Skip to main content
Log in

Capillary zone electrophoresis for gliadin separation: applications in a spelt breeding program

  • Original Paper
  • Published:
European Food Research and Technology Aims and scope Submit manuscript

Abstract

Gliadins of 27 European spelt [Triticum aestivum ssp. spelta (L.) Thell.] cultivars (cvs) were separated by capillary zone electrophoresis (CZE). A great amount of diversity was found within the CZE gliadin patterns of these cvs; however, only 15 had unique patterns, whereas 2 triples and 3 pairs were identical, i.e., differences were within the uncertainty of the method and environmental effects. Two of these identical pairs were attributed to mislabeling: affected were one of the two Swiss spelt cvs 'Ostar' and 'Sertel', and the German spelt cv 'Steiners Roter Tiroler'. The German cv 'Franckenkorn' showed considerable similarity with the Belgian cv 'Rouquin'. CZE gliadin patterns of 12 modern German bread wheat cvs were distinctly different from those of spelt cvs selected from old land varieties like the Swiss cv 'Oberkulmer Rotkorn'. In the gliadin patterns of 11 spelt cvs, bread wheat elements were found. 7 of the 24 cvs not mislabeled are known to be progeny of wheat/spelt crosses, 4 cvs are described as pure spelt, and the pedigrees of 13 are unknown. Wheat elements were spotted in only 4 of the 7 wheat/spelt crosses and in none of the 4 pure spelt cvs. The results suggest that crossing spelt with modern wheat may be, but is not necessarily, reflected in the gliadin pattern.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.a
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

Notes

  1. The quantity of sample was corrected in order to obtain a similar dry gluten or crude protein content as in a sample that yielded a good pattern in preliminary tests. This dry gluten content was 10.9 mg. Nevertheless, according to preliminary results, 90–100 mg of flour or whole-grain meal are appropriate in most cases. If the patterns are interpreted only qualitatively, the amount of sample is not critical.

  2. The differentiation between α- and β-gliadins is no longer appropriate according to the amino acid compositions of gliadin components obtained by RP-HPLC and according to the N-terminal amino acid sequences [21]; therefore the β is put in parentheses in the following.

  3. The numbers generally are reduced by the probably mislabeled cultivars OAR?, SER?, and SRT?. In brackets: numbers not reduced, i.e., including OAR?, SER?, and SRT? where applicable.

Abbreviations

CE:

Capillary electrophoresis

CZE:

Capillary zone electrophoresis

HPMC:

Hydroxypropylmethylcellulose

PAGE:

Polyacrylamide gel electrophoresis

RP-HPLC:

Reversed-phase high-performance liquid chromatography

References

  1. Campbell KG (1997) Plant Breeding Rev 15:187–213

    Google Scholar 

  2. Schober TJ (2001) Eigenschaften der Kleberproteine des Dinkels. Entscheidungshilfen für Züchtungsprogramme aus technologischer Sicht. University of Hohenheim, Stuttgart-Hohenheim, Germany, PhD thesis

  3. Friedman HM, Tortolani RE, Glick J, Burtis RT (1994) Allergy Proc 15:217–218

    Google Scholar 

  4. Schober TJ, Clarke CI, Kuhn M (2002) Cereal Chem 79:408–417

    Google Scholar 

  5. Gräber S (1993) Mehl- und Teigeigenschaften des Dinkels. Meßmethoden, Sorteneinflüsse, Anbaueinflüsse. University of Hohenheim, Stuttgart-Hohenheim, Germany, PhD thesis

  6. Federmann GR, Goecke EU, Steiner AM (1992) Plant Varieties Seeds 5:123–125

    Google Scholar 

  7. Federmann GR, Goecke EU, Steiner AM (1992) Getreide, Mehl Brot 46:309–312

    Google Scholar 

  8. Abdel-Aal ESM, Salama DA, Hucl P, Sosulski FW, Cao W (1996) J Agric Food Chem 44:2117–2123

    Google Scholar 

  9. Siedler H, Messmer MM, Schachermayr GM, Winzeler H, Winzeler M, Keller B (1994) Theor Appl Genet 88:994–1003

    Google Scholar 

  10. Harsch S, Günther T, Kling CI, Rozynek B, Hesemann CU (1997) Theor Appl Genet 94:52–60

    Google Scholar 

  11. Kieffer R, Buß J, Wieser H (1997) Rheologische, backtechnische und proteinchemische Untersuchungen von Dinkelsorten. In: Bericht 1997 [ISBN 3-9803426-4-6]. Deutsche Forschungsanstalt für Lebensmittelchemie, Garching, Germany, pp 155–169

  12. Radić H, Günther T, Kling CI, Hesemann CU (1997) Theor Appl Genet 94:882–886

    Google Scholar 

  13. Radić-Miehle H, Saam C, Hüls R, Kling CI, Hesemann CU (1998) Theor Appl Genet 97:1340–1346

    Google Scholar 

  14. Jones BL, Lookhart GL, Hall SB, Finney KF (1982) Cereal Chem 59:181–188

    Google Scholar 

  15. Huebner FR, Bietz JA (1988) Cereal Chem 65:362–366

    Google Scholar 

  16. Lee JW, Ronalds JA (1967) Nature 213:844–846

    Google Scholar 

  17. Wrigley CW (1970) Biochem Genet 4:509–516

    Google Scholar 

  18. Bushuk W, Zillman RR (1978) Can J Plant Sci 58:505–515

    Google Scholar 

  19. Lookhart GL, Jones BL, Hall SB, Finney KF (1982) Cereal Chem 59:178–181

    Google Scholar 

  20. Lookhart GL, Albers LD, Bietz JA (1986) Cereal Chem 63:497–500

    Google Scholar 

  21. Wieser H, Mödl A, Seilmeier W, Belitz HD (1987) Z Lebensm Unters Forsch 185:371–378

    Google Scholar 

  22. Bietz JA, Schmalzried E (1992) Cereal Foods World 37:555

  23. Bietz JA, Schmalzried E (1993) Cereal Foods World 38:615

  24. Werner WE, Wiktorowicz JE, Kasarda DD (1994) Cereal Chem 71:397–402

    Google Scholar 

  25. Bietz JA, Schmalzried E (1995) Lebensm Wiss Technol 28:174–184

    Google Scholar 

  26. Lookhart GL, Bean SR (1995) Cereal Chem 72:42–47

    Google Scholar 

  27. Lookhart GL, Bean SR (1996) Cereal Chem 73:81–87

    Google Scholar 

  28. Bean SR, Lookhart GL (1998) Electrophoresis (Weinheim) 19:3190–3198

    Google Scholar 

  29. Bean SR, Lookhart GL (2001) Cereal Chem 78:530–537

    Google Scholar 

  30. Bean SR, Lookhart GL (1997) Cereal Chem 74:758–765

    Google Scholar 

  31. Sutton KH, Bietz JA (1997) J Cereal Sci 25:9–16

    Google Scholar 

  32. Wätzig H (1996) Pharmazeutische Zeitung (Eschborn)/Prisma 3:126–136

  33. Schomburg G (1993) GIT Spezial. Chromatographie 1/93:7–17

  34. Defrise D, Jacqmain D (1984) Rev Ferment Ind Aliment 39:123–136

    Google Scholar 

  35. Kling CI (1993) Getreide, Mehl Brot 47:3–6

    Google Scholar 

  36. Winzeler H, Schmid JE, Winzeler M, Rüegger A (1991) New aspects of the spelt (Triticum spelta) breeding in Switzerland. In: Dinkelacker Stiftung zur Förderung des Getreides Dinkel (ed) 2. Hohenheimer Dinkelkolloquium vom 21./22. März 1991 an der Universität Hohenheim. All design Verlag, Stuttgart, Germany, pp 11–25

  37. Bietz JA, Lookhart GL (1997) Lebensm Wiss Technol 30:210–213

    Google Scholar 

  38. Lookhart GL, Bean SR (1995) Cereal Chem 72: 527–532

    Google Scholar 

  39. Schober T, Gräber S, Kuhn M (1998) Dtsch Lebensm Rundsch 94:297–302

    Google Scholar 

  40. Schober T, Kuhn M (1999) Getreide, Mehl Brot 53:169–176

    Google Scholar 

  41. Wrigley CW, Autran JC, Bushuk W (1982) Identification of cereal varieties by gel electrophoresis of the grain proteins. In: Pomeranz Y (ed) Advances in cereal science and technology, vol. 5. American Association of Cereal Chemists, St. Paul, MN, pp 211–259

  42. Shewry PR, Halford NG, Tatham AS (1992) J Cereal Sci 15:105–120

    Google Scholar 

  43. Wieser H, Seilmeier W, Belitz HD (1994) J Cereal Sci 19:149–155

    Google Scholar 

Download references

Acknowledgements

We would like to thank Charmaine I. Clarke for critical reading of this manuscript and helpful comments.

We furthermore thank Christof I. Kling, State Plant Breeding Institute, University of Hohenheim, and 'Delley Samen und Pflanzen AG', Delley, Switzerland, for the spelt samples, 'Ihinger Hof', University of Hohenheim, 'Semundo Saatzucht GmbH', Rellingen, 'Saaten-Union GmbH', Hannover, 'H. Schweiger & Co. OHG', Moosburg, 'Saatzucht J. Breun', Herzogenaurach, 'Cebeco Saaten GmbH', Celle, and 'Saatzucht Firlbeck KG', Atting (all of them in Germany) for the bread wheat samples.

This work was financially supported by the European Community (EC) within the frame of the FAIR European program: Project "Spelt, a recovered crop for the future of sustainable agriculture in Europe (SESA)", EC contract FAIR3-CT96-1569.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tilman J. Schober.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schober, T.J., Kuhn, M. Capillary zone electrophoresis for gliadin separation: applications in a spelt breeding program. Eur Food Res Technol 217, 350–359 (2003). https://doi.org/10.1007/s00217-003-0740-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00217-003-0740-1

Keywords

Navigation