Skip to main content

Spelt (Triticum spelta L.) In Vitro Androgenesis Breeding for Special Food Quality Parameters

  • Chapter
  • First Online:
Advances in Plant Breeding Strategies: Cereals

Abstract

Consuming gluten-containing foods derived from wheat, barley, rye and possibly oats can result in health problems for a significant proportion of people. However, in the case of several types of disorders related to consuming gluten-containing cereals, not only the gluten components are trigger compounds. According to medical experts the majority of people suffering from health problems because of gluten— except for celiac disease patients—instead of consuming gluten-free food have the option to choose food products containing healthier, low levels of fermentable oligosaccharides abbreviated FODMAP. In order to meet the health-related special needs of these particular consumer groups, cereal breeders aim to develop new germplasm, suitable for the food industry to produce healthier products. This chapter provides a summary of the latest developments in this booming research field, including: (i) describing the actual knowledge on cereal-related health problems, (ii) describing the current status of celiac-safe cereal breeding, (iii) enhancing the importance of developing healthier spelt-based cereal products through the advancement of an ongoing spelt breeding program and finally (iv) developing plant biotechnology improvements relative to special food quality parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abdel-Aal SM, Hucl P (2002) Amino acid composition and in vitro protein digestibility of selected ancient wheats and their end products. J Food Comp Anal 15:737–747

    Article  CAS  Google Scholar 

  • Ács K, Békés F, Lantos CS et al (2017) The role of carbohydrates in the development of food intolerance: is the low FODMAP diet the solution in the IBS treatment? GK Fórum 2017 02 01-02, GK. Szeged, Hungary. (in Hungarian)

    Google Scholar 

  • Akagawa M, Handoyo T, Ishii T (2007) Proteomic analysis of wheat flour allergens. J Agr Food Chem 55:6863–6870

    Article  CAS  Google Scholar 

  • Altenbach SB, Tanaka CT, Allen PV (2014a) Quantitative proteomic analysis of wheat grain proteins reveals differential effects of silencing of omega-5 gliadin genes in transgenic lines. J Cereal Sci 59:118–125

    Article  CAS  Google Scholar 

  • Altenbach SB, Tanaka CT, Seabourn BW (2014b) Silencing of omega-5 gliadins in transgenic wheat eliminates a major source of environmental variability and improves dough mixing properties of flour. BMC Plant Biol 14(1):1–13

    Article  PubMed Central  CAS  Google Scholar 

  • Aman P (1987) The variation in chemical composition of Swedish oats. Acta Agric Scand 37:347–352

    Article  Google Scholar 

  • Aman P, Hesselman K, Tilly AC (1985) The variation in chemical composition of Swedish barleys. J Cereal Sci 3:73–77

    Article  CAS  Google Scholar 

  • Amano MH, Ogawa K, Kojima T et al (1998) Identification of the major allergens in wheat flour, responsible for baker's asthma. Biochem J 330:1229–1234

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • An X, Li Q, Yan Y et al (2005) Genetic diversity of European spelt wheat (Triticum aestivum ssp. spelta L. em. Thell.) revealed by glutenin subunit variations at the Glu-1 and Glu-3 loci. Euphytica 146:193–201

    Article  CAS  Google Scholar 

  • Anderson RP, Wieser H (2006) Medical applications of gluten-composition knowledge. In: Wrigley CW, Békés F, Bushuk W (eds) Gliadin and glutenin: the unique balance of wheat quality. AACCI Press, St Paul MN, pp 387–409

    Chapter  Google Scholar 

  • Anderson JA, Churchilll GA, Autrique JE et al (1993) Optimizing parental selection for genetic linkage maps. Genome 36:181–186

    Article  CAS  PubMed  Google Scholar 

  • Anderson RP, Degano P, Godkin AJ et al (2000) In vivo antigen challenge in celiac disease identifies a single transglutaminase-modified peptide as the dominant a gliadin t-cell epitope. Nat Med 6:337–342

    Article  CAS  PubMed  Google Scholar 

  • Andersson R, Fransson G, Tietjen M et al (2009) Content and molecular-weight distribution of dietary fiber components in whole-grain rye flour and bread. J Agric Food Chem 57:2004–2008

    Article  CAS  PubMed  Google Scholar 

  • Andersson AAM, Andersson R, Piironen V et al (2013) Contents of dietary fibre components and their relation to associated bioactive components in whole grain wheat samples from the HEALTHGRAIN diversity screen. Food Chem 136:1243–1248

    Article  CAS  PubMed  Google Scholar 

  • Armentia A, Martin-Santos JM, Blanco M (1990) Exercise induced anaphylaxis reaction to grain flours. Ann Allerg 65:149–151

    CAS  PubMed  Google Scholar 

  • Armentia A, Martin-Santos JM, Diaz-Perales A et al (2012) A possible hypoallergenic cereal in wheat food allergy and baker’s asthma. Amer J Plant Sci 3:1779–1781

    Article  CAS  Google Scholar 

  • Balakireva A, Zamyatnin AA (2016) Properties of gluten intolerance: gluten structure, evolution, pathogenicity and detoxification capabilities. Nutrients 8:644

    Article  PubMed Central  CAS  Google Scholar 

  • Békés F (2015) Health related quality attributes of wheat. In: Pauk J (ed) Proceedings 3rd conference of cereal biotechnology and breeding (cbb3) Aekadémiai Kiadó, Budapest, pp 1–3

    Google Scholar 

  • Békés F, Southan MS, Tömösközi S, et al (2000) Comparative studies on a new micro scale laboratory mill. In: Panozzo JF, Ratcliffe M, Wootton M et al (eds) Proceedings 49th RACI Conference, RACI Melbourne Australia, pp 483–487

    Google Scholar 

  • Bertin P, Gregoire D, Massart S, de Froidmont D (2004) High level of genetic diversity among spelt germplasm revealed by microsatellite markers. Genome 47:1043–1052

    Article  CAS  PubMed  Google Scholar 

  • Biesiekierski JR, Rosella O, Rose R et al (2011) Quantification of fructans galacto-oligosaccharides and other short-chain carbohydrates in processed grains and cereals. J Hum Nutr Diet 24:154–176

    Article  CAS  PubMed  Google Scholar 

  • Blatter RH, Jacomet S, Schlumbaum A (2004) About the origin of European spelt (Triticum spelta l.): allelic differentiation of the HMW glutenin B1-1 and A1-2 subunit genes. Theor Appl Genet 108:360–367

    Article  CAS  PubMed  Google Scholar 

  • Bodinier M, Brossard C, Triballea S (2008) Evaluation of an in vitro mast cell degranu-lation test in the context of food allergy to wheat. Int Arch Allergy Imm 146:307–320

    Article  CAS  Google Scholar 

  • Bonafacci G, Galli V, Francisci R et al (2002) Characteristics of spelt wheat products and nutritional value of spelt wheat-based bread. Food Chem 68:437–441

    Article  Google Scholar 

  • Braly J, Hoggan R (2002) Dangerous grains. Why gluten cereal grains may be hazardous to your health. Penguin group, NY

    Google Scholar 

  • Branchi F, Ferretti F, Norsa L et al (2015) Management of nonceliac gluten sensitivity by gastroenterology specialists: data from an Italian survey Biomed Res Int 2015. https://doi.org/101155/2015/530136

    Google Scholar 

  • Brandolini A, Hidalgo A, Plizzari L et al (2011) Impact of genetic and environmental factors on einkorn wheat (Triticum monococcum L. subsp. monococcum) polysaccharides. J Cereal Sci 53:65–72

    Article  CAS  Google Scholar 

  • Breen M, Li D, Dunn DS et al (2010) Wheat beta-expansion (expb11) genes: identification of the expressed gene on chromosome 3bs carrying a pollen allergen domain. BMC Plant Biol 10:99

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Büren M, Lüthy J, Hübner P (2000) A spelt-specific γ-gliadin gene: discovery and detection Theor Appl Genet 100:271–279

    Google Scholar 

  • Büren M, Stadler M, Lüthy J (2001) Detection of wheat adulteration of spelt flour and products by PCR. Eur Food Res Technol 212:234–239

    Article  Google Scholar 

  • Caballero L, Martín LM, Alvarez BJ (2004) Variation and genetic diversity for gliadins in Spanish spelt wheat accessions. Genet Res Crop Evol 51:679–686

    Article  CAS  Google Scholar 

  • Caballero L, Martín LM, Alvarez JB (2008) Variation of high molecular weight glutenin subunits in two neglected tetraploid wheat subspecies. Czech J Genet Plant Breeding 44:140–146

    Article  CAS  Google Scholar 

  • Campbell KG (1997) Spelt: agronomy, genetics and breeding. Plant Breed Rev 15:187–213

    Google Scholar 

  • Caruso R, Pallone F, Stasi E et al (2013) Appropriate nutrient supplementation in celiac disease. Ann Med 45:522–531

    Article  CAS  PubMed  Google Scholar 

  • Catassi C, Fasano A (2008) Celiac disease. In: Arendt EK, DalBello F (eds) Gluten-free cereal products and beverages. Academic, San Diegos, pp 1–28

    Google Scholar 

  • Catassi C, Bai JC, Bonaz B et al (2013) Non-celiac gluten sensitivity: the new frontier of gluten related disorders. Nutrient 5:3839–3853

    Article  CAS  Google Scholar 

  • Catassi G, Lionetti E, Gatti S et al (2017) The low FODMAP diet: many question marks for a catchy acronym. Nutrients 2017(9):292. https://doi.org/10.3390/nu9030292

    Article  CAS  Google Scholar 

  • Clarke B, Liang R, Morell MK et al (2008) Gene expression in a starch synthase IIa mutant of barley: changes in the level of gene transcription and grain composition. Funct Integr Genom 8:211–221

    Article  CAS  Google Scholar 

  • Comino I, Moreno M, Rodriguez-Herrera A et al (2013) The gluten-free diet: testing alternative cereals tolerated by celiac patients. Nutrients 5:4250–4268

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Comino I, Bernardo D, Bancel E et al (2016) Identification and molecular characterization of oat peptides implicated on celiac immune response. Food Nutr Res 60:30324

    Article  PubMed  CAS  Google Scholar 

  • Constantini A, Amoriello T, Cecchini C, D’Egibio MG (2008) Analysis of factors influencing fructans production in winter cereals. J Genet Breed 65(1–4):15–24

    Google Scholar 

  • Cornell HJ, Hoveling AW (1998) Wheat – chemistry and utilization. Technomic Publishing, Landcaster-Basel, pp 327–373

    Google Scholar 

  • Cubadda R, Marconi E (2002) Spelt wheat. In: Belton P, Taylor JRN (eds) Pseudocereals and less common cereals: grain properties and utilization potential. Springer, Berlin, pp 153–177

    Chapter  Google Scholar 

  • Dang JMC, Bason ML (2013) Determining elasticity of dough in the micro-doughlab. Perten Sci World 7:2–3

    Google Scholar 

  • Diedhiou C, Gaudet D, Liang Y et al (2012) Carbohydrate profiling in seeds and seedlings of transgenic triticale modified in the expression of sucrose:sucrose-1- fructosyltransferase (1-SST) and sucrose:fructan-6-fructosyltransferase (6-SFT). J Biosci Bioeng 114:371–378

    Article  CAS  PubMed  Google Scholar 

  • Ehdaie B, Alloush GA, Madore MA et al (2006) Genotypic variation for stem reserves and mobilization in wheat I. Postanthesis changes in internode dry matter. Crop Sci 46:735–746

    Article  Google Scholar 

  • Elia M, Moralejo M, Rodríguez-Quijano M et al (2004) Spanish spelt: a separate gene pool within the spelt germplasm. Plant Breed 123:297–299

    Article  CAS  Google Scholar 

  • Escarnot E, Ageessens R, Wathelet B, Paquot S (2010) Quantitative and qualitative study of spelt and wheat fibres in milling fractions. Food Chem 122:867–863

    Article  CAS  Google Scholar 

  • Escarnot E, Jacquemin JM, Agneessens R et al (2012) Comparative study of the content and profiles of macronutrients in spelt and wheat (a review). Biotech Agron Soc 16:243–256

    Google Scholar 

  • Faris JD (2014) Wheat domestication: key to agricultural revolutions past and future. In: Tuberosa R (ed) Genomics of plant genetic resources. Springer, Dordrecht, pp 439–464

    Chapter  Google Scholar 

  • Ford R (2008) The gluten syndrome is wheat causing you harm? RRS Global Lt, Christchurch

    Google Scholar 

  • Forster S, Schumann E, Baumann M et al (2013) Copy number variation of chromosome 5a and its association with q gene expression, morphological aberrations, and agronomic performance of winter wheat cultivars. Theor Appl Genet 126:3049–3063

    Article  CAS  Google Scholar 

  • Forster S, Schumann E, Pillen K et al (2014) Genetic and environmental effects on the occurrence of speltoids in winter wheat cultivars. Plant Breed 133:442–447

    Article  Google Scholar 

  • Fretzdorff B, Welge N (2003a) Abbau von getreideeigenen Fructanen wahrend der Herstellung von Roggenvollkornbrot. Getreide, Mehl und Brot 57:147–151

    CAS  Google Scholar 

  • Fretzdorff B, Welge N (2003b) Fructan- und raffinosegehalte im vollkorn einiger getreidearten und pseudo-cerealien. Getreide Mehl Brot 57:3–8

    CAS  Google Scholar 

  • Galli G, Francisci V, Mair R et al (2000) Characteristics of spelt wheat products and nutritional value of spelt wheat based bread. Food Chem 68:437–441

    Article  Google Scholar 

  • Galova Z, Knoblochova H (2001) Biochemical characteristics of five spelt wheat cultivars (Triticum spelta L). Acta Fytotechn Zootechn 4:85–86

    Google Scholar 

  • Gebbing T (2003) The enclosed and exposed part of the peduncle of wheat (Triticum aestivum) – spatial separation of fructan storage. New Phytol 159:245–252

    Article  CAS  PubMed  Google Scholar 

  • Gibson PR, Newnham R, Barrett JS et al (2007) Review article: fructose malabsorption and the bigger picture. Aliment Pharm Ther 25:349–363

    Article  CAS  Google Scholar 

  • Gibson PR, Varney J, Malakar S et al (2015) Food components and irritable bowel syndrome. Gastroent 148:1158–1174

    Article  Google Scholar 

  • Gil-Humanes J, Pistón F, Hernando A et al (2008) Silencing of γ-gliadins by RNA interference (RNAi) in bread wheat. J. Cereal Sci 48:565–568

    Article  CAS  Google Scholar 

  • Gomez-Becerra HF, Erdem H, Yazici A et al (2010) Grain concentrations of protein and mineral nutrients in a large collection of spelt wheat grown under different environments. J Cereal Sci 52:342–349

    Article  CAS  Google Scholar 

  • Green PH, Cellier C (2007) Celiac disease. New Eng J Med 357:1731–1743

    Article  CAS  PubMed  Google Scholar 

  • Gulyás G, Rakszegi M, Bognár Z, Láng L, Bedő Z (2012) Evaluation of genetic diversity of spelt breeding materials based on AFLP and quality analyses. Cereal Res Comm 40:185–193

    Article  CAS  Google Scholar 

  • Hallert C, Grant C, Grehn S et al (2002) Evidence of poor vitamin status in celiac patients on a gluten-free diet for 10 years. Aliment Pharm Ther 16:1333–1339

    Article  CAS  Google Scholar 

  • Halmos EP, Power VA, Shepherd SJ et al (2014) A diet low in FODMAPs reduces symptoms of irritable bowel syndrome. Gastroent 146:67–75

    Article  CAS  Google Scholar 

  • Halmos EP, Christophersen CT, Bird A et al (2015) Diets that differ in their FODMAP content alter the colonic luminal microenvironment. Gut 64:93–100

    Article  CAS  PubMed  Google Scholar 

  • Hansen HB, Rasmussen CV, Bach-Knudsen KE et al (2003) Effects of genotype and harvest year on content and composition of dietary fibre in rye (Secale cereale L) grain. J Sci Food Agric 83:76–85

    Article  CAS  Google Scholar 

  • Haraszi R, Gras PW, Tömösközi S et al (2004) The application of a micro z-arm mixer to characterize mixing properties and water absorption of wheat flour. Cereal Chem 81:555–560

    Article  CAS  Google Scholar 

  • Haraszi R, Chassaigne H, Maquet A (2011) Analytical methods for detection of gluten in food - method developments in support to the legislations on labelling of foodstuffs. J AOAC Int 94:1006–1025

    CAS  PubMed  Google Scholar 

  • Huynh BL, Palmer L, Mather DE et al (2008a) Genotypic variation in wheat grain fructan content revealed by a simplified HPLC method. J Cereal Sci 48:369–378

    Article  CAS  Google Scholar 

  • Huynh BL, Wallwork H, Stangoulis JCR et al (2008b) Quantitative trait locifor grain fructan concentration in wheat (Triticum aestivum L.). Theor Appl Gen 117:701–709

    Article  CAS  Google Scholar 

  • Huynh BL, Mather D, Schreiber A et al (2012) Clusters of genes encoding fructan biosynthesizing enzymes in wheat and barley. Plant Mol Biol 80:299–314

    Article  CAS  PubMed  Google Scholar 

  • Islam S, Ma W, Yan G et al (2011) Modifying processing and health attributes of wheat bread through changes in composition genetics and breeding. In: Cauvain SP, Tran B (eds) Bread making, improving quality, 2nd edn. Woodhead Publishing, Cambridge, UK, pp 259–296

    Google Scholar 

  • Jargon J (2014) The gluten-free craze: is it healthy? The Wall Street Journal, 14 June 2014

    Google Scholar 

  • Juhász A, Gy G, Békés F et al (2012) The epitopes in wheat proteins for defining toxic units relevant to human health. Funct Integr Genom 12:585–598

    Article  CAS  Google Scholar 

  • Juhász A, Haraszi R, Maulis CS (2015) ProPepper: a curated database for identification and analysis of peptide and immune-responsive epitope composition of cereal grain protein families. Database 2015:1–16. https://doi.org/101093/database/bav100

    Article  CAS  Google Scholar 

  • Junker Y, Zeissig S, Kim SJ et al (2012) Wheat amylase trypsin inhibitors drive intestinal inflammation via activation of the toll-like receptor. J Exp Med 209:2395–2408

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Karppinen S, Myllymaki O, Forssell P et al (2003) Fructan content of rye and rye products. Cereal Chem 80:168–171

    Article  CAS  Google Scholar 

  • Kieffer R, Wieser H, Henderson MH et al (1998) Correlations of the breadmaking performance of wheat flour with rheological measurements on a micro-scale. J Cereal Sci 27:53–60

    Article  Google Scholar 

  • Kling CI (1988) Dinkel - ein altes getreide tritt in den vordergrund. Dinkel-Ackerstiftung zur Förderung des Getreides Dinkel, Dinkelsymposium 1:31–47

    Google Scholar 

  • Koenig A, Konitzer K, Wieser H et al (2015) Classification of spelt cultivars based on differences in storage protein compositions from wheat. Food Chem 168:176–182

    Article  CAS  PubMed  Google Scholar 

  • Kohajdova Z, Karovicova J (2008) Nutritional value and baking applications of spelt wheat. Acta Sci Pol Technol Aliment 7:5–14

    CAS  Google Scholar 

  • Kooiker M, Drenth J, Glassop D et al (2013) TaMYB13-1, a R2R3 MYB transcription factor, regulates the fructan synthetic pathway and contributes to enhanced fructan accumulation in bread wheat. J Exp Bot 64:3681–3696

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lahti A (1986) A contact urticaria to plants. Clin Dermatol 4:127–136

    Article  CAS  PubMed  Google Scholar 

  • Lamacchia C, Camarca A, Picascia S et al (2014) Cereal-based gluten-free food: how to reconcile nutritional and technological properties of wheat proteins with safety for celiac disease patients. Nutrients 6:575–590

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Langenkämper G, Zörb C, Seifert M et al (2006) Nutritional quality of organic and conventional wheat. J Appl Bot Food Qual 80:150–154

    Google Scholar 

  • Lantos C, Jenes B, Bona L et al (2016) High frequency of doubled haploid plant production in spelt wheat. Acta Biol Cracov Ser Bot 58(2):35–40

    Google Scholar 

  • Lantos C, Bona L, Nagy E et al (2018) Induction of in vitro androgenesis in anther and isolated microspore culture of different spelt wheat genotypes. Plant Cell Tissue Organ Cult 133:385–393

    Article  CAS  Google Scholar 

  • Lauriere M, Pecquet C, Bouchez-Mahiout I et al (2006) Hydrolyzed wheat proteins present in cosmetics can induce immediate hypersensitivities. Contact Dermatitis 54:283–289

    Article  CAS  PubMed  Google Scholar 

  • Lelley T, Stachel M, Grausgruber H et al (2000) Analysis of relationships between Aegilops tauschii and the D genome of wheat utilizing microsatellites. Genome 43:661–668

    Article  CAS  PubMed  Google Scholar 

  • Ludvigsson JF, Leffler DA, Bai JC et al (2013) The Oslo definitions for coeliac disease and related terms. Gut 62:43–52

    Article  PubMed  Google Scholar 

  • Manifesto MM, Schlatter AR, Hopp HE et al (2001) Quantitative evaluation of genetic diversity in wheat germplasm using molecular markers. Crop Sci 41:682–690

    Article  CAS  Google Scholar 

  • Market Research (2012) Gluten-free foods in the U.S. 5th ed. Research and Markets, Dublin, Ireland. https://www.packagedfacts.com/gluten-free-foods-8108350/

  • Martos V, Royo C, Rharrabti Y et al (2005) Using AFLPs to determine phylogenetic relationships and genetic erosion in durum wheat cultivars released in Italy and Spain throughout the 20th century. Field Crops Res 91:107–116

    Article  Google Scholar 

  • Mayer F, Haase I, Graubner A et al (2012) Use of polymorphisms in the γ-gliadin gene of spelt and wheat as a tool for authenticity control. J Agric Food Chem 60:1350–1357

    Article  CAS  PubMed  Google Scholar 

  • Mills ENC, Jenkins JA, Alcocer MJC et al (2004) Structural biological and evolutionary relationships of plant food allergens sensitizing via the gastrointestinal tract. Crit Rev Food Sci Nutr 44:379–407

    Article  CAS  PubMed  Google Scholar 

  • Missbach B, Schwingshackl L, Billmann A et al (2015) Gluten-free food database: the nutritional quality and cost of packaged gluten-free foods. Peer J 3:e1337. https://doi.org/107717/peerj1337

    Article  PubMed  PubMed Central  Google Scholar 

  • Muir JG, Shepherd SJ, Rosella O et al (2007) Fructan and free fructose content of common Australian vegetables and fruit. J Agr Food Chem 55:6619–6627

    Article  CAS  Google Scholar 

  • Muir JG, Rose R, Rosela O et al (2009) Measurement of short-chain carbohydrates in common Australian vegetables and fruits by high-performance liquid chromatography. J Agr Food Chem 57:554–565

    Article  CAS  Google Scholar 

  • Muir JG, Mills J, Suter DAI et al (2014) FODMAPs in gluten-free grains may explain improved gastrointestinal symptoms in IBS on a gluten-free diet. J Nutr Intermed Metab 1:14–15

    Article  Google Scholar 

  • Neeson R, Evans J, Burnett V et al (2008) Optimising the quality and yield of spelt under organic production in SE Australia. Proceedings of 14th Australian Society of Agronomy Conference ASAC, Adelaide, pp 24–31

    Google Scholar 

  • Ng PKW, Scanlon MG, Bushuk W (1988) Electrophoretic and HPLC patterns of registered Canadian wheat cultivars. Cereal Res Comm 17:5–10

    Google Scholar 

  • Pasco JA, Nicholson GC, Kotowicz MA (2012) Cohort profile: Geelong osteoporosis study. Int J Epidemiol 41:1565–1575

    Article  PubMed  Google Scholar 

  • Pauk J, Mihály R, Puolimatka M (2003) Protocol for wheat (Triticum aestivum L.) anther culture. In: Kasha K, Maluszynski M (eds) Doubled haploid production in crop plants. Kluwer Academic Publisher, Dordrecht/Boston/London, pp 59–64

    Chapter  Google Scholar 

  • Pauk J, Hassan MS, Puolimatka M et al (2004) Microspore- and anther culture improvements for wheat breeding. In: Mujib A, Cho MJ, Predieri S et al (eds) In vitro application in crop improvement: recent progress. Science Publisher, Enfield, pp 131–151

    Google Scholar 

  • Plugis MP, Khosla C (2015) Therapeutic approaches for celiac disease. Best Pract Res Cl Ga 29:503–521

    Article  CAS  Google Scholar 

  • Pruska-Kedzior A, Kędzior ZM, Kedzior ZM et al (2008) Comparison of viscoelastic properties of gluten from spelt and common wheat. Eur Food Res Technol 227:199–207

    Article  CAS  Google Scholar 

  • Pulido OM, Gillespie Z, Zarkadas M et al (2009) Introduction of oats in the diet of individuals with celiac disease: a systematic review. Adv Food Nutr Res 57:235–825

    Article  CAS  PubMed  Google Scholar 

  • Radic H, Günther T, Kling CI et al (1997) Characterization of spelt (Triticum spelta L.) forms by gel-electrophoretic analyses of seed storage proteins. II. The glutenins. Theor Appl Gen 94:882–886

    Article  CAS  Google Scholar 

  • Radic-Miehle H, Saam C, Hüls R et al (1998) Characterization of spelt (Triticum spelta L.) forms by gel-electrophoretic analyses of seed storage proteins. III. Comparative analyses of spelt and central European winter wheat (Triticum aestivum L.) cultivars by SDS-PAGE and acid-PAGE. Theor Appl Gen 97:1340–1346

    Article  CAS  Google Scholar 

  • Rakha A, Aman P, Andersson R (2011) Dietary fiber in triticale grain: variation in content, composition, and molecular weight distribution of extractable components. J Cereal Sci 54:324–331

    Article  CAS  Google Scholar 

  • Raman H, Rahman R, Luckett D et al (2008) Characterisation of genetic variation for aluminium resistance and polyphenol oxidase activity in genebank accessions of spelt wheat. Breeding Sci 59:373–381

    Article  Google Scholar 

  • Ruibal-Menieta ML, Delacroix DL, Mignelot E et al (2005) Spelt (Triticum aestivum ssp spelta) as a source of breadmaking flours and bran naturally enriched in oleic acid and minerals but not phytic acid. J Agr Food Chem 53:2751–2759

    Article  CAS  Google Scholar 

  • Sapone A, Bai JC, Ciacci C et al (2012) Spectrum of gluten-related disorders: consensus on new nomenclature and classification. BMC Med 10:13. https://doi.org/101186/1741-7015-10-13

    Article  PubMed  PubMed Central  Google Scholar 

  • Saturni L, Ferretti G, Bacchetti T (2010) The gluten-free diet: safety and nutritional quality. Nutrients 2:16–34

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schober TJ, Kuhn M (2003) Capillary zone electrophoresis for gliadin separation: application in a spelt breeding program. Eur Food Res Tech 217:350–359

    Article  CAS  Google Scholar 

  • Schober TJ, Clarke CI, Kuhn M (2002) Characterization of functional properties of gluten proteins in spelt cultivars using rheological and quality factor measurements. Cereal Chem 79:408–414

    Article  CAS  Google Scholar 

  • Schober TJ, Bean SR, Kuhn M (2006) Gluten proteins from spelt (Triticum aestivum ssp. spelta) cultivars: a rheological and size-exclusion high-performance liquid chromatography study. J Cereal Sci 44:161–167

    Article  CAS  Google Scholar 

  • Schuppan D, Pickert G, Ashfaq-Khan M et al (2015) Non-celiac wheat sensitivity: differential diagnosis triggers and implications. Best Pract Res Cl Ga 29:469–476

    Article  CAS  Google Scholar 

  • Shepherd SJ, Gibson PR (2006) Fructose malabsorption and symptoms of IBS: management. J Am Diet Assoc 106:1631–1639

    Article  PubMed  Google Scholar 

  • Shepherd SJ, Parker FC, Muir JG et al (2008) Dietary triggers of abdominal symptoms in patients with IBS: randomized placebo-controlled evidence. Clin Gastroenterol Hepatol 6:765–771

    Article  CAS  PubMed  Google Scholar 

  • Shewry PR (2002) The major seed storage proteins of spelt wheat, sorghum millets and pseudocereals. In: Belton P, Taylor J (eds) Pseudocereals and less common cereals: grain properties and utilization potential. Springer, Berlin, pp 1–24

    Google Scholar 

  • Shewry PR, Tatham AS (2016) Improving wheat to remove celiac epitopes but retain functionality. J Cereal Sci 67:12–21

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shimbata T, Inokuma T, Sunohara A et al (2011) High levels of sugars and fructan in mature seed of sweet wheat lacking GBSSI and SSIIa enzymes. J Agric Food Chem 59:4794–4800

    Article  CAS  PubMed  Google Scholar 

  • Siles RI, Hsieh FH (2013) Allergy blood testing: a practical guide for clinicians. Clev Clin J Med 78:585–592

    Article  Google Scholar 

  • Sollid LM, Qiao SW, Anderson RP et al (2012) Nomenclature and listing of celiac disease relevant gluten t-cell epitopes restricted by HLA-dq molecules. Immunogenetics 64:455–460

    Article  PubMed  PubMed Central  Google Scholar 

  • Suter DAI, Békés F (2012) Wheat immunoreactivity. Aust Patent http://v3 espacenetcom/ publicationdetails/ biblio?cc=hu&nr= au2011000468

    Google Scholar 

  • Tatham AS, Shewry PR (2008) Allergy to wheat and related cereals. Clin Exp Allergy 38:1712–1726

    CAS  PubMed  Google Scholar 

  • Tömösközi S, Varga J, Fodor D et al (2001) Laboratory mill for small-scale testing. In: Shewry PR, Tatham AS (eds) Wheat gluten. Royal Society of Chemistry, Cambridge, pp 317–320

    Google Scholar 

  • Tömösközi S, Nádosi M, Balázs G et al (2010) Revival of sedimentation value – method development, quality prediction and molecular background. In: Branlard G (ed) Gluten proteins 2009. Proceedings of 10th international gluten workshop. INRA Clermont-Ferrand, pp 104–108

    Google Scholar 

  • Verspreet J, Cimini S, Vergauwen R et al (2013) Fructan metabolism in developing wheat (Triticum aestivum L.) kernels. Plant Cell Phys 54:2047–2057

    Article  CAS  Google Scholar 

  • Verspreet J, Dornez E, Van den Ende W et al (2015) Cereal grain fructans: structure, variability and potential health effects. Trends Food Sci Technol 43:32–42

    Article  CAS  Google Scholar 

  • Vu NT (2014) Comparative analysis of the soluble wheat proteins and human health. PhD thesis. Sydney University, Sydney Australia

    Google Scholar 

  • Vu NT, Chin J, Pasco JA et al (2014) The prevalence of wheat and spelt sensitivity in a randomly selected Australian population. Cereal Res Comm 43:97–107

    Article  CAS  Google Scholar 

  • Wangen S (2009) Healthier without wheat. A new understanding of wheat allergies, celiac disease and non-celiac gluten intolerance. Innate Health Pub, Seattle

    Google Scholar 

  • Wardlaw IF, Willenbrink J (2000) Mobilization of fructan reserves and changes in enzyme activities in wheat stems correlate with water stress during kernel filling. New Phytol 148:413–422

    Article  CAS  PubMed  Google Scholar 

  • Wei JZ, Chatterton NJ, Larson SR et al (2000) Linkage mapping and nucleotide polymorphisms of the 6-SFT gene of cool-season grasses. Genome 43:931–938

    Article  CAS  PubMed  Google Scholar 

  • White J, Law JR, MacKay I et al (2008) The genetic diversity of UK, US and Australian cultivars of Triticum aestivum measured by DArT markers and considered by genome. Theor Appl Genet 116:439–453

    Article  CAS  PubMed  Google Scholar 

  • Wieser H (2000) Comparative investigations of gluten proteins from different wheat species. I Qualitative and quantitative composition of gluten protein types. J Eur Food Res Tech 211:262–268

    Article  CAS  Google Scholar 

  • Wieser H (2006) Comparison of pure spelts and spelt/wheat crossbreeds. Getreide-technologie 60:223–231

    CAS  Google Scholar 

  • Wrigley CW, Bietz JA (1988) Proteins and amino acids. In: Pomeranz Y (ed) Wheat – chemistry and technology, vol I. AACC, St Paul MN, pp 159–275

    Google Scholar 

  • Xue GP, Kooiker M, Drenth J et al (2011) TaMYB13 is a transcriptional activator of fructosyltransferase genes involved in beta-2,6-linked fructan synthesis in wheat. Plant J 68:857–870

    Article  CAS  PubMed  Google Scholar 

  • Yang JC, Zhang JH, Wang ZQ et al (2004) Activities of fructan- and sucrose-metabolizing enzymes in wheat stems subjected to water stress during grain filling. Planta 220:331–343

    Article  CAS  PubMed  Google Scholar 

  • Yasui T, Ashida K (2011) Waxy endosperm accompanies increased fat and saccharide contents in bread wheat (Triticum aestivum L.) grain. J Cereal Sci 53:104–111

    Article  CAS  Google Scholar 

  • Zevallos VF, Raker V, Tenzer S et al (2016) Nutritional wheat amylase-trypsin inhibitors promote intestinal inflammation via activation of myeloid cells. Gastroenterology 2017. https://doi.org/10.1053/j.gastro.2016.12.006

    Article  PubMed  CAS  Google Scholar 

  • Zuidmeer L, Goldhahn K, Rona RJ et al (2008) The prevalence of plant food allergies: a systematic review. J Allergy Clin Immun 121:1210–1218

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgement

This study was supported within project OTKA-K_16-119835, funded by the National Research, Development and Innovation Office. The experiments were interlocked with GINOP project (GINOP-2.2.1.-15-2016-00026). This project was supported by the János Bolyai Research Scholarship of the Hungarian Academy of Sciences and by the ÚNKP-18-4-BME-393 National Excellence Program of the Ministry of Human Capacities. The work is connected to fulfil of the scientific goals of BME-Biotechnology FIKP grant of EMMI (BME FIKP-BIO).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to János Pauk .

Editor information

Editors and Affiliations

Appendices

Appendices

14.1.1 Appendix I: Research Institutes Relevant to Spelt

Institution

Specialization and research activities

Contact information and website

Cereal research non-profit ltd., Szeged, Hungary

Research and breeding

https://www.gabonakutato.hu/en/contact

Centre for Agricultural Research, agricultural institute, Martonvásár, Hungary

Breeding and research (FODMAP)

http://www.agrar.mta.hu/en

14.1.2 Appendix II: Spelt Genetic Resources

Cultivar

Important traits

Cultivation location

Center for Plant Diversity, Tápiószele, Hungary

Gene bank, genetic resources, germplasm collection

http://www.nodik.hu/english/?page_id=2348

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pauk, J. et al. (2019). Spelt (Triticum spelta L.) In Vitro Androgenesis Breeding for Special Food Quality Parameters. In: Al-Khayri, J., Jain, S., Johnson, D. (eds) Advances in Plant Breeding Strategies: Cereals. Springer, Cham. https://doi.org/10.1007/978-3-030-23108-8_14

Download citation

Publish with us

Policies and ethics