Skip to main content

Advertisement

Log in

Soil nematodes mediate positive interactions between legume plants and rhizobium bacteria

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Symbiosis between legume species and rhizobia results in the sequestration of atmospheric nitrogen into ammonium, and the early mechanisms involved in this symbiosis have become a model for plant-microbe interactions and thus highly amenable for agricultural applications. The working model for this interaction states that the symbiosis is the outcome of a chemical/molecular dialogue initiated by flavonoids produced by the roots of legumes and released into the soil as exudates, which specifically induce the synthesis of nodulation factors in rhizobia that initiate the nodulation process. Here, we argue that other organisms, such as the soil nematode Caenorhabditis elegans, also mediate the interaction between roots and rhizobia in a positive way, leading to nodulation. We report that C. elegans transfers the rhizobium species Sinorhizobium meliloti to the roots of the legume Medicago truncatula in response to plant-released volatiles that attract the nematode. These findings reveal a biologically-relevant and largely unknown interaction in the rhizosphere that is multitrophic and may control the initiation of the symbiosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Allaire SE, Yates SR, Ernst FF, Gan J (2002) A dynamic two-dimensional system for measuring volatile organic compound volatilization and movement in soils. J Environ Qual 31:1079–1087

    Article  PubMed  CAS  Google Scholar 

  • Bais HP, Park SW, Weir TL, Callaway RM, Vivanco JM (2004) How plants communicate using the underground information superhighway. Trends Plant Sci 9:26–32

    Article  PubMed  CAS  Google Scholar 

  • Baldwin JG, Barker KR, Nelson LA (1979) Effect of Meloidogyne incognita on nitrogen fixation in soybean. J Nematol 11:156–161

    CAS  PubMed  Google Scholar 

  • Bardgett RD, Cook R, Yeates GW, Denton CS (1999) The influence of nematodes on below-ground processes in grassland ecosystems. Plant Soil 212:23–33

    Article  CAS  Google Scholar 

  • Bargmann CI, Hartweig E, Horvitz HR (1993) Odorant-selective genes and neurons mediate olfaction in C. elegans. Cell 74:515–527

    Article  PubMed  CAS  Google Scholar 

  • Bongers T, Ferris H (1999) Nematode community structure as a bioindicator in environmental monitoring. Trends Ecol Evol 14:224–228

    Article  PubMed  Google Scholar 

  • Brenner SJ (1974) The genetics of Caenorhabditis elegans. Genetics 77:71–94

    PubMed  CAS  Google Scholar 

  • Brown DJF, Robertson WM, Trudgill DL (1995) Transmission of viruses by plant nematodes. Annu Rev Phytopathol 33:223–349

    Article  CAS  PubMed  Google Scholar 

  • Caetano-Anolles G, Crist-Estes DK, Bauer WD (1988) Chemotaxis of Rhizobium meliloti to the plant flavone luteolin requires functional nodulation genes. J Bacteriol 170:3164–3169

    PubMed  CAS  Google Scholar 

  • Chen HP, Walker GC (1998) Succinoglycan is required for initiation and elongation of infection threads during nodulation of alfalfa by Rhizobium meliloti. J Bacteriol 180:5183–5191

    PubMed  Google Scholar 

  • Cipollo JF, Awad AM, Costello CE, Hirschberg CB (2004) srf-3, a mutant of Caenorhabditis elegans, resistant to bacterial infection and to biofilm binding, is deficient in glycoconjugates. J Biol Chem 279:52893–52903

    Article  PubMed  CAS  Google Scholar 

  • De Moraes CM, Mescher MC, Tumlinson JH (2001) Caterpillar-induced nocturnal plant volatiles repel conspecific females. Nature 410:577–580

    Article  PubMed  CAS  Google Scholar 

  • De Ruiter PC, Moore JC, Zwart KB, Bouwman LA, Hassink J, Bloem J, De Vos JA, Marinissen JCY, Didden WAM, Lebbink G, Brussaard L (1993) Simulation of nitrogen mineralization in the below-ground food webs of two winter wheat fields. J Appl Ecol 30:95–106

    Article  Google Scholar 

  • Dicke M, Sabelis MW, Takabayashi J, Bruin J, Posthumus MA (1990a) Plant strategies of manipulating predator–prey interactions through allelochemicals: prospects for application in pest control. J Chem Ecol 16:3091–3118

    Article  CAS  Google Scholar 

  • Dicke M, Beek TAV, Posthumus MA, Dom NB, Bokhoven HV, Groot AEDE (1990b) Isolation and identification of volatile kairomone that affects acarine predator–prey interaction. J Chem Ecol 16:381–396

    Article  CAS  Google Scholar 

  • Duke JA (1992) Handbook of phytochemical constituents of GRAS herbs and other economic plants. CRC Press, Boca Raton, FL

    Google Scholar 

  • Firmin JL, Wilson KE, Rossen L, Johnston AWB (1986) Flavonoid activation of nodulation gene in Rhizobium reversed by other compounds present in plants. Nature 324:90–92

    Article  CAS  Google Scholar 

  • Garnier M, Foissac X, Gaurivaud P, Laigret F, Renaudin J, Saillard C, Bove JM (2001) Mycoplasmas, plants, insect vectors: a matrimonial triangle. C R Acad Sci III 324:923–928

    PubMed  CAS  Google Scholar 

  • Gray S, Gildow FE (2003) Luteovirus-aphid interactions. Annu Rev Phytopathol 41:539–566

    Article  PubMed  CAS  Google Scholar 

  • Haung J (1987) Interaction of nematodes with rhizobia. In: Veech JA, Dickson DW (eds) Vistas on nematology. Society of Nematologists Inc., Hyattsville, pp 301–306

    Google Scholar 

  • Hoflich J, Berninsone P, Gobel C, Gravato-Nobre MJ, Libby BJ, Darby C, Politz SM, Hodgkin J, Hirschberg CB, Baumeister R (2004) Loss of srf-3-encoded nucleotide sugar transporter activity in Caenorhabditis elegans alters surface antigenicity and prevents bacterial adherence. J Biol Chem 279:30440–30448

    Article  PubMed  CAS  Google Scholar 

  • Holopainen JK (2004) Multiple functions of inducible plant volatiles. Trends Plant Sci 9:529–533

    Article  PubMed  CAS  Google Scholar 

  • Horiuchi J, Arimura G, Ozawa R, Shimoda T, Takabayashi J, Nishioka T (2003) A comparison of the responses of Tetranychus urticae (Acari: Tetranychidae) and Phytoseiulus persimilis (Acari: Phytoseiidae) to volatiles emitted from lima bean leaves with different levels of damage made by T. urticae or Spodoptera exigua (Lepidoptera: Noctuidae). Appl Entomol Zool 38:109–116

    Article  Google Scholar 

  • Kamath RS, Fraser AG, Dong Y, Poulin G, Durbin R, Gotta M, Kanapin A, Le Bot N, Moreno S, Sohrmann M, Welchman DP, Zipperlen P, Ahringer J (2003) Systematic functional analysis of the Caenorhabditis elegans genome using RNAi. Nature 421:231–237

    Article  PubMed  CAS  Google Scholar 

  • Liu DW, Thomas JH (1994) Regulation of a periodic motor program in C. elegans. J Neurosci 14:1953–1962

    PubMed  CAS  Google Scholar 

  • Marx J (2004) The roots of plant-microbe collaborations. Science 304:234–236

    Article  PubMed  Google Scholar 

  • Murashige T, Skoog FA (1962) A revised medium for rapid growth and bioassay with tissue culture. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Pandya S, Iyer P, Gaitonde V, Parekh T, Desai A (1999) Chemotaxis of Rhizobium sp.S2 towards Cajanus cajan root exudate and its major components. Curr Microbiol 38:205–209

    Article  PubMed  CAS  Google Scholar 

  • Perret X, Staehelin C, Broughton WJ (2000) Molecular basis of symbiotic promiscuity. Microbiol Mol Biol Rev 64:180–201

    Article  PubMed  CAS  Google Scholar 

  • Peters NK, Frost JW, Long SR (1986) A plant flavone, luteolin, induces expression of Rhizobium meliloti nodulation genes. Science 233:977–980

    Article  PubMed  CAS  Google Scholar 

  • Prithiviraj B, Vikram A, Kushalappa AC, Yaylayan V (2004) Volatile metabolite profiling for the discrimination of onion bulbs infested by Erwinia carotovora ssp. carotovora, Fusarium oxysporum and Botrytis allii. Europe. J Plant Pathol 110:371–377

    Article  CAS  Google Scholar 

  • Purchase HF, Nutman PS (1957) Studies on physiology of nodule formation IV. The influence of bacteria numbers in the rhizosphere on nodule initiation. Ann Bot 21:439–454

    Google Scholar 

  • Rasmann S, Kollner TG, Degenhardt J, Hiltpold I, Toepfer S, Kuhlmann U, Gershenzon J, Turlings TC (2005) Recruitment of entomopathogenic nematodes by insect-damaged maize roots. Nature 434:732–737

    Article  PubMed  CAS  Google Scholar 

  • Redak RA, Purcell AH, Lopes JR, Blua MJ, Mizell RF III, Andersen PC (2004) The biology of xylem fluid-feeding insect vectors of Xylella fastidiosa and their relation to disease epidemiology. Annu Rev Entomol 49:243–270

    Article  PubMed  CAS  Google Scholar 

  • Riely BK, Ane JM, Penmetsa RV, Cook DR (2004) Genetic and genomic analysis in model legumes bring Nod-factor signaling to center stage. Curr Opin Plant Biol 7:408–413

    Article  PubMed  CAS  Google Scholar 

  • Roviria HD (1961) Rhizobium numbers in the rhizospheres of red clover and paspalum in relation to soil treatment and the numbers of bacteria and fungi. Aust J Agric Res 12:77–83

    Article  Google Scholar 

  • Sabelis MW, van Baalen M, Bakker FM, Bruin J, Drukker B, Egas CJM, Janssen A, Lesna I, Pels B, van Rijn PCJ, Scutareanu P (1999) The evolution of direct and indirect plant defence against herbivorous arthropods. In: Olff H, Brown VA, Drent RH (eds) Herbivores: between plants and predators. Blackwell Science Ltd, Oxford, pp 109–166

    Google Scholar 

  • Selby C, McRoberts WC, Hamilton JTG, Harvey BMR (1996) Inhibition of somatic embryo maturation in Sitka spruce (Picea sitchensis [Bong] Carr) by butylated hydroxytoluene, a volatile antioxidant released by parafilm. Plant Cell Rep 16:192–195

    Article  CAS  Google Scholar 

  • Steeghs M, Bais HP, de Gouw J, Goldan P, Kuster W, Northway M, Fall R, Vivanco JM (2004) Proton-transfer-reaction mass spectrometry as a new tool for real time analysis of root-secreted volatile organic compounds in Arabidopsis. Plant Physiol 135:47–58

    Article  PubMed  CAS  Google Scholar 

  • Sulston JE, Hodgkin J (1988) In: Wood WB (ed) Methods in Nematode Caenorhadbitis elegans. Cold Spring Harbor Laboratory Press, Plainview, pp 587–606

  • Takabayashi J, Dicke M (1996) Plant-carnivore mutualism through herbivore-induced carnivore attractants. Trends Plant Sci 1:109–113

    Article  Google Scholar 

  • van Tol RWHM, van der Sommen ATC, Boff MIC, van Bezooijen J, Sabelis MW, abd Smits PH (2001) Plants protect their roots by alerting the enemies of grubs. Ecol Lett 4:292–294

    Article  Google Scholar 

  • Troemel ER, Kimmel BE, Bargmann CI (1997) Reprogramming chemotaxis responses: sensory neurons define olfactory preferences in C. elegans. Cell 91:161–169

    Article  PubMed  CAS  Google Scholar 

  • Turlings TCJ, Loughrin JH, McCall PJ, Röse USR, Lewis WJ, Tumlinson JH (1995) How caterpillar-damaged plants protect themselves by attracting parasitic wasps. Proc Natl Acad Sci USA 92:4169–4174

    Article  PubMed  CAS  Google Scholar 

  • Wasilewska L, Webster JM (1975) Free living nematodes as disease factors of man and his crops. Int J Environ Stud 7:204–210

    Google Scholar 

  • Weir TL, Park SW, Vivanco JM (2004) Biochemical and physiological mechanisms mediated by allelochemicals. Curr Opin Plant Biol 7:472–479

    Article  PubMed  CAS  Google Scholar 

  • Whitford WG, Freckman DW, Santos PF, Elkins NZ, Parker LW (1982) The role of nematodes in decomposition in desert ecosystems. In: Freckman DW, Wallwork JA (eds) Nematodes in soil ecosystems. University of Texas Press, Austin, pp 98–115

    Google Scholar 

  • Williamson VM, Gleason CA (2003) Plant-nematode interactions. Curr Opin Plant Biol 6:327–333

    Article  PubMed  CAS  Google Scholar 

  • Yates GW (2003) Nematodes as soil indicators: functional and biodiversity aspects. Biol Fertil Soils 37:199–210

    Google Scholar 

Download references

Acknowledgements

We thank Drs. Ray Fall and Lou Bjostad for scientific discussions on the subject and technical advice. We also thank Emily Wortman-Wunder for editorial assistance. JH acknowledges the financial support from Japan Society for the Promotion of Science. This work was supported by the Colorado State University Agricultural Experiment Station (JMV). JMV is an NSF-CAREER faculty fellow (MCB 0093014).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jorge M. Vivanco.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Horiuchi, Ji., Prithiviraj, B., Bais, H.P. et al. Soil nematodes mediate positive interactions between legume plants and rhizobium bacteria. Planta 222, 848–857 (2005). https://doi.org/10.1007/s00425-005-0025-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-005-0025-y

Keywords

Navigation