Mode of Action and Interactions of Nematophagous Fungi

  • L. V. Lopez-Llorca
  • J. G. Maciá-Vicente
  • H.-B. Jansson
Part of the Integrated Management of Plant Pests and Diseases book series (IMPD, volume 2)


Nematophagous fungi are potential candidates for biological control of plant-parasitic nematodes, and an important constituent in integrated pest management programs. In this chapter we describe various aspects on the biology of these fungi. Nematophagous species can be found in most fungal taxa, indicating that the nematophagous habit evolved independently in the different groups of nematophagous fungi. Regarding their mode of action we discuss recognition phenomena (e.g. chemotaxis and adhesion), signaling and differentiation, and penetration of the nematode cuticle/eggshell using mechanical, as well as enzymatic (protease and chitinase) means. The activities of nematophagous fungi in soil and rhizosphere is also discussed.


Arbuscular Mycorrhizal Fungus Root Exudate Nematophagous Fungus Cereal Cyst Nematode Endophytic Colonization 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Åhman, J., Ek, B., Rask, L., & Tunlid, A. (1996). Sequence analysis and regulation of a gene encoding a cuticle-degrading serine protease from the nematophagous fungus Arthrobotrys oligospora. Microbiology, 142, 1605–1616.PubMedGoogle Scholar
  2. Ahrén, D., Ursing, B. M., & Tunlid, A. (1998). Phylogeny of nematode-trapping fungi based on 18S rDNA sequences. FEMS Microbiology Letters, 158, 179–184.CrossRefGoogle Scholar
  3. Ahrén, D., Tholander, M., Fekete, C., Rajashekar, B., Friman, E., Johansson, T., et al. (2005). Comparison of gene expression in trap cells and vegetative hyphae of the nematophagous fungus Monacrosporium haptotylum. Microbiology, 151, 789–803.Google Scholar
  4. Akiyama, K., Matsuzaki, K. I., & Hayashi, H. (2005). Plant sequiterpenes induce hyphal branching in arbuscular mycorrhizal fungi. Nature, 435, 824–827.CrossRefGoogle Scholar
  5. Atkins, S. D., Mauchline,T. H., Kerry, B. R., & Hirsch, P. R. (2004). Development of a transformation system for the nematophagous fungus. Pochonia chlamydospora. Mycological Research, 108, 654–661.CrossRefGoogle Scholar
  6. Atkins, S. D., Clark, I. M., Pande, S., Hirsch, P. R., & Kerry, B. R. (2005). The use of real-time PCR and species-specific primers for the identification and monitoring of Paecilomyces lilacinus. FEMS Microbiology Ecology, 51, 257–264.PubMedCrossRefGoogle Scholar
  7. Bais, H. P., Weir, T. L., Perry, L. G., Gilroy, S., & Vivanco, J. M. (2006). The role of root exudates in rhizosphere interactions with plants and other organisms. Annual Review of Plant Biology, 57, 233–266.PubMedCrossRefGoogle Scholar
  8. Barron, G. L. (1992). Lignolytic and cellulolytic fungi as predators and parasites. In G. C. Carroll & D. T. Wicklow, (Eds.), The fungal community, its organization and role in the ecosystems (pp. 311–326). New York: Marcel Dekker.Google Scholar
  9. Basse, C. W., & Steinberg, G. (2004). Ustilago maydis, model system for analysis of the molecular basis of fungal pathogenicity. Molecular Plant Pathology, 5, 83–92.CrossRefGoogle Scholar
  10. Bird, A. F., & Bird, J. (1991). The structure of nematodes. San Diego: Academic Press,.Google Scholar
  11. Bonants, P. J. M., Fitters, P. F. L., Thijs, H., Den Belder, E., Waalwijk, C., Willem, J., & Henfling, D. M. (1995). A basic serine protease from Paecilomyces lilacinus with biological activity against Meloidogyne hapla eggs. Microbiology, 141, 775–784.PubMedGoogle Scholar
  12. Bordillo, J. J., Lopez-Llorca, L. V., Jansson, H.-B., Salinas, J., Persmark, L., & Asensio, L. (2002). Colonization of plant roots by egg-parasitic and nematode-trapping fungi. New Phytologist, 154, 491–499.CrossRefGoogle Scholar
  13. Bourne, J. M., Kerry, B. R., & De Leij, F. A. A. M. (1996). The importance of the host plant on the interaction between root-knot nematodes (Meloidogyne spp.) and the nematophagous fungus, Verticillium chlamydosporium Goddard. Biocontrol Science and Technology, 6, 539–548.CrossRefGoogle Scholar
  14. Cardon, Z. G., & Gage, D. J. (2006). Resource exchange in the rhizosphere: Molecular tools and the microbial perspective. Annual Review of Ecology, Evolution, and Systematics, 37, 459–488.CrossRefGoogle Scholar
  15. Chaverri, P., Samuels, G. J., & Hodge, K. T. (2005). The genus Podocrella and its nematode-killing anamorph Harposporium. Mycologia, 97, 435–443.Google Scholar
  16. Chen, Y. Y., Cheng, C. Y., Huang, T. L., & Li, Y. K. (2005). Chitosanase from Paecilomyces lilacinus with binding affinity for specific chitooligosaccharides. Biotechnology and Applied Biochemistry, 41, 145–150.PubMedCrossRefGoogle Scholar
  17. Chen, T. H., Hsu, C. S., Tsai, P. J., Ho, Y. F., & Lin, N. A. (2001). Heterotrimeric G-protein and signal transduction in the nematode-trapping fungus Arthrobotrys Dactyloides. Planta, 212, 858–863.PubMedCrossRefGoogle Scholar
  18. Ciancio, A., Loffredo, A., Paradies, F., Turturo, C., & Finetti Sialer, M. (2005). Detection of Meloidogyne incognita and Pochonia chlamydosporia by fluorogenic molecular probes. OEPP/EPPO Bulletin, 35, 157–164.Google Scholar
  19. Clarke, A. J., Cox, P. M., & Shepherd, A. M. (1967). The chemical composition of the egg shells of the potato cyst-nematode, Heterodera rostochiensis Woll. Biochemical Journal, 104, 1056–1060.PubMedGoogle Scholar
  20. Cooke, R. C. (1962). The ecology of nematode-trapping fungi in the soil. Annals of Applied Biology, 50, 507–513.Google Scholar
  21. Cooke, R. C., & Satchuthananthavale, V. (1968). Sensitivity to mycostasis of nematode-trapping hyphomycetes. Transactions of the British Mycological Society, 51, 555–561.Google Scholar
  22. Dackman, C., Jansson, H. B., & Nordbring-Hertz, B. (1992). Nematophagous fungi and their activities in soil. In G. Stotsky & J-M. Bollag (Eds.), Soil biochemistry (Vol. 7, pp. 95–130). New York: Marcel Dekker.Google Scholar
  23. Duddington, C. L. (1962). Predaceous fungi and the control of eelworms. In C. L. Duddington & J. D. Carthy (Eds.), Viewpoints in biology Vol. 1. London: Butterworths.Google Scholar
  24. Eren, J., & Pramer, D. (1966). Application of immunofluorescent staining to studies of the ecology of soil microorganisms. Soil Science, 101, 39–45.CrossRefGoogle Scholar
  25. Gaspard, J. T., & Mankau, R. (1986). Nematophagous fungi associated with Tylenchulus semipenetrans and the citrus rhizosphere. Nematologica, 32, 359–363.CrossRefGoogle Scholar
  26. Green, C. D. (1971). Mating and host finding behaviour of plant nematodes. In B. M. Zuckerman, W. F. Mai, & R. A. Rohde (Eds.), Plant parasitic nematodes (vol. II, pp. 247–266). New York: Academic Press.Google Scholar
  27. Hallmann, J., Quadt-Hallmann, A., Miller, W. G., Sikora, R. A., & Lindow, S. E. (2001). Endophytic colonization of plants by the biocontrol agent Rhizobium etli G12 in relation to Meloidogyne incognita infection. Phytopathology, 91, 415–422.CrossRefPubMedGoogle Scholar
  28. Hao, Y., Mo, M., Su, H., & Zhang, K. (2005). Ecology of aquatic nematode-trapping hyphomycetes in southwestern China. Aquatic Microbiology Ecology, 40, 175–181.CrossRefGoogle Scholar
  29. Horiuchi, J. I., Prithiviraj, B., Bais, H. P., Kimball, B. A., & Vivanco, J. M. (2005). Soil nematodes mediate positive interactions between legume plants and rhizobium bacteria. Planta, 222, 848–857.PubMedCrossRefGoogle Scholar
  30. Jaffee, B. A. (1999). Enchytraeids and nematophagous fungi in tomato foelds and vineyards. Phytopathology, 89, 398–406.CrossRefPubMedGoogle Scholar
  31. Jaffee, B. A., Gaspard, J. T., & Ferris, H. (1989). Density-dependent parasitism of the soil-borne nematode Criconemella xenoplax by the nematophagous fungus Hirsutella rhossiliensis. Microbial Ecology, 17, 193–200.Google Scholar
  32. Jansson, H.-B. (1982a). Attraction of nematodes to endoparasitic nematophagous fungi. Transactions of the British Mycological Society, 79, 25–29.Google Scholar
  33. Jansson, H.-B. (1982b). Predacity of nematophagous fungi and its relation to the attraction of nematodes. Microbial Ecology, 8, 233–240.CrossRefGoogle Scholar
  34. Jansson, H.-B. (1987). Receptors and recognition in nematodes. In J. Veech & D. Dickson (Eds.), Vistas on nematology (pp. 153–158). Hyattsville, MD: Society of Nematologists.Google Scholar
  35. Jansson, H.-B. (2001). Methods to monitor growth and activity of nematode-trapping fungi in soil. In R. Sikora (Ed.), Tri-trophic interactions in the rhizosphere and root-health nematode-fungal-bacterial interrelationships. IOBC/WRPS Bulletin, 24, 65–68.Google Scholar
  36. Jansson, H.-B., & Friman, E. (1999). Infection-related surface proteins on conidia of the nematophagous fungus Drechmeria coniospora. Mycological Research, 103, 249–256.CrossRefGoogle Scholar
  37. Jansson, H.-B., Jeyaprakash, A., Damon, R. A., & Zuckerman, B. M. (1984). Caenorhabditis elegans and Panagrellus redivivus: enzyme-mediated modification of chemotaxis. Experimental Parasitology, 58, 270–277.PubMedCrossRefGoogle Scholar
  38. Jansson, H.-B., Jeyaprakash, A., & Zuckerman, B. M. (1985). Control of root knot nematodes on tomato by the endoparasitic fungus Meria coniospora. Journal of Nematology, 17, 327–330.PubMedGoogle Scholar
  39. Jansson, H.-B., & Lopez-Llorca, L. V. (2001). Biology of nematophagous fungi. In J. D. Misrha & B. W. Horn (Eds.), Trichomycetes and other fungal groups: Professor Robert W. Lichtwardt commemoration volume (pp. 145–173). Enfield, NH: Science Publisher, Inc.Google Scholar
  40. Jansson, H.-B., & Nordbring-Hertz, B. (1979). Attraction of nematodes to living mycelium of nematophagous fungi. Journal of General Microbiology, 112, 89–93.Google Scholar
  41. Jansson, H.-B., & Nordbring-Hertz, B. (1983). The endoparasitic fungus Meria coniospora infects nematodes specifically at the chemosensory organs. Journal of General Microbiology, 129, 1121–1126.Google Scholar
  42. Jansson, H.-B., & Nordbring-Hertz, B. (1984). Involvement of sialic acid in nematode chemotaxis and infection by an endoparasitic nematophagous fungus. Journal of General Microbiology, 130, 39–43.Google Scholar
  43. Jansson, H.-B., & Nordbring-Hertz, B. (1988). Infection events in the fungus- nematode system. In G. O. Poinar & H. B. Jansson (Eds.), Diseases of nematodes (Vol. 2, pp. 59–72). Boca Raton: CRC Press.Google Scholar
  44. Jansson, H.-B., Nordbring-Hertz, B., Wyss, U., Häusler, P., Hard, T., & Poloczek, E. (1995). Infection of nematodes by zoospores of Catenaria anguillulae. IWF Wissen und Medien, Göttingen, Germany. Film No. C 1868.Google Scholar
  45. Jansson, H.-B., & Thiman, L. (1992). A preliminary study of chemotaxis of zoospores of the nematode-parasitic fungus Catenaria anguillulae. Mycologia, 84, 109–112.CrossRefGoogle Scholar
  46. Jansson, H.-B., Persson, C., & Odselius, R. (2000). Growth and capture activities of nematophagous fungi in soil visualized by low temperature scanning electron microscopy. Mycologia, 92, 10–15CrossRefGoogle Scholar
  47. Jeyaprakash, A., Jansson, H.-B., Marban-Mendoza, N., & Zuckerman, B. M. (1985). Caenorhabditis elegans: Lectin-mediated modification of chemotaxis. Experimental Parasitology, 59, 90–97.PubMedCrossRefGoogle Scholar
  48. Kerry, B. R. (2000). Rhizosphere interactions and the exploitation of microbial agents for the biological control of plant-parasitic nematodes. Annual Review of Phytopathology, 38, 423–441.PubMedCrossRefGoogle Scholar
  49. Kuramae, E. E., Robert, V., Snel, B., Weiss, M., & Boekhout, T. (2006). Phylogenomics reveal a robust fungal tree of life. FEMS Yeast Research, 6, 1213–1220.PubMedCrossRefGoogle Scholar
  50. Lee, N., D’Souza, C. A., & Kronstad, J. W. (2003). Of smuts, blasts, mildews, and blights: cAMP signaling in phytopathogenic fungi. Annual Review of Phytopathology, 41, 399–427.CrossRefGoogle Scholar
  51. Li, Y., Hyde, K. D., Jeewon, R., Cai, L., Vijaykrishna, D., & Zhang, K. (2005). Phylogenetics and evolution of nematode-trapping fungi (Orbiliales) estimated from nuclear and protein coding genes. Mycologia, 97, 1034–1046.PubMedGoogle Scholar
  52. Li, J., Yang, J., Huang, X., & Zhang, K. Q. (2006). Purification and characterization of an extracellular serine protease from Clonostachys rosea and its potential as a pathogenic factor. Process Biochemistry, 41, 925–929.CrossRefGoogle Scholar
  53. Luo, H., Mo, M., Huang, X., Li, X., & Zhang, K. (2004). Coprinus comatus: A basidiomycete fungus forms novel spiny structures and infects nematodes. Mycologia, 96, 1218–1225.Google Scholar
  54. Lopez-Llorca, L. V. (1990). Purification and properties of extracellular proteses produced by the nematophagous fungus Verticillium suchlasporium. Canadian Journal of Microbiology, 36, 530–537.Google Scholar
  55. Lopez-Llorca, L. V., Bordallo, J. J., Salinas, J., Monfort, E., & Lopez-Serna, M. L. (2002a). Use of light and scanning electron microscopy to examine colonisation of barley rhizosphere by the nematophagous fungus Verticillium chlamydosporium. Micron, 33, 61–67.CrossRefGoogle Scholar
  56. Lopez-Llorca, L. V., & Claugher, D. (1990). Appressoria of the nematophagous fungus Verticillium suchlasporium. Micron and Microscopica Acta, 21, 125–130.CrossRefGoogle Scholar
  57. Lopez-Llorca, L. V., & Duncan, G. H. (1988). A scanning electron microscopy study of fungal endoparasitism of cereal cyst nematode (Heterodera avenae). Canadian Journal of Microbiology, 34, 613–619.Google Scholar
  58. Lopez-Llorca, L. V., & Jansson, H.-B. (2006). Fungal parasites of invertebrates: multimodal biocontrol agents. In G. D. Robson, P. van West, & G. M. Gadd (Eds.), Exploitation of fungi (pp. 310–335). Cambridge, UK: Cambridge University Press.Google Scholar
  59. Lopez-Llorca, L. V., Jansson, H.-B., Macia Vicente, J. G., & Salinas, J. (2006). Nematophagous fungi as root endophytes. In B. Schulz, C. Boyle, T. Sieber (Eds.), Soil biology: Microbial root endophytes (Vol 9, pp. 191–206) Berlin, Heidelberg: Springer-Verlag.Google Scholar
  60. Lopez-Llorca, L. V., Olivares-Bernabeu, C., Salinas, J., Jansson, H. B., & Kolattukudy, P. E. (2002b). Prepenetration events in fungal parasitism of nematode eggs. Mycological Research, 106, 499–506.CrossRefGoogle Scholar
  61. Lopez-Llorca, L. V., & Robertson, W. M. (1992a). Ultrastructure of infection of cyst nematode eggs by the nematophagous fungus Verticillium suchlasporium. Nematologica, 39, 65–74.CrossRefGoogle Scholar
  62. Lopez-Llorca, L. V., & Robertson, W. M. (1992b). Immunocytochemical localization of a 32-kDa protease from the nematophagous fungus Verticillium suchlasporium in infected nematode eggs. Experimental Mycology, 16, 261–267.CrossRefGoogle Scholar
  63. Marbán-Mendoza, N., Dicklow, M. B., & Zuckerman, B. M. (1992). Control of Meloidogyne incognita on tomato by two leguminous plants. Fundamental and Applied Nematology, 15, 97–100.Google Scholar
  64. Marbán-Mendoza, N., Jeyaprakash, A., Jansson, H.-B., & Zuckerman B. M. (1987). Control of root knot nematodes in tomato by lectins. Journal of Nematology, 19, 331–335.PubMedGoogle Scholar
  65. Michielse, C. B., Arentshorst, M., Ram, A. F. J., & Van den Hondel, C. A. M. J. (2005). Agrobacterium-mediated transformation leads to improved gene replacement efficiency in Aspergillus awamori. Fungal Genetics and Biology, 42, 9–19.PubMedCrossRefGoogle Scholar
  66. Monfort, E., Lopez-Llorca, L. V., Jansson, H.-B., Salinas, J., Park, J. O., & Sivasithamparam, K. (2005). Colonisation of seminal roots of wheat and barley by egg-parasitic nematophagous fungi and their effects on Gaeumannomyces graminis var. tritici and development of root-rot. Soil Biology and Biochemistry, 37, 1229–1235.CrossRefGoogle Scholar
  67. Monfort, E., Lopez-Llorca, L. V., Jansson, H.-B., & Salinas, J. (2006). In vitro soil receptivity to egg-parasitic nematophagous fungi. Mycological Progress, 5, 18–23.CrossRefGoogle Scholar
  68. Nordbring-Hertz, B., Jansson, H.-B., Friman, E., Persson, Y., Dackman, C., Hard, T., et al. (1995). Nematophagous fungi. IWF Wissen und Medien, Göttingen, Germany. Film No. C 1851.Google Scholar
  69. Nordbring-Hertz, B., & Mattiasson, B. (1979). Action of a nematode-trapping fungus shows lectin-mediated host-microorganism interaction. Nature, 281, 477–479.CrossRefGoogle Scholar
  70. Olivares-Bernabéu, C. (1999). Caracterización biológica y molecular de hongos patógenos de huevos de nematodos. Ph.D. thesis, University of Alicante, Alicante, Spain.Google Scholar
  71. Perret, X., Staehelin, C., & Broughton, W. J. (2000). Molecular basis of symbiotic promiscuity. Microbiology and Molecular Biology Reviews, 64, 180–201.PubMedCrossRefGoogle Scholar
  72. Persmark, L., Banck, A., & Jansson, H.-B. (1996a). Population dynamics of nematophagous fungi and nematodes in an arable soil: vertical and seasonal fluctuations. Soil Biology and Biochemistry, 28, 1005–1014.CrossRefGoogle Scholar
  73. Persmark, L., & Jansson H.-B. (1997). Nematophagous fungi in the rhizosphere of agricultural crops. FEMS Microbiology Ecology, 22, 303–312.CrossRefGoogle Scholar
  74. Persmark L., & Nordbring-Hertz, B. (1997) Conidial trap formation of nematode-trapping fungi in soil and soil extracts. FEMS Microbiology Ecology, 22, 313–323Google Scholar
  75. Persmark, L., Persson, Y., & Jansson, H. B. (1996b). Methods to quantify nematophagous fungi in soil: microscopy or GUS gene activity. In D. F. Jensen, H. B. Jansson, & A. Tronsmo (Eds.), Monitoring antagonistic fungi deliberately released into the environment (pp. 71–75). Dordrecht: Kluwer Academic Publishers,.Google Scholar
  76. Persson, C., & Jansson, H.-B. (1999). Rhizosphere colonization and control of Meloidogyne spp. by nematode-trapping fungi. Journal of Nematology, 31, 164–171.PubMedGoogle Scholar
  77. Peterson, E. A., & Katznelson, H. (1965). Studies on the relationships between nematodes and other soil microorganisms. IV. Incidence of nematode-trapping fungi in the vicinity of plant roots. Canadian Journal of Microbiology, 11, 491–495.PubMedCrossRefGoogle Scholar
  78. Pfister, D. H. (1997). Castor, Pollux and life histories of fungi. Mycologia, 89, 1–23.CrossRefGoogle Scholar
  79. Scholler, M., Hagedorn, G., & Rubner, A. (1999). A reevaluation of predatory orbiliaceous fungi. II. A new generic concept. Sydowia, 51, 89–113.Google Scholar
  80. Segers, R., Butt, T. M., Keen, J. N., Kerry, B. R., & Peberdy, J. F. (1995). The subtilisins of the invertebrate mycopathogensVerticillium chlamydosporium and Metarhizium anisopliae are serologically and functionally related. FEMS Microbiology Letters, 126, 227–232.PubMedCrossRefGoogle Scholar
  81. Segers, R., Butt, T. M., Kerry, B. R., & Peberdy, F. (1994). The nematophagous fungus Verticillium chlamydosporium Goddard produces a chymoelastase-like protease which hydrolyses host nematode proteins in situ. Microbiology, 140, 2715–2723.PubMedGoogle Scholar
  82. Spatafora, J. W. (2005). Assembling the fungal tree of life (AFTOL). Mycological Research, 109, 755–756.CrossRefGoogle Scholar
  83. Stirling, G. R. (1991). Biological control of plant parasitic nematodes: Progress, problems and prospects. Wallingford: CAB International.Google Scholar
  84. Suarez, B., Rey, M., Castillo, P., Monte, E., & Llobell, A. (2004). Isolation and characterization of PRA1, a trypsin-like protease from the biocontrol agent Trichoderma harzianum CECT 2413 displaying nematicidal activity. Applied Microbiology and Biotechnology, 65, 46–55.PubMedCrossRefGoogle Scholar
  85. Thorn, R. G., & Barron, G. L. (1986). Nematoctonus and the Tribe resupinateae in Ontario, Canada. Mycotaxon, 25, 321–453.Google Scholar
  86. Tikhonov, V. E., Lopez-Llorca, L. V., Salinas, J., & Jansson, H. B. (2002). Purification and characterization of chitinases from the nematophagous fungi Verticillium chlamydosporium and V. suchlasporium. Fungal Genetics and Biology, 35, 67–78.PubMedCrossRefGoogle Scholar
  87. Tosi, S., Annovazzi, L., Tosi, I., Iadarola, P., & Caretta, G. (2001). Collagenase production in an Antarctic strain of Arthrobotrys tortor Jarowaja. Mycopathologia, 153, 157–162.CrossRefGoogle Scholar
  88. Tunlid, A., Åhman, J., & Oliver, R. P. (1999). Transformation of the nematode-trapping fungus Arthrobotrys oligospora. FEMS Microbiol Letters, 173, 111–116.CrossRefGoogle Scholar
  89. Tunlid, A., Jansson, H.-B., & Nordbring-Hertz, B. (1992). Fungal attachment to nematodes. Mycological Research, 96, 401–412.Google Scholar
  90. Tunlid, A., Johansson, T., & Nordbring-Hertz, B. (1991a). Surface polymers of the nematode-trapping fungus Arthrobotrys oligospora. Journal of General Microbiology, 137, 1231–1240.Google Scholar
  91. Tunlid, A., Nivens, D. E., Jansson, H. B., & White, D. C. (1991b). Infrared monitoring of the adhesion of Catenaria anguillulae zoospores to solid surfaces. Experimental Mycology, 15, 206–214.CrossRefGoogle Scholar
  92. Tunlid, A., Rosén, S., Ek, B., & Rask, L. (1995). Purification and characterization of an extracellular serine protease from the nematode-trapping fungus Arthrobotrys oligospora. Microbiology, 140, 1687–1695.Google Scholar
  93. Van Gundy, S. D., Kirkpatrick, J. D., & Golden, J. (1977). The nature and role of metabolic leakage from root-knot nematode galls and infection by Rhizoctonia solani. Journal of Nematology, 9, 113–121.PubMedGoogle Scholar
  94. Verdejo-Lucas, S., Sorribas, F. J., Ornat, C., & Galeano, M. (2003). Evaluating Pochonia chlamydosporia in a double-cropping system of lettuce and tomato in plastic houses infested with Meloidogyne javanica. Plant Pathology, 52, 521–528CrossRefGoogle Scholar
  95. Waecke, J. W., Waudo, S. W., & Sikora, R. (2001). Suppression of Meloidogyne hapla by arbuscular mycorrhiza fungi (AMF) on pyrethrum in Kenya. International Journal of Pest Management, 47, 135–140.CrossRefGoogle Scholar
  96. Wang, C., & St. Leger, R. J. (2005). Developmental and transcriptional responses to host and nonhost cuticles by the specific locust pathogen Metarhizium anisopliae var. acridum. Eukaryotic Cell, 4, 932–947.Google Scholar
  97. Wang, M., Yang, J., & Zhang, K. Q. (2006). Characterization of an extracellular protease and its cDNA from the nematode-trapping fungus Monacrosporium microscaphoides. Canadian Journal of Microbiology, 52, 130–139.PubMedCrossRefGoogle Scholar
  98. Wang, R. B., Yang, J. K., Lin, C., Zhang, Y., & Zhang, K. Q. (2006). Purification and characterization of an extracellular serine protease from the nematode-trapping fungus Dactylella shizishanna. Letters in Applied Microbiology, 42, 589–594.PubMedGoogle Scholar
  99. Ward, S., Thomson, N., White, J. G., & Brenner, S. (1975). Electron microscopical reconstruction of the anterior sensory anatomy of the nematode Caenorhabditis elegans. Journal of Comparative Neurology, 160, 313–337.PubMedCrossRefGoogle Scholar
  100. Wharton, D. A. (1980). Nematode egg-shells. Parasitology, 81, 447–463.CrossRefGoogle Scholar
  101. Wyss, U., Voss, B., & Jansson, H.-B. (1992). In vitro observations on the infection of Meloidogyne incognita eggs by the zoosporic fungus Catenaria anguilulae Sorokin. Fundamental and Applied Nematology, 15, 133–139.Google Scholar
  102. Yang, J., Huang, X., Tian, B., Sun, H., Duan, J., Wu, W., & Zhang, M. (2005a). Characterization of an extracellular serine protease gene from the nematophagous fungus Lecanicillium psalliotae. Biotechnology Letters, 27, 1329–2334.Google Scholar
  103. Yang, J., Huang, X., Tian, B., Wang, M., Niu, Q., & Zhang, K. (2005b). Isolation and characterization of a serine protease from the nematophagous fungus Lecanicillium psalliotae, displaying nematicidal activity. Biotechnology Letters, 27, 1123–1128.CrossRefGoogle Scholar
  104. Xu, J. R., Peng, Y. L., Dickman, M. B., & Sharon, A. (2006). The dawn of fungal pathogen genomics. Annual Review of Phytopathology, 44, 337–366.PubMedCrossRefGoogle Scholar
  105. Zare, R., & Gams, W. (2001). A revision of Verticillium section Prostrata. IV. The genera Lecanicillium and Simplicillium gen. nov. Nova Hedwigia, 73, 1–50.Google Scholar
  106. Zare, R., Gams, W., & Evans, H. C. (2001). A revision of Verticillium section Prostrata. V. The genus Pochonia, with notes on Rotiferophthora. Nova Hedwigia, 73, 51–86.Google Scholar
  107. Zhao, M., Mo, M., & Zhang, Z. (2004). Characterization of a serine protease and its full-length cDNA from the nematode-trapping fungus Arthrobotrys oligospora. Mycologia, 96, 16–22.Google Scholar
  108. Zuckerman, B. M. (1983). Hypothesis and possibilities of intervention in nematode chemoreceptors. Journal of Nematology, 15, 173–182.PubMedGoogle Scholar
  109. Zuckerman, B. M., & Jansson, H.-B. (1984). Nematode chemotaxis and mechanisms of host/prey recognition. Annual Review of Phytopathology, 22, 95–113.CrossRefGoogle Scholar

Copyright information

© Springer 2008

Authors and Affiliations

  • L. V. Lopez-Llorca
    • 1
  • J. G. Maciá-Vicente
    • 1
  • H.-B. Jansson
    • 1
  1. 1.Laboratory of Plant PathologyMultidisciplinary Institute for Environmental Studies (MIES) “Ramon Margalef”, University of AlicanteSpain

Personalised recommendations