Skip to main content

Next-Generation Breeding for Nutritional Traits in Peanut

  • Reference work entry
  • First Online:
Compendium of Crop Genome Designing for Nutraceuticals

Abstract

Peanut, an important oilseed legume, is largely grown in Asia, Africa, and the Americas. It is a source of vital nutrients and amino acids for optimal health. In addition to its health advantages, further enhancing the vitamin and protein content may aid in alleviating the issue of hidden hunger, particularly in Asian and African countries. Due to the availability of high-oleic peanut oil, consumers now have access to another inexpensive cooking oil that offers similar advantages to olive oil in terms of quality. Hence, there is a need to put immense focus on generating varieties of peanuts that are high in nutrients along with the yield, oil content, and disease resistance. Development of nutrient-rich peanuts can be accelerated through marker-assisted selection and genomics-assisted breeding, followed by functional characterization of the candidate genes. In addition to current research on breeding, genetics, and genomics studies, this review also deliberates on the possible application of genetic engineering and genome editing to improve nutritional traits.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 899.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 899.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adhikari B, Dhungana SK, Ali MW, Adhikari A, Kim I-D, Shin D-H (2019) Antioxidant activities, polyphenol, flavonoid, and amino acid contents in peanut shell. J Saudi Soc Agric Sci 18(4):437–442

    Google Scholar 

  • Arya SS, Salve AR, Chauhan S (2016) Peanuts as functional food: a review. J Food Sci Technol 53:31–41

    Article  CAS  PubMed  Google Scholar 

  • Atherstone C, Grace D, Lindahl JF, Kang’ethe EK, Nelson F et al (2016) Assessing the impact of aflatoxin consumption on animal health and productivity. Afr J Food Agric Nutr Dev 16(3):10949–10966

    CAS  Google Scholar 

  • Bera SK, Kamdar JH, Kasundra SV, Patel SV, Jasani MD, Maurya AK et al (2019) Steady expression of high oleic acid in peanut bred by marker-assisted backcrossing for fatty acid desaturase mutant alleles and its effect on seed germination along with other seedling traits. PLoS One 14(12):e0226252

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bertioli DJ, Cannon SB, Froenicke L, Huang G, Farmer AD, Cannon EKS et al (2016) The genome sequences of Arachis duranensis and Arachis ipaensis, the diploid ancestors of cultivated peanut. Nat Genet 48(4):438–446

    Article  CAS  PubMed  Google Scholar 

  • Bertioli DJ, Jenkins J, Clevenger J, Dudchenko O, Gao D, Seijo G et al (2019) The genome sequence of segmental allotetraploid peanut Arachis hypogaea. Nat Genet 51(5):877–884

    Article  CAS  PubMed  Google Scholar 

  • Bhatnagar M, Prasad K, Bhatnagar-Mathur P, Lakshmi Narasu M, Waliyar F, Sharma KK (2010) An efficient method for the production of marker-free transgenic plants of peanut (Arachis hypogaea L.). Plant Cell Rep 29(5):495–502

    Article  CAS  PubMed  Google Scholar 

  • Biswas S, Wahl NJ, Thomson MJ, Cason JM, McCutchen BF, Septiningsih EM (2022) Optimization of protoplast isolation and transformation for a pilot study of genome editing in peanut by targeting the allergen gene Ara h 2. Int J Mol Sci 23(2):837

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen X, Li H, Pandey MK, Yang Q, Wang X, Garg V et al (2016) Draft genome of the peanut A-genome progenitor (Arachis duranensis) provides insights into geocarpy, oil biosynthesis, and allergens. Proc Natl Acad Sci U S A 113(24):6785–6790

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen X, Lu Q, Liu H, Zhang J, Hong Y, Lan H et al (2019) Sequencing of cultivated peanut, Arachis hypogaea, yields insights into genome evolution and oil improvement. Mol Plant 12(7):920–934

    Article  CAS  PubMed  Google Scholar 

  • Christian M, Cermak T, Doyle EL, Schmidt C, Zhang F, Hummel A et al (2010) Targeting DNA double-strand breaks with TAL effector nucleases. Genetics 186(2):757–761

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chu Y, Holbrook CC, Ozias-Akins P (2009) Two alleles of ahFAD2B control the high oleic acid trait in cultivated peanut. Crop Sci 49(6):2029–2036

    Google Scholar 

  • Chu Y, Wu CL, Holbrook CC et al (2011) Marker-assisted selection to pyramid nematode resistance and the high oleic trait in peanut. Plant Genome 4:110–117. https://doi.org/10.3835/plantgenome2011.01.0001

  • Clemente TE, Robertson D, Isleib TG, Beute MK, Weissinger AK (1992) Evaluation of peanut (Arachis hypogaea L.) leaflets from mature zygotic embryos as recipient tissue for biolostic gene transfer. Transgenic Res 1(6):275–284

    Article  CAS  Google Scholar 

  • Deng XY, Wei ZM, An HL (2001) Transgenic peanut plants obtained by particle bombardment via somatic embryogenesis regeneration system. Cell Res 11(2):156–160

    Article  CAS  PubMed  Google Scholar 

  • Estrada-Navarrete G, Alvarado-Affantranger X, Olivares J-E, Díaz-Camino C, Santana O, Murillo E et al (2006) Agrobacterium rhizogenes transformation of the Phaseolus spp.: a tool for functional genomics. Mol Plant-Microbe Interact 19(12):1385–1393

    Article  CAS  PubMed  Google Scholar 

  • European Commission-EC (2010) Commission regulation (EU) no 165/2010 of 26 February 2010, amending regulation (EC) no 1881/2006 setting maximum levels for certain contaminants in foodstuffs as regards aflatoxin. OJEU 50:8–12

    Google Scholar 

  • Fu Y, Zhang D, Gleeson M, Zhang Y, Lin B, Hua S et al (2017) Analysis of QTL for seed oil content in Brassica napus by association mapping and QTL mapping. Euphytica 213(1):1–15

    Article  CAS  Google Scholar 

  • Gaikwad KB, Rani S, Kumar M, Gupta V, Babu PH, Bainsla NK et al (2020) Enhancing the nutritional quality of major food crops through conventional and genomics-assisted breeding. Front Nutr 7:533453

    Article  PubMed  PubMed Central  Google Scholar 

  • Gorbet DW, Knauft DA (2000) Registration of Sun oleic 97R’Peanut. Crop Sci 40(4):1190

    Article  Google Scholar 

  • Grabiele M, Chalup L, Robledo G, Seijo G (2012) Genetic and geographic origin of domesticated peanut as evidenced by 5S rDNA and chloroplast DNA sequences. Plant Syst Evol 298(6):1151–1165

    Article  Google Scholar 

  • Gülçin İ (2010) Antioxidant properties of resveratrol: a structure–activity insight. Innov Food Sci Emerg Technol 11(1):210–218

    Article  Google Scholar 

  • Guo J, Liu N, Li W, Wu B, Chen H, Huang L et al (2021) Identification of two major loci and linked marker for oil content in peanut (Arachis hypogaea L.). Euphytica 217(2):1–11

    Article  Google Scholar 

  • Hake AA, Shirasawa K, Yadawad A, Sukruth M, Patil M, Nayak SN et al (2017) Mapping of important taxonomic and productivity traits using genic and non-genic transposable element markers in peanut (Arachis hypogaea L.). PLoS One 12(10):e0186113

    Article  PubMed  PubMed Central  Google Scholar 

  • Hou M, Mu G, Zhang Y, Cui S, Yang X, Liu L (2017) Evaluation of total flavonoid content and analysis of related EST-SSR in Chinese peanut germplasm. Crop Breed Appl Biotechnol 17:221–227

    Article  CAS  Google Scholar 

  • Hu XH, Zhang SZ, Miao HR, Cui FG, Shen Y, Yang WQ et al (2018) High-density genetic map construction and identification of QTLs controlling oleic and linoleic acid in peanut using SLAF-seq and SSRs. Sci Rep 8(1):1–10

    Google Scholar 

  • Huang L, He H, Chen W, Ren X, Chen Y, Zhou X et al (2015) Quantitative trait locus analysis of agronomic and quality-related traits in cultivated peanut (Arachis hypogaea L.). Theor Appl Genet 128(6):1103–1115

    Article  PubMed  PubMed Central  Google Scholar 

  • Huang B, Qi F, Sun Z, Miao L, Zhang Z, Liu H, et al. et al (2019) Marker-assisted backcrossing to improve seed oleic acid content in four elite and popular peanut (Arachis hypogaea L.) cultivars with high oil content. Breed Sci 69:18107

    Article  Google Scholar 

  • Janila P, Pandey MK, Shasidhar Y, Variath MT, Sriswathi M, Khera P et al (2016) Molecular breeding for introgression of fatty acid desaturase mutant alleles (ahFAD2A and ahFAD2B) enhances oil quality in high and low oil containing peanut genotypes. Plant Sci 242:203–213

    Article  CAS  PubMed  Google Scholar 

  • Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E (2012) A programmable dual-RNA–guided DNA endonuclease in adaptive bacterial immunity. Science 337(6096):816–821

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jung S, Swift D, Sengoku E, Patel M, Teule F, Powell G et al (2000) The high oleate trait in the cultivated peanut [Arachis hypogaea L.]. I. Isolation and characterization of two genes encoding microsomal oleoyl-PC desaturases. Mol Gen Genet 263(5):796–805

    Article  CAS  PubMed  Google Scholar 

  • Kaniganti S, Chaitanya AK, Shah P, Magar ND, Jamedar HVR, Sajjad M. (2022) Status and prospects of genetic improvement of grain legumes using in vitro techniques: a review. Available at SSRN 4100545

    Google Scholar 

  • Kim Y-G, Cha J, Chandrasegaran S (1996) Hybrid restriction enzymes: zinc finger fusions to Fok I cleavage domain. Proc Natl Acad Sci 93(3):1156–1160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ku H-K, Ha S-H (2020) Improving nutritional and functional quality by genome editing of crops: status and perspectives. Front Plant Sci 11:577313

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu N, Chen H, Huai D, Xia F, Huang L, Chen W et al (2019) Four QTL clusters containing major and stable QTLs for saturated fatty acid contents in a dense genetic map of cultivated peanut (Arachis hypogaea L.). Mol Breed 39(2):1–14

    Article  Google Scholar 

  • Liu N, Guo J, Zhou X, Wu B, Huang L, Luo H et al (2020a) High-resolution mapping of a major and consensus quantitative trait locus for oil content to a~ 0.8-Mb region on chromosome A08 in peanut (Arachis hypogaea L.). Theor Appl Genet 133(1):37–49

    Article  CAS  PubMed  Google Scholar 

  • Liu N, Huang L, Chen W, Wu B, Pandey MK, Luo H et al (2020b) Dissection of the genetic basis of oil content in Chinese peanut cultivars through association mapping. BMC Genet 21(1):1–12

    Article  Google Scholar 

  • Lopez Y, Nadaf HL, Smith OD, Connell JP, Reddy AS, Fritz AK (2000) Isolation and characterization of the Δ12-fatty acid desaturase in peanut (Arachis hypogaea L.) and search for polymorphisms for the high oleate trait in Spanish market-type lines. Theor Appl Genet 101(7):1131–1138

    Article  CAS  Google Scholar 

  • Luo H, Guo J, Yu B, Chen W, Zhang H, Zhou X et al (2021) Construction of ddRADseq-based high-density genetic map and identification of quantitative trait loci for trans-resveratrol content in Peanut seeds. Front Plant Sci 12:644402

    Article  PubMed  PubMed Central  Google Scholar 

  • Marka R, Nanna RS (2018) Optimization of factors affecting agrobacterium-mediated genetic transformation in groundnut (Arachis hypogaea L.). Adv Plants Agric Res 8(3):275

    Google Scholar 

  • Mehta R, Radhakrishnan T, Kumar A, Yadav R, Dobaria JR, Thirumalaisamy PP et al (2013) Coat protein-mediated transgenic resistance of peanut (Arachis hypogaea L.) to peanut stem necrosis disease through agrobacterium-mediated genetic transformation. Indian J Virol 24(2):205–213

    Article  PubMed  PubMed Central  Google Scholar 

  • Mondal S, Phadke RR, Badigannavar AM (2015) Genetic variability for total phenolics, flavonoids and antioxidant activity of testaless seeds of a peanut recombinant inbred line population and identification of their controlling QTLs. Euphytica 204:311–321

    Article  CAS  Google Scholar 

  • Nawade B, Bosamia TC, Thankappan R, Rathnakumar AL, Kumar A, Dobaria JR et al (2016) Insights into the Indian peanut genotypes for ahFAD2 gene polymorphism regulating its oleic and linoleic acid fluxes. Front Plant Sci 7:1271

    Article  PubMed  PubMed Central  Google Scholar 

  • Nayak SN, Hebbal V, Bharati P et al (2020) Profiling of nutraceuticals and proximates in peanut genotypes differing for seed coat color and seed size. Front Nutr 7:45

    Article  PubMed  PubMed Central  Google Scholar 

  • Nayak SN, Aravind B, Malavalli SS, Sukanth BS, Poornima R, Bharati P et al (2021) Omics technologies to enhance plant based functional foods: An overview. Front Genet 12:742095

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nepote V, Grosso N, Guzman CA (2002) Extraction of antioxidant components from peanut skins. Grasas Aceites 53:391–395

    Article  CAS  Google Scholar 

  • Norden AJ, Gorbet DW, Knauft DA (1985) Registration of ‘Sunrunner’ peanut. Crop Sci 25(6):1126

    Article  Google Scholar 

  • Norden AJ, Gorbet DW, Knauft DA, Young CT (1987) Variability in oil quality among peanut genotypes in the Florida breeding program. Peanut Sci 14(1):7–11

    Article  CAS  Google Scholar 

  • Pandey MK, Upadhyaya HD, Rathore A, Vadez V, Sheshshayee MS, Sriswathi M et al (2014a) Genomewide association studies for 50 agronomic traits in peanut using the ‘reference set’comprising 300 genotypes from 48 countries of the semi-arid tropics of the world. PLoS One 9(8):e105228

    Article  PubMed  PubMed Central  Google Scholar 

  • Pandey MK, Wang ML, Qiao L, Feng S, Khera P, Wang H et al (2014b) Identification of QTLs associated with oil content and mapping FAD2 genes and their relative contribution to oil quality in peanut (Arachis hypogaea L.). BMC Genet 15(1):1–14

    Article  Google Scholar 

  • Pandey AK, Sudini HK, Upadhyaya HD, Varshney RK, Pandey MK (2019a) Hypoallergen peanut lines identified through large-scale phenotyping of global diversity panel: providing hope toward addressing one of the major global food safety concerns. Front Genet 10:1177

    Article  PubMed  PubMed Central  Google Scholar 

  • Pandey AK, Varshney RK, Sudini HK, Pandey MK (2019b) An improved enzyme-linked immunosorbent assay (ELISA) based protocol using seeds for detection of five major peanut allergens Ara h 1, Ara h 2, Ara h 3, Ara h 6, and Ara h 8. Front Nutr 6:68

    Article  PubMed  PubMed Central  Google Scholar 

  • Pandey MK, Kumar R, Pandey AK, Soni P, Gangurde SS, Sudini HK et al (2019c) Mitigating aflatoxin contamination in groundnut through a combination of genetic resistance and post-harvest management practices. Toxins 11(6):315

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pele M (2010) Peanut allergens. Rom Biotechnol Lett 15(2):5204–5212

    CAS  Google Scholar 

  • Ratnaparkhe MB, Lee T-H, Tan X, Wang X, Li J, Kim C et al (2014) Comparative and evolutionary analysis of major peanut allergen gene families. Genome Biol Evol 6(9):2468–2488

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reddy KRN, Salleh B, Saad B, Abbas HK, Abel CA, Shier WT (2010) Erratum: An overview of mycotoxin contamination in foods and its implications for human health (toxin reviews (2010) 29 (326)). Toxin Rev 29(3–4)

    Google Scholar 

  • Sarvamangala C, Gowda MVC, Varshney RK (2011) Identification of quantitative trait loci for protein content, oil content and oil quality for groundnut (Arachis hypogaea L.). Field crops res 122(1):49–59

    Article  Google Scholar 

  • Sharma KK, Anjaiah V (2000) An efficient method for the production of transgenic plants of peanut (Arachis hypogaea L.) through agrobacterium tumefaciens-mediated genetic transformation. Plant Sci 159(1):7–19

    Article  CAS  PubMed  Google Scholar 

  • Shasidhar Y, Vishwakarma MK, Pandey MK, Janila P, Variath MT, Manohar SS et al (2017) ‘Molecular mapping of oil content and fatty acids using dense genetic maps in groundnut (Arachis hypogaea L.). Front Plant Sci 8:794

    Article  PubMed  PubMed Central  Google Scholar 

  • Shasidhar Y, Variath MT, Vishwakarma MK, Manohar SS, Gangurde SS, Sriswathi M et al (2020) Improvement of three popular Indian groundnut varieties for foliar disease resistance and high oleic acid using SSR markers and SNP array in marker-assisted backcrossing. Crop J 8(1):1–15

    Article  Google Scholar 

  • Soni P, Gangurde SS, Ortega-Beltran A, Kumar R, Parmar S, Sudini HK et al (2020) Functional biology and molecular mechanisms of host-pathogen interactions for aflatoxin contamination in groundnut (Arachis hypogaea L.) and maize (Zea mays L.). Front Microbiol 11:227

    Article  PubMed  PubMed Central  Google Scholar 

  • Tien Lea D, Duc Chua H, Quynh Lea N (2016) Improving nutritional quality of plant proteins through genetic engineering. Curr Genomics 17(3):220–229

    Article  Google Scholar 

  • Wilson JN, Chopra R, Baring MR, Selvaraj MG, Simpson CE, Chagoya J et al (2017) Advanced backcross quantitative trait loci (QTL) analysis of oil concentration and oil quality traits in peanut (Arachis hypogaea L.). Trop Plant Biol 10(1):1–17

    Article  CAS  Google Scholar 

  • Wu F (2007) Measuring the economic impacts of fusarium toxins in animal feeds. Anim Feed Sci Technol 137(3–4):363–374

    Article  CAS  Google Scholar 

  • Yol E, Üstün R, Gölükçü M, Uzun B (2017) Oil content, oil yield and fatty acid profile of groundnut germplasm in mediterranean climates. Journal of the American Oil Chemists’ Society 94:787–804. https://doi.org/10.1007/s11746-017-2981-3

  • Yuan M, Zhu J, Gong L, He L, Lee C, Han S et al (2019) Mutagenesis of FAD2 genes in peanut with CRISPR/Cas9 based gene editing. BMC Biotechnol 19(1):1–7

    Article  Google Scholar 

  • Zhang H, Wang ML, Schaefer R, Dang P, Jiang T, Chen C (2019) GWAS and coexpression network reveal Ionomic variation in cultivated Peanut. J Agric Food Chem 67(43):12026–12036

    Article  CAS  PubMed  Google Scholar 

  • Zhaoming Q, Xiaoying Z, Huidong Q, Dawei X, Xue H, Hongwei J et al (2017) Identification and validation of major QTLs and epistatic interactions for seed oil content in soybeans under multiple environments based on a high-density map. Euphytica 213(8):1–14

    Article  Google Scholar 

  • Zhuang W, Chen H, Yang M, Wang J, Pandey MK, Zhang C et al (2019) The genome of cultivated peanut provides insight into legume karyotypes, polyploid evolution and crop domestication. Nat Genet 51(5):865–876

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naveen Puppala .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Singapore Pte Ltd

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Shah, P. et al. (2023). Next-Generation Breeding for Nutritional Traits in Peanut. In: Kole, C. (eds) Compendium of Crop Genome Designing for Nutraceuticals. Springer, Singapore. https://doi.org/10.1007/978-981-19-4169-6_15

Download citation

Publish with us

Policies and ethics