro scale laboratory mill. In: Panozzo JF, Ratcliffe M, Wootton M et al (eds) Proceedings 49th RACI Conference, RACI Melbourne Australia, pp 483–487Google Scholar
  20. Bertin P, Gregoire D, Massart S, de Froidmont D (2004) High level of genetic diversity among spelt germplasm revealed by microsatellite markers. Genome 47:1043–1052PubMedCrossRefPubMedCentralGoogle Scholar
  21. Biesiekierski JR, Rosella O, Rose R et al (2011) Quantification of fructans galacto-oligosaccharides and other short-chain carbohydrates in processed grains and cereals. J Hum Nutr Diet 24:154–176CrossRefGoogle Scholar
  22. Blatter RH, Jacomet S, Schlumbaum A (2004) About the origin of European spelt (Triticum spelta l.): allelic differentiation of the HMW glutenin B1-1 and A1-2 subunit genes. Theor Appl Genet 108:360–367PubMedCrossRefPubMedCentralGoogle Scholar
  23. Bodinier M, Brossard C, Triballea S (2008) Evaluation of an in vitro mast cell degranu-lation test in the context of food allergy to wheat. Int Arch Allergy Imm 146:307–320CrossRefGoogle Scholar
  24. Bonafacci G, Galli V, Francisci R et al (2002) Characteristics of spelt wheat products and nutritional value of spelt wheat-based bread. Food Chem 68:437–441CrossRefGoogle Scholar
  25. Braly J, Hoggan R (2002) Dangerous grains. Why gluten cereal grains may be hazardous to your health. Penguin group, NYGoogle Scholar
  26. Branchi F, Ferretti F, Norsa L et al (2015) Management of nonceliac gluten sensitivity by gastroenterology specialists: data from an Italian survey Biomed Res Int 2015. https://doi.org/101155/2015/530136Google Scholar
  27. Brandolini A, Hidalgo A, Plizzari L et al (2011) Impact of genetic and environmental factors on einkorn wheat (Triticum monococcum L. subsp. monococcum) polysaccharides. J Cereal Sci 53:65–72CrossRefGoogle Scholar
  28. Breen M, Li D, Dunn DS et al (2010) Wheat beta-expansion (expb11) genes: identification of the expressed gene on chromosome 3bs carrying a pollen allergen domain. BMC Plant Biol 10:99PubMedPubMedCentralCrossRefGoogle Scholar
  29. Büren M, Lüthy J, Hübner P (2000) A spelt-specific γ-gliadin gene: discovery and detection Theor Appl Genet 100:271–279Google Scholar
  30. Büren M, Stadler M, Lüthy J (2001) Detection of wheat adulteration of spelt flour and products by PCR. Eur Food Res Technol 212:234–239CrossRefGoogle Scholar
  31. Caballero L, Martín LM, Alvarez BJ (2004) Variation and genetic diversity for gliadins in Spanish spelt wheat accessions. Genet Res Crop Evol 51:679–686CrossRefGoogle Scholar
  32. Caballero L, Martín LM, Alvarez JB (2008) Variation of high molecular weight glutenin subunits in two neglected tetraploid wheat subspecies. Czech J Genet Plant Breeding 44:140–146CrossRefGoogle Scholar
  33. Campbell KG (1997) Spelt: agronomy, genetics and breeding. Plant Breed Rev 15:187–213Google Scholar
  34. Caruso R, Pallone F, Stasi E et al (2013) Appropriate nutrient supplementation in celiac disease. Ann Med 45:522–531PubMedCrossRefGoogle Scholar
  35. Catassi C, Fasano A (2008) Celiac disease. In: Arendt EK, DalBello F (eds) Gluten-free cereal products and beverages. Academic, San Diegos, pp 1–28Google Scholar
  36. Catassi C, Bai JC, Bonaz B et al (2013) Non-celiac gluten sensitivity: the new frontier of gluten related disorders. Nutrient 5:3839–3853CrossRefGoogle Scholar
  37. Catassi G, Lionetti E, Gatti S et al (2017) The low FODMAP diet: many question marks for a catchy acronym. Nutrients 2017(9):292.  https://doi.org/10.3390/nu9030292CrossRefGoogle Scholar
  38. Clarke B, Liang R, Morell MK et al (2008) Gene expression in a starch synthase IIa mutant of barley: changes in the level of gene transcription and grain composition. Funct Integr Genom 8:211–221CrossRefGoogle Scholar
  39. Comino I, Moreno M, Rodriguez-Herrera A et al (2013) The gluten-free diet: testing alternative cereals tolerated by celiac patients. Nutrients 5:4250–4268PubMedPubMedCentralCrossRefGoogle Scholar
  40. Comino I, Bernardo D, Bancel E et al (2016) Identification and molecular characterization of oat peptides implicated on celiac immune response. Food Nutr Res 60:30324PubMedCrossRefGoogle Scholar
  41. Constantini A, Amoriello T, Cecchini C, D’Egibio MG (2008) Analysis of factors influencing fructans production in winter cereals. J Genet Breed 65(1–4):15–24Google Scholar
  42. Cornell HJ, Hoveling AW (1998) Wheat – chemistry and utilization. Technomic Publishing, Landcaster-Basel, pp 327–373Google Scholar
  43. Cubadda R, Marconi E (2002) Spelt wheat. In: Belton P, Taylor JRN (eds) Pseudocereals and less common cereals: grain properties and utilization potential. Springer, Berlin, pp 153–177CrossRefGoogle Scholar
  44. Dang JMC, Bason ML (2013) Determining elasticity of dough in the micro-doughlab. Perten Sci World 7:2–3Google Scholar
  45. Diedhiou C, Gaudet D, Liang Y et al (2012) Carbohydrate profiling in seeds and seedlings of transgenic triticale modified in the expression of sucrose:sucrose-1- fructosyltransferase (1-SST) and sucrose:fructan-6-fructosyltransferase (6-SFT). J Biosci Bioeng 114:371–378PubMedCrossRefGoogle Scholar
  46. Ehdaie B, Alloush GA, Madore MA et al (2006) Genotypic variation for stem reserves and mobilization in wheat I. Postanthesis changes in internode dry matter. Crop Sci 46:735–746CrossRefGoogle Scholar
  47. Elia M, Moralejo M, Rodríguez-Quijano M et al (2004) Spanish spelt: a separate gene pool within the spelt germplasm. Plant Breed 123:297–299CrossRefGoogle Scholar
  48. Escarnot E, Ageessens R, Wathelet B, Paquot S (2010) Quantitative and qualitative study of spelt and wheat fibres in milling fractions. Food Chem 122:867–863CrossRefGoogle Scholar
  49. Escarnot E, Jacquemin JM, Agneessens R et al (2012) Comparative study of the content and profiles of macronutrients in spelt and wheat (a review). Biotech Agron Soc 16:243–256Google Scholar
  50. Faris JD (2014) Wheat domestication: key to agricultural revolutions past and future. In: Tuberosa R (ed) Genomics of plant genetic resources. Springer, Dordrecht, pp 439–464CrossRefGoogle Scholar
  51. Ford R (2008) The gluten syndrome is wheat causing you harm? RRS Global Lt, ChristchurchGoogle Scholar
  52. Forster S, Schumann E, Baumann M et al (2013) Copy number variation of chromosome 5a and its association with q gene expression, morphological aberrations, and agronomic performance of winter wheat cultivars. Theor Appl Genet 126:3049–3063CrossRefGoogle Scholar
  53. Forster S, Schumann E, Pillen K et al (2014) Genetic and environmental effects on the occurrence of speltoids in winter wheat cultivars. Plant Breed 133:442–447CrossRefGoogle Scholar
  54. Fretzdorff B, Welge N (2003a) Abbau von getreideeigenen Fructanen wahrend der Herstellung von Roggenvollkornbrot. Getreide, Mehl und Brot 57:147–151Google Scholar
  55. Fretzdorff B, Welge N (2003b) Fructan- und raffinosegehalte im vollkorn einiger getreidearten und pseudo-cerealien. Getreide Mehl Brot 57:3–8Google Scholar
  56. Galli G, Francisci V, Mair R et al (2000) Characteristics of spelt wheat products and nutritional value of spelt wheat based bread. Food Chem 68:437–441CrossRefGoogle Scholar
  57. Galova Z, Knoblochova H (2001) Biochemical characteristics of five spelt wheat cultivars (Triticum spelta L). Acta Fytotechn Zootechn 4:85–86Google Scholar
  58. Gebbing T (2003) The enclosed and exposed part of the peduncle of wheat (Triticum aestivum) – spatial separation of fructan storage. New Phytol 159:245–252CrossRefGoogle Scholar
  59. Gibson PR, Newnham R, Barrett JS et al (2007) Review article: fructose malabsorption and the bigger picture. Aliment Pharm Ther 25:349–363CrossRefGoogle Scholar
  60. Gibson PR, Varney J, Malakar S et al (2015) Food components and irritable bowel syndrome. Gastroent 148:1158–1174CrossRefGoogle Scholar
  61. Gil-Humanes J, Pistón F, Hernando A et al (2008) Silencing of γ-gliadins by RNA interference (RNAi) in bread wheat. J. Cereal Sci 48:565–568CrossRefGoogle Scholar
  62. Gomez-Becerra HF, Erdem H, Yazici A et al (2010) Grain concentrations of protein and mineral nutrients in a large collection of spelt wheat grown under different environments. J Cereal Sci 52:342–349CrossRefGoogle Scholar
  63. Green PH, Cellier C (2007) Celiac disease. New Eng J Med 357:1731–1743PubMedCrossRefPubMedCentralGoogle Scholar
  64. Gulyás G, Rakszegi M, Bognár Z, Láng L, Bedő Z (2012) Evaluation of genetic diversity of spelt breeding materials based on AFLP and quality analyses. Cereal Res Comm 40:185–193CrossRefGoogle Scholar
  65. Hallert C, Grant C, Grehn S et al (2002) Evidence of poor vitamin status in celiac patients on a gluten-free diet for 10 years. Aliment Pharm Ther 16:1333–1339CrossRefGoogle Scholar
  66. Halmos EP, Power VA, Shepherd SJ et al (2014) A diet low in FODMAPs reduces symptoms of irritable bowel syndrome. Gastroent 146:67–75CrossRefGoogle Scholar
  67. Halmos EP, Christophersen CT, Bird A et al (2015) Diets that differ in their FODMAP content alter the colonic luminal microenvironment. Gut 64:93–100CrossRefGoogle Scholar
  68. Hansen HB, Rasmussen CV, Bach-Knudsen KE et al (2003) Effects of genotype and harvest year on content and composition of dietary fibre in rye (Secale cereale L) grain. J Sci Food Agric 83:76–85CrossRefGoogle Scholar
  69. Haraszi R, Gras PW, Tömösközi S et al (2004) The application of a micro z-arm mixer to characterize mixing properties and water absorption of wheat flour. Cereal Chem 81:555–560CrossRefGoogle Scholar
  70. Haraszi R, Chassaigne H, Maquet A (2011) Analytical methods for detection of gluten in food - method developments in support to the legislations on labelling of foodstuffs. J AOAC Int 94:1006–1025PubMedPubMedCentralGoogle Scholar
  71. Huynh BL, Palmer L, Mather DE et al (2008a) Genotypic variation in wheat grain fructan content revealed by a simplified HPLC method. J Cereal Sci 48:369–378CrossRefGoogle Scholar
  72. Huynh BL, Wallwork H, Stangoulis JCR et al (2008b) Quantitative trait locifor grain fructan concentration in wheat (Triticum aestivum L.). Theor Appl Gen 117:701–709CrossRefGoogle Scholar
  73. Huynh BL, Mather D, Schreiber A et al (2012) Clusters of genes encoding fructan biosynthesizing enzymes in wheat and barley. Plant Mol Biol 80:299–314PubMedCrossRefPubMedCentralGoogle Scholar
  74. Islam S, Ma W, Yan G et al (2011) Modifying processing and health attributes of wheat bread through changes in composition genetics and breeding. In: Cauvain SP, Tran B (eds) Bread making, improving quality, 2nd edn. Woodhead Publishing, Cambridge, UK, pp 259–296Google Scholar
  75. Jargon J (2014) The gluten-free craze: is it healthy? The Wall Street Journal, 14 June 2014Google Scholar
  76. Juhász A, Gy G, Békés F et al (2012) The epitopes in wheat proteins for defining toxic units relevant to human health. Funct Integr Genom 12:585–598CrossRefGoogle Scholar
  77. Juhász A, Haraszi R, Maulis CS (2015) ProPepper: a curated database for identification and analysis of peptide and immune-responsive epitope composition of cereal grain protein families. Database 2015:1–16. https://doi.org/101093/database/bav100CrossRefGoogle Scholar
  78. Junker Y, Zeissig S, Kim SJ et al (2012) Wheat amylase trypsin inhibitors drive intestinal inflammation via activation of the toll-like receptor. J Exp Med 209:2395–2408PubMedPubMedCentralCrossRefGoogle Scholar
  79. Karppinen S, Myllymaki O, Forssell P et al (2003) Fructan content of rye and rye products. Cereal Chem 80:168–171CrossRefGoogle Scholar
  80. Kieffer R, Wieser H, Henderson MH et al (1998) Correlations of the breadmaking performance of wheat flour with rheological measurements on a micro-scale. J Cereal Sci 27:53–60CrossRefGoogle Scholar
  81. Kling CI (1988) Dinkel - ein altes getreide tritt in den vordergrund. Dinkel-Ackerstiftung zur Förderung des Getreides Dinkel, Dinkelsymposium 1:31–47Google Scholar
  82. Koenig A, Konitzer K, Wieser H et al (2015) Classification of spelt cultivars based on differences in storage protein compositions from wheat. Food Chem 168:176–182PubMedCrossRefPubMedCentralGoogle Scholar
  83. Kohajdova Z, Karovicova J (2008) Nutritional value and baking applications of spelt wheat. Acta Sci Pol Technol Aliment 7:5–14Google Scholar
  84. Kooiker M, Drenth J, Glassop D et al (2013) TaMYB13-1, a R2R3 MYB transcription factor, regulates the fructan synthetic pathway and contributes to enhanced fructan accumulation in bread wheat. J Exp Bot 64:3681–3696PubMedPubMedCentralCrossRefGoogle Scholar
  85. Lahti A (1986) A contact urticaria to plants. Clin Dermatol 4:127–136PubMedCrossRefPubMedCentralGoogle Scholar
  86. Lamacchia C, Camarca A, Picascia S et al (2014) Cereal-based gluten-free food: how to reconcile nutritional and technological properties of wheat proteins with safety for celiac disease patients. Nutrients 6:575–590PubMedPubMedCentralCrossRefGoogle Scholar
  87. Langenkämper G, Zörb C, Seifert M et al (2006) Nutritional quality of organic and conventional wheat. J Appl Bot Food Qual 80:150–154Google Scholar
  88. Lantos C, Jenes B, Bona L et al (2016) High frequency of doubled haploid plant production in spelt wheat. Acta Biol Cracov Ser Bot 58(2):35–40Google Scholar
  89. Lantos C, Bona L, Nagy E et al (2018) Induction of in vitro androgenesis in anther and isolated microspore culture of different spelt wheat genotypes. Plant Cell Tissue Organ Cult 133:385–393CrossRefGoogle Scholar
  90. Lauriere M, Pecquet C, Bouchez-Mahiout I et al (2006) Hydrolyzed wheat proteins present in cosmetics can induce immediate hypersensitivities. Contact Dermatitis 54:283–289PubMedCrossRefPubMedCentralGoogle Scholar
  91. Lelley T, Stachel M, Grausgruber H et al (2000) Analysis of relationships between Aegilops tauschii and the D genome of wheat utilizing microsatellites. Genome 43:661–668PubMedCrossRefPubMedCentralGoogle Scholar
  92. Ludvigsson JF, Leffler DA, Bai JC et al (2013) The Oslo definitions for coeliac disease and related terms. Gut 62:43–52PubMedCrossRefPubMedCentralGoogle Scholar
  93. Manifesto MM, Schlatter AR, Hopp HE et al (2001) Quantitative evaluation of genetic diversity in wheat germplasm using molecular markers. Crop Sci 41:682–690CrossRefGoogle Scholar
  94. Market Research (2012) Gluten-free foods in the U.S. 5th ed. Research and Markets, Dublin, Ireland. https://www.packagedfacts.com/gluten-free-foods-8108350/
  95. Martos V, Royo C, Rharrabti Y et al (2005) Using AFLPs to determine phylogenetic relationships and genetic erosion in durum wheat cultivars released in Italy and Spain throughout the 20th century. Field Crops Res 91:107–116CrossRefGoogle Scholar
  96. Mayer F, Haase I, Graubner A et al (2012) Use of polymorphisms in the γ-gliadin gene of spelt and wheat as a tool for authenticity control. J Agric Food Chem 60:1350–1357PubMedCrossRefPubMedCentralGoogle Scholar
  97. Mills ENC, Jenkins JA, Alcocer MJC et al (2004) Structural biological and evolutionary relationships of plant food allergens sensitizing via the gastrointestinal tract. Crit Rev Food Sci Nutr 44:379–407PubMedCrossRefPubMedCentralGoogle Scholar
  98. Missbach B, Schwingshackl L, Billmann A et al (2015) Gluten-free food database: the nutritional quality and cost of packaged gluten-free foods. Peer J 3:e1337. https://doi.org/107717/peerj1337PubMedCrossRefPubMedCentralGoogle Scholar
  99. Muir JG, Shepherd SJ, Rosella O et al (2007) Fructan and free fructose content of common Australian vegetables and fruit. J Agr Food Chem 55:6619–6627CrossRefGoogle Scholar
  100. Muir JG, Rose R, Rosela O et al (2009) Measurement of short-chain carbohydrates in common Australian vegetables and fruits by high-performance liquid chromatography. J Agr Food Chem 57:554–565CrossRefGoogle Scholar
  101. Muir JG, Mills J, Suter DAI et al (2014) FODMAPs in gluten-free grains may explain improved gastrointestinal symptoms in IBS on a gluten-free diet. J Nutr Intermed Metab 1:14–15CrossRefGoogle Scholar
  102. Neeson R, Evans J, Burnett V et al (2008) Optimising the quality and yield of spelt under organic production in SE Australia. Proceedings of 14th Australian Society of Agronomy Conference ASAC, Adelaide, pp 24–31Google Scholar
  103. Ng PKW, Scanlon MG, Bushuk W (1988) Electrophoretic and HPLC patterns of registered Canadian wheat cultivars. Cereal Res Comm 17:5–10Google Scholar
  104. Pasco JA, Nicholson GC, Kotowicz MA (2012) Cohort profile: Geelong osteoporosis study. Int J Epidemiol 41:1565–1575PubMedCrossRefPubMedCentralGoogle Scholar
  105. Pauk J, Mihály R, Puolimatka M (2003) Protocol for wheat (Triticum aestivum L.) anther culture. In: Kasha K, Maluszynski M (eds) Doubled haploid production in crop plants. Kluwer Academic Publisher, Dordrecht/Boston/London, pp 59–64CrossRefGoogle Scholar
  106. Pauk J, Hassan MS, Puolimatka M et al (2004) Microspore- and anther culture improvements for wheat breeding. In: Mujib A, Cho MJ, Predieri S et al (eds) In vitro application in crop improvement: recent progress. Science Publisher, Enfield, pp 131–151Google Scholar
  107. Plugis MP, Khosla C (2015) Therapeutic approaches for celiac disease. Best Pract Res Cl Ga 29:503–521CrossRefGoogle Scholar
  108. Pruska-Kedzior A, Kędzior ZM, Kedzior ZM et al (2008) Comparison of viscoelastic properties of gluten from spelt and common wheat. Eur Food Res Technol 227:199–207CrossRefGoogle Scholar
  109. Pulido OM, Gillespie Z, Zarkadas M et al (2009) Introduction of oats in the diet of individuals with celiac disease: a systematic review. Adv Food Nutr Res 57:235–825PubMedCrossRefPubMedCentralGoogle Scholar
  110. Radic H, Günther T, Kling CI et al (1997) Characterization of spelt (Triticum spelta L.) forms by gel-electrophoretic analyses of seed storage proteins. II. The glutenins. Theor Appl Gen 94:882–886CrossRefGoogle Scholar
  111. Radic-Miehle H, Saam C, Hüls R et al (1998) Characterization of spelt (Triticum spelta L.) forms by gel-electrophoretic analyses of seed storage proteins. III. Comparative analyses of spelt and central European winter wheat (Triticum aestivum L.) cultivars by SDS-PAGE and acid-PAGE. Theor Appl Gen 97:1340–1346CrossRefGoogle Scholar
  112. Rakha A, Aman P, Andersson R (2011) Dietary fiber in triticale grain: variation in content, composition, and molecular weight distribution of extractable components. J Cereal Sci 54:324–331CrossRefGoogle Scholar
  113. Raman H, Rahman R, Luckett D et al (2008) Characterisation of genetic variation for aluminium resistance and polyphenol oxidase activity in genebank accessions of spelt wheat. Breeding Sci 59:373–381CrossRefGoogle Scholar
  114. Ruibal-Menieta ML, Delacroix DL, Mignelot E et al (2005) Spelt (Triticum aestivum ssp spelta) as a source of breadmaking flours and bran naturally enriched in oleic acid and minerals but not phytic acid. J Agr Food Chem 53:2751–2759CrossRefGoogle Scholar
  115. Sapone A, Bai JC, Ciacci C et al (2012) Spectrum of gluten-related disorders: consensus on new nomenclature and classification. BMC Med 10:13. https://doi.org/101186/1741-7015-10-13PubMedPubMedCentralCrossRefGoogle Scholar
  116. Saturni L, Ferretti G, Bacchetti T (2010) The gluten-free diet: safety and nutritional quality. Nutrients 2:16–34PubMedPubMedCentralCrossRefGoogle Scholar
  117. Schober TJ, Kuhn M (2003) Capillary zone electrophoresis for gliadin separation: application in a spelt breeding program. Eur Food Res Tech 217:350–359CrossRefGoogle Scholar
  118. Schober TJ, Clarke CI, Kuhn M (2002) Characterization of functional properties of gluten proteins in spelt cultivars using rheological and quality factor measurements. Cereal Chem 79:408–414CrossRefGoogle Scholar
  119. Schober TJ, Bean SR, Kuhn M (2006) Gluten proteins from spelt (Triticum aestivum ssp. spelta) cultivars: a rheological and size-exclusion high-performance liquid chromatography study. J Cereal Sci 44:161–167CrossRefGoogle Scholar
  120. Schuppan D, Pickert G, Ashfaq-Khan M et al (2015) Non-celiac wheat sensitivity: differential diagnosis triggers and implications. Best Pract Res Cl Ga 29:469–476CrossRefGoogle Scholar
  121. Shepherd SJ, Gibson PR (2006) Fructose malabsorption and symptoms of IBS: management. J Am Diet Assoc 106:1631–1639PubMedCrossRefPubMedCentralGoogle Scholar
  122. Shepherd SJ, Parker FC, Muir JG et al (2008) Dietary triggers of abdominal symptoms in patients with IBS: randomized placebo-controlled evidence. Clin Gastroenterol Hepatol 6:765–771PubMedCrossRefPubMedCentralGoogle Scholar
  123. Shewry PR (2002) The major seed storage proteins of spelt wheat, sorghum millets and pseudocereals. In: Belton P, Taylor J (eds) Pseudocereals and less common cereals: grain properties and utilization potential. Springer, Berlin, pp 1–24Google Scholar
  124. Shewry PR, Tatham AS (2016) Improving wheat to remove celiac epitopes but retain functionality. J Cereal Sci 67:12–21PubMedPubMedCentralCrossRefGoogle Scholar
  125. Shimbata T, Inokuma T, Sunohara A et al (2011) High levels of sugars and fructan in mature seed of sweet wheat lacking GBSSI and SSIIa enzymes. J Agric Food Chem 59:4794–4800PubMedCrossRefPubMedCentralGoogle Scholar
  126. Siles RI, Hsieh FH (2013) Allergy blood testing: a practical guide for clinicians. Clev Clin J Med 78:585–592CrossRefGoogle Scholar
  127. Sollid LM, Qiao SW, Anderson RP et al (2012) Nomenclature and listing of celiac disease relevant gluten t-cell epitopes restricted by HLA-dq molecules. Immunogenetics 64:455–460PubMedPubMedCentralCrossRefGoogle Scholar
  128. Suter DAI, Békés F (2012) Wheat immunoreactivity. Aust Patent http://v3 espacenetcom/ publicationdetails/ biblio?cc=hu&nr= au2011000468Google Scholar
  129. Tatham AS, Shewry PR (2008) Allergy to wheat and related cereals. Clin Exp Allergy 38:1712–1726PubMedPubMedCentralGoogle Scholar
  130. Tömösközi S, Varga J, Fodor D et al (2001) Laboratory mill for small-scale testing. In: Shewry PR, Tatham AS (eds) Wheat gluten. Royal Society of Chemistry, Cambridge, pp 317–320Google Scholar
  131. Tömösközi S, Nádosi M, Balázs G et al (2010) Revival of sedimentation value – method development, quality prediction and molecular background. In: Branlard G (ed) Gluten proteins 2009. Proceedings of 10th international gluten workshop. INRA Clermont-Ferrand, pp 104–108Google Scholar
  132. Verspreet J, Cimini S, Vergauwen R et al (2013) Fructan metabolism in developing wheat (Triticum aestivum L.) kernels. Plant Cell Phys 54:2047–2057CrossRefGoogle Scholar
  133. Verspreet J, Dornez E, Van den Ende W et al (2015) Cereal grain fructans: structure, variability and potential health effects. Trends Food Sci Technol 43:32–42CrossRefGoogle Scholar
  134. Vu NT (2014) Comparative analysis of the soluble wheat proteins and human health. PhD thesis. Sydney University, Sydney AustraliaGoogle Scholar
  135. Vu NT, Chin J, Pasco JA et al (2014) The prevalence of wheat and spelt sensitivity in a randomly selected Australian population. Cereal Res Comm 43:97–107CrossRefGoogle Scholar
  136. Wangen S (2009) Healthier without wheat. A new understanding of wheat allergies, celiac disease and non-celiac gluten intolerance. Innate Health Pub, SeattleGoogle Scholar
  137. Wardlaw IF, Willenbrink J (2000) Mobilization of fructan reserves and changes in enzyme activities in wheat stems correlate with water stress during kernel filling. New Phytol 148:413–422CrossRefGoogle Scholar
  138. Wei JZ, Chatterton NJ, Larson SR et al (2000) Linkage mapping and nucleotide polymorphisms of the 6-SFT gene of cool-season grasses. Genome 43:931–938PubMedCrossRefPubMedCentralGoogle Scholar
  139. White J, Law JR, MacKay I et al (2008) The genetic diversity of UK, US and Australian cultivars of Triticum aestivum measured by DArT markers and considered by genome. Theor Appl Genet 116:439–453PubMedCrossRefPubMedCentralGoogle Scholar
  140. Wieser H (2000) Comparative investigations of gluten proteins from different wheat species. I Qualitative and quantitative composition of gluten protein types. J Eur Food Res Tech 211:262–268CrossRefGoogle Scholar
  141. Wieser H (2006) Comparison of pure spelts and spelt/wheat crossbreeds. Getreide-technologie 60:223–231Google Scholar
  142. Wrigley CW, Bietz JA (1988) Proteins and amino acids. In: Pomeranz Y (ed) Wheat – chemistry and technology, vol I. AACC, St Paul MN, pp 159–275Google Scholar
  143. Xue GP, Kooiker M, Drenth J et al (2011) TaMYB13 is a transcriptional activator of fructosyltransferase genes involved in beta-2,6-linked fructan synthesis in wheat. Plant J 68:857–870PubMedCrossRefGoogle Scholar
  144. Yang JC, Zhang JH, Wang ZQ et al (2004) Activities of fructan- and sucrose-metabolizing enzymes in wheat stems subjected to water stress during grain filling. Planta 220:331–343PubMedCrossRefGoogle Scholar
  145. Yasui T, Ashida K (2011) Waxy endosperm accompanies increased fat and saccharide contents in bread wheat (Triticum aestivum L.) grain. J Cereal Sci 53:104–111CrossRefGoogle Scholar
  146. Zevallos VF, Raker V, Tenzer S et al (2016) Nutritional wheat amylase-trypsin inhibitors promote intestinal inflammation via activation of myeloid cells. Gastroenterology 2017.  https://doi.org/10.1053/j.gastro.2016.12.006PubMedCrossRefPubMedCentralGoogle Scholar
  147. Zuidmeer L, Goldhahn K, Rona RJ et al (2008) The prevalence of plant food allergies: a systematic review. J Allergy Clin Immun 121:1210–1218PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • János Pauk
    • 1
    Email author
  • Csaba Lantos
    • 1
  • Katalin Ács
    • 1
  • Gyöngyvér Gell
    • 2
  • Sándor Tömösközi
    • 3
  • Kornélia Hajdú Búza
    • 1
  • Ferenc Békés
    • 4
  1. 1.Department of BiotechnologyCereal Research Non-profit LtdSzegedHungary
  2. 2.Agricultural Institute, HAS Centre for Agricultural ResearchMartonvásárHungary
  3. 3.Department of Applied Biotechnology and Food ScienceBudapest University of Technology and Economics (BUTE)BudapestHungary
  4. 4.FBFD PTY LTD, SydneyNorth ParramattaAustralia

Personalised recommendations