Skip to main content

Cultivation of Marine Microorganisms in Single-Use Systems

  • Chapter
  • First Online:
Disposable Bioreactors II

Part of the book series: Advances in Biochemical Engineering/Biotechnology ((ABE,volume 138))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

CDW:

Cell dry weight

CHO:

Chinese hamster ovary

DHA:

Docosahexanoic acid

DWP:

Deep-well plate

DO:

Dissolved oxygen

FSC:

Forward scatter channel

kLa:

Volumetric oxygen transfer coefficient

OD:

Optical density

PFC:

Perfluorochemicals

PFD:

Perfluorodecalin

PVC:

Polyvinyl chloride

PI:

Propidium iodide

SSC:

Side scatter channel

SUB:

Single-use bioreactor

UYF:

Ultra Yield flask

References

  1. Eibl R, Werner S, Eibl D (2009) Disposable bioreactors for plant liquid cultures at Litre-scale. Eng Life Sci 9:156–164. doi:10.1002/elsc.200800102

    Article  CAS  Google Scholar 

  2. Eibl R, Eibl D (2008) Design of bioreactors suitable for plant cell and tissue cultures. Phytochem Rev 7:593–598. doi:10.1007/s11101-007-9083-z

    Article  CAS  Google Scholar 

  3. Terrier B, Courtois D, Henault N, Cuvier A, Bastin M, Aknin A, Dubreuil J, Petiard V (2007) Two new disposable bioreactors for plant cell culture: The wave and undertow bioreactor and the slug bubble bioreactor. Biotechnol Bioeng 96:914–923. doi:10.1002/bit.21187

    Article  CAS  Google Scholar 

  4. Lehmann N, Rischer H, Eibl D, Eibl R (2013) Wave-mixed and orbitally shaken single-use photobioreactors for diatom algae propagation. Chem Ing Tech 85:197–201. doi:10.1002/cite.201200137

    Article  CAS  Google Scholar 

  5. Menke S, Sennhenn A, Sachse J-H, Majewski E, Huchzermeyer B, Rath T (2012) Screening of microalgae for feasible mass production in industrial hypersaline wastewater using disposable bioreactors. Clean - Soil Air Water 00:1–7. doi:10.1002/clen.201100402

    CAS  Google Scholar 

  6. Jonczyk P, Schmidt A, Bice I, Gall M, Gross E, Hilmer JM, Bornscheuer U, Beutel S, Scheper T (2011) Strikt anaerobe Batch-Kultivierung von Eubacterium ramulus in einem neuartigen Einweg-Beutelreaktorsystem—Strictly Anaerobic Batch Cultivation of Eubacterium ramulus in a Novel Disposable Bag Reactor System. Chem Ing Tech 83:2147–2152. doi:10.1002/cite.201100120

    Article  CAS  Google Scholar 

  7. Ullah M, Burns T, Bhalla A, Beltz HW, Greller G, Adams T (2008) Disposable bioreactors for cells and microbes—productivities similar to those achieved with stirred tanks can be achieved with disposable bioreactors. Biopharm Int 44

    Google Scholar 

  8. Glazyrina J, Materne EM, Dreher T, Storm D, Junne S, Adams T, Greller G, Neubauer P (2010) High cell density cultivation and recombinant protein production with Escherichia coli in a rocking- motion- type bioreactor. Microbial Cell Factories 9:42. doi:10.1186/1475-2859-9-42

    Article  Google Scholar 

  9. Galliher PM, Hodge G, Guertin P, Chew L, Deloggio T (2010) Single-use bioreactor platform for microbial fermentation. In: Single-use technology in biopharmaceutical manufacture. Wiley, Hoboken, pp 241–250

    Google Scholar 

  10. Dreher T, Husemann U, Zahnow C, de Wilde D, Adams T, Greller G (2013) High cell density escherichia coli cultivation in different single-use bioreactor systems. Chem Ing Tech 85:162–171. doi:10.1002/cite.201200122

    Article  CAS  Google Scholar 

  11. Junne S, Solymosi T, Oosterhuis N, Neubauer P (2013) Cultivation of cells and microorganisms in wave-mixed disposable bag bioreactors at different scales. Chem Ing Tech 85:57–66. doi:10.1002/cite.201200149

    Article  CAS  Google Scholar 

  12. Mikola M, Seto J, Amanullah A (2007) Evaluation of a novel Wave Bioreactor (R) cellbag for aerobic yeast cultivation. Bioproc Biosyst Eng 30:231–241. doi:10.1007/s00449-007-0119-y

    Article  CAS  Google Scholar 

  13. Duetz WA (2007) Microtiter plates as mini-bioreactors: miniaturization of fermentation methods. Trends Microbiol 15:469–475. doi:10.1016/j.tim.2007.09.004

    Article  CAS  Google Scholar 

  14. Eibl R, Löffelholz C, Eibl D (2011) Single-use bioreactors—an overview. In: Single-use technology in biopharmaceutical manufacture. Wiley, Hoboken, pp 33–51

    Google Scholar 

  15. Brod H, Vester A, Kauling J (2012) Möglichkeiten und Grenzen von Disposable-Technologien in biopharmazeutischen Verfahren—opportunities and limitations of disposable technologies in biopharmaceutical processes. Chem Ing Tech 84:633–645. doi:10.1002/cite.201100229

    Article  CAS  Google Scholar 

  16. Zhang X, Stettler M, De SD, Perrone M, Parolini N, Discacciati M, De JM, Hacker D, Quarteroni A, Wurm F (2010) Use of orbital shaken disposable bioreactors for Mammalian cell cultures from the milliliter-scale to the 1,000-liter scale. Adv Biochem Eng Biotechnol 115:33–53. doi:10.1007/10_2008_18

    Google Scholar 

  17. Ravise A, Cameau E, De AG, Pralong A (2010) Hybrid and disposable facilities for manufacturing of biopharmaceuticals: pros and cons. Adv Biochem Eng Biotechnol 115:185–219. doi:10.1007/10_2008_24

    Google Scholar 

  18. Sinclair A, Leveen L, Monge M, Lim J, Cox S (2008) The environmental impact of disposable technologies. BioPharm Int Suppl 21:4–15

    Google Scholar 

  19. Sinclair A, Monge M (2005) Concept facility based on single-use systems, Part 2. BioPress Int Suppl 3:51–55

    Google Scholar 

  20. Eibl R, Kaiser S, Lombriser R, Eibl D (2010) Disposable bioreactors: the current state-of-the-art and recommended applications in biotechnology. Appl Microbiol Biotechnol 86:41–49. doi:10.1007/s00253-009-2422-9

    Article  CAS  Google Scholar 

  21. Freitas AC, Rodrigues D, Rocha-Santos TA, Gomes AM, Duarte AC (2012) Marine biotechnology advances towards applications in new functional foods. Biotechnol Adv 30:1506–1515. doi:10.1016/j.biotechadv.2012.03.006

    Article  CAS  Google Scholar 

  22. Dionisi HM, Lozada M, Olivera NL (2012) Bioprospection of marine microorganisms: biotechnological applications and methods. Revista Argentina de Microbiologia 44:49–60. doi:10.1590/S0325-75412012000100010

    CAS  Google Scholar 

  23. Lang S, Huners M, Lurtz V (2005) Bioprocess engineering data on the cultivation of marine prokaryotes and fungi. Mar. Biotechnol. 97:29–62. doi:10.1007/b135822

    CAS  Google Scholar 

  24. MacLeod RA (1965) Question of existence of specific marine bacteria. Bacteriol Rev 29:9–23.

    Google Scholar 

  25. Kogure K (1998) Bioenergetics of marine bacteria. Curr Opin Biotechnol 9:278–282. doi:10.1016/S0958-1669(98)80059-1

    Article  CAS  Google Scholar 

  26. Zhang Y, Arends JBA, Van de Wiele T, Boon N (2011) Bioreactor technology in marine microbiology: From design to future application. Biotechnol Adv 29:312–321. doi:10.1016/j.biotechadv.2011.01.004

    Article  CAS  Google Scholar 

  27. Tsueng G, Teisan S, Lam KS (2008) Defined salt formulations for the growth of Salinispora tropica strain NPS21184 and the production of salinosporamide A (NPI-0052) and related analogs. Appl Microbiol Biotechnol 78:827–832. doi:10.1007/s00253-008-1358-9

    Article  CAS  Google Scholar 

  28. Barclay WR (2002) Reducing corrosion in a fermenter by providing sodium with a non-chloride sodium salt [US Patent 6410281]

    Google Scholar 

  29. Behrens PW, Thompson JM, Apt K, Pfeifer JW, Wynn JP, Lippmeier JC (2005) Production of high levels of DHA in microalgae using modified amounts of chloride and potassium [US Patent 7163811]

    Google Scholar 

  30. Manachini PL, Fortina MG (1998) Production in sea-water of thermostable alkaline proteases by a halotolerant strain of Bacillus licheniformis. Biotechnol Lett 20:565–568. doi:10.1023/A:1005349728182

    Article  CAS  Google Scholar 

  31. Keerthi TR, Suresh PV, Sabu A, Rajeevkumar S, Chandrasekaran M (1999) Extracellular production of L-glutaminase by alkalophilic Beauveria bassiana BTMF S10 isolated from marine sediment. World J Microbiol Biotechnol 15:751–752. doi:10.1023/A:1008902111799

    Article  CAS  Google Scholar 

  32. Muffler K, Ulber R (2008) Fed-batch cultivation of the marine bacterium Sulfitobacter pontiacus using immobilized substrate and purification of sulfite oxidase by application of membrane adsorber technology. Biotechnol Bioeng 99:870–875. doi:10.1002/bit.21631

    Article  CAS  Google Scholar 

  33. Estrada-Badillo C, Marquez-Rocha FJ (2003) Effect of agitation rate on biomass and protease production by a marine bacterium Vibrio harveyi cultured in a fermenter. World J Microbiol Biotechnol 19:129–133. doi:10.1023/A:1023257108488

    Article  CAS  Google Scholar 

  34. Sarkar S, Pramanik A, Mitra A, Mukherjee J (2010) Bioprocessing data for the production of marine enzymes. Marine Drugs 8:1323–1372. doi:10.3390/md8041323

    Article  CAS  Google Scholar 

  35. Hitchcock T (2009) Production of recombinant whole-cell vaccines with disposable manufacturing systems. BioProcess Int 5:36–45

    Google Scholar 

  36. Krause M, Ukkonen K, Haataja T, Ruottinen M, Glumoff T, Neubauer A, Neubauer P, Vasala A (2010) A novel fed-batch based cultivation method provides high cell-density and improves yield of soluble recombinant proteins in shaken cultures. Microbial Cell Factories 9:11. doi:10.1186/1475-2859-9-11

    Article  Google Scholar 

  37. Oosterhuis NMG, Hudson T, D’Avino A, Zijlstra GM. Amanullah A (2011) Disposable bioreactors. In: Moo-Young M (ed) Comprehensive biotechnology, 2nd edn. Pergamon Press, Oxford, pp 249–261

    Google Scholar 

  38. Oosterhuis NMG, Neubauer P, Junne S (2013) Single-use bioreactors for microbial application. Biopharm Int (submitted)

    Google Scholar 

  39. Monteil DT, Ghimire S, Tontodonati G, Baldi L, Hacker DL, Wurm FM (2012) http://www.tpp.ch/page/downloads/TubeSpin/2012_ECI_Poster_Monteil.pdf. Accessed Dec 2012

  40. Glazyrina J, Materne E, Hillig F, Neubauer P, Junne S (2011) Two-compartment method for determination of the oxygen transfer rate with electrochemical sensors based on sulfite oxidation. Biotechnol J 6:1003–1008. doi:10.1002/biot.201100281

    Article  CAS  Google Scholar 

  41. Anderlei T, Cesana C, Burki C, De Jesus M, Kuhner M, Wurm F, Lohser R (2009) Shaken bioreactors provide culture alternative. Gen Eng Biotechnol News 29:44

    Google Scholar 

  42. Zhang XW, Burki CA, Stettler M, De Sanctis D, Perrone M, Discacciati M, Parolini N, DeJesus M, Hacker DL, Quarteroni A, Wurm FM (2009) Efficient oxygen transfer by surface aeration in shaken cylindrical containers for mammalian cell cultivation at volumetric scales up to 1000 L. Biochem Eng J 45:41–47. doi:10.1016/j.bej.2009.02.003

    Article  Google Scholar 

  43. Bergmann P, Ripplinger P, Beyer L, Trösch W (2013) Disposable flat panel airlift photobioreactors. Chem Ing Tech 85:202–205. doi:10.1002/cite.201200132

    Article  CAS  Google Scholar 

  44. Glindkamp A, Riechers D, Rehbock C, Hitzmann B, Scheper T, Reardon KF (2009) Sensors in disposable bioreactors status and trends. Adv Biochem Eng Biotechnol 115:145–169 (Eibl R, Eibl D (eds))

    Google Scholar 

  45. Wolfbeis OS (2005) Materials for fluorescence-based optical chemical sensors. J Mater Chem 15:2657–2669. doi:10.1039/B501536G

    Article  CAS  Google Scholar 

  46. Stark E, Hitzmann B, Schugerl K, Scheper T, Fuchs C, Koster D, Markl H (2002) In-situ-fluorescence-probes: a useful tool for non-invasive bioprocess monitoring. Adv Biochem Eng Biotechnol 74:21–38. doi:10.1007/3-540-45736-4_2

    CAS  Google Scholar 

  47. Lindner P, Endres C, Bluma A, Höpfner T, Glindkamp A, Haake C, Landgrebe D, Riechers D, Baumfalk R, Hitzmann B, Scheper T, Reardon KF (2010) Disposable sensor systems. In: Single-use technology in biopharmaceutical manufacture. Wiley, Hoboken, pp 67–81

    Google Scholar 

  48. Anderlei T, Cesana C, Burki C, De Jesus M, Kuhner M, Wurm F, Lohser R (2009) Shaken bioreactors provide culture alternative. Gen Eng Biotechnol News 29:44

    Google Scholar 

  49. Hanson MA, Ge XD, Kostov Y, Brorson KA, Moreira AR, Rao G (2007) Comparisons of optical pH and dissolved oxygen sensors with traditional electrochemical probes during mammalian cell culture. Biotechnol Bioeng 97:833–841. doi:10.1002/bit.21320

    Article  CAS  Google Scholar 

  50. Oosterhuis NMG, van den Berg HJ (2011) How multipurpose is a disposable bioreactor? Biopharm Int 24:51–56

    Google Scholar 

  51. Ding W (2013) Determination of extractables and leachables from single-use systems. Chem Ing Tech 85:186–196. doi:10.1002/cite.201200113

    Article  CAS  Google Scholar 

  52. Rader RA, Langer ES (2012) Upstream single-use bioprocessing systems. Bioprocess Int 10:12–18

    Google Scholar 

  53. EaLS BPSA (2007) Recommendations for extractables and leachables testing. BioProcess Int 5:36

    Google Scholar 

  54. Steiger N, Eibl R (2013) Interlaboratory test for detection of cytotoxic leachables arising from single-use bags. Chem Ing Tech 85:26–28. doi:10.1002/cite.201200171

    Article  CAS  Google Scholar 

  55. Doughman SD, Krupanidhi S, Sanjeevi CB (2007) Omega-3 fatty acids for nutrition and medicine: considering microalgae oil as a vegetarian source of EPA and DHA. Curr Diabetes Rev 3:198–203. doi:10.2174/157339907781368968

    Article  CAS  Google Scholar 

  56. Wynn J, Behrens P, Sundararajan A, Hansen J, Apt K (2010) Production of single cell oils by dinoflagellates. In: Single cell oils. AOCS Publishing, Champaign, pp 115–129

    Google Scholar 

  57. Mendes A, Guerra P, Madeira V, Ruano F, da Silva TL, Reis A (2007) Study of docosahexaenoic acid production by the heterotrophic microalga Crypthecodinium cohnii CCMP 316 using carob pulp as a promising carbon source. World J Microbiol Biotechnol 23:1209–1215. doi:10.1007/s11274-007-9349-z

    Article  CAS  Google Scholar 

  58. Barclay WR, Meager KM, Abril JR (1994) Heterotrophic production of long-chain omega-3-fatty-acids utilizing algae and algae-like microorganisms. J Appl Phycol 6:123–129. doi:10.1007/BF02186066

    Article  CAS  Google Scholar 

  59. Bhaud Y, Salmon JM, Soyergobillard MO (1991) The complex cell-cycle of the dinoflagellate protoctist Crypthecodinium cohnii as studied in vivo and by cytofluorometry. J Cell Sci 100:675–682

    Google Scholar 

  60. Hu WW, Gladue R, Hansen J, Wojnar C, Chalmers JJ (2010) Growth inhibition of dinoflagellate algae in shake flasks: not due to shear this time! Biotechnol Progr 26:79–87. doi:10.1002/btpr.301

    CAS  Google Scholar 

  61. de Swaaf ME, Sijtsma L, Pronk JT (2003) High-cell-density fed-batch cultivation of the docosahexaenoic acid producing marine alga Crypthecodinium cohnii. Biotechnol Bioeng 81:666–672. doi:10.1002/bit.10513

    Article  Google Scholar 

  62. Wen Z, Chen F (2010) Production of eicosapentaenoic acid using heterotrophically grown microalgae. In Single cell oils. AOCS Publishing, Champaign, pp 151–177

    Google Scholar 

  63. Higashiyama K, Murakami K, Tsujimura H, Matsumoto N, Fujikawa S (1999) Effects of dissolved oxygen on the morphology of an arachidonic acid production by Mortierella alpina 1S–4. Biotechnol Bioeng 63:442–448. doi:10.1002/(SICI)1097-0290(19990520)63

    Article  CAS  Google Scholar 

  64. Hu WW, Gladue R, Hansen J, Wojnar C, Chalmers JJ (2007) The sensitivity of the dinoflagellate Crypthecodinium cohnii to transient hydrodynamic forces and cell-bubble interactions. Biotechnol Progr 23:1355–1362. doi:10.1021/bp070306a

    Article  CAS  Google Scholar 

  65. Ratledge C (2004) Fatty acid biosynthesis in microorganisms being used for Single Cell Oil production. Biochimie 86:807–815. doi:10.1016/j.biochi.2004.09.017

    Article  CAS  Google Scholar 

  66. Yeung PKK, Wong JTY (2003) Inhibition of cell proliferation by mechanical agitation involves transient cell cycle arrest at G(1) phase in dinoflagellates. Protoplasma 220:173–178. doi:10.1007/s00709-002-0039-2

    Article  CAS  Google Scholar 

  67. Yeung PKK, Lam CMC, Ma ZY, Wong YH, Wong JTY (2006) Involvement of calcium mobilization from caffeine-sensitive stores in mechanically induced cell cycle arrest in the dinoflagellate Crypthecodinium cohnii. Cell Calcium 39:259–274. doi:10.1016/j.ceca.2005.11.001

    Article  CAS  Google Scholar 

  68. de Swaaf ME, de Rijk TC, Eggink G, Sijtsma L (1999) Optimisation of docosahexaenoic acid production in batch cultivations by Crypthecodinium cohnii. J Biotechnol 70:185–192. doi:10.1016/S0168-1656(99)00071-1

    Article  Google Scholar 

  69. Pilarek M, Glazyrina J, Neubauer P (2011) Enhanced growth and recombinant protein production of Escherichia coli by a perfluorinated oxygen carrier in miniaturized fed-batch cultures. Microbial Cell Factories 10:50. doi:10.1186/1475-2859-10-50

    Article  CAS  Google Scholar 

  70. Zhang H, Lamping SR, Pickering SCR, Lye GJ, Shamlou PA (2008) Engineering characterisation of a single well from 24-well and 96-well microtitre plates. Biochem Eng J 40:138–149. doi:10.1016/j.bej.2007.12.005

    Article  CAS  Google Scholar 

  71. Maier U, Buchs J (2001) Characterisation of the gas-liquid mass transfer in shaking bioreactors. Biochem Eng J 7:99–106. doi:10.1016/S1369-703X(00)00107-8

    Article  CAS  Google Scholar 

  72. Van Suijdam JC, Kossen NWF, Joha AC (1978) Model for oxygen-transfer in a shake flask. Biotechnol Bioeng 20:1695–1709

    Article  Google Scholar 

  73. Lowe KC (2002) Perfluorochemical respiratory gas carriers: benefits to cell culture systems. J Fluorine Chem 118:19–26. doi:10.1016/S0022-1139(02)00200-2

    Article  CAS  Google Scholar 

  74. Pilarek M, Sobieszuk P (2012) Absorption of CO2 into perfluorinated gas carrier in the Taylor gas-liquid flow in a microchannel system. Chem Proc Eng 33(4):595–602. doi:10.2478/v10176-012-0049-3

    Google Scholar 

  75. Riess JG (2006) Perfluorocarbon-based oxygen delivery. Artif Cells Blood Substit Biotechnol 34:567–580

    Article  CAS  Google Scholar 

  76. Pilarek M, Szewczyk KW (2008) Effects of perfluorinated oxygen carrier application in yeast, fungi and plant cell suspension cultures. Biochem Eng J 41:38–42. doi:10.1016/j.bej.2008.03.004

    Article  CAS  Google Scholar 

  77. Damiano D, Wang SS (1985) Novel use of a perfluorocarbon for supplying oxygen to aerobic submerged cultures. Biotechnol Lett 7:81–86. doi:10.1007/BF01026673

    Article  CAS  Google Scholar 

  78. Ju LK, Lee JF, Armiger WB (1991) Enhancing oxygen-transfer in bioreactors by perfluorocarbon emulsions. Biotechnol Prog 7:323–329. doi:10.1021/bp00010a006

    Article  CAS  Google Scholar 

  79. Pilarek M, Brand E, Hillig F, Krause M, Neubauer P (2012) (epub ahead of print) Enhanced plasmid production in miniaturized high-cell-density cultures of Escherichia coli supported with perfluorinated oxygen carrier. Bioproc Biosyst Eng. doi:10.1007/s00449-012-0861-7

  80. King AT, Mulligan BJ, Lowe KC (1989) Perfluorochemicals and cell-culture. Nat Biotechnol 7:1037–1042. doi:10.1038/nbt1089-1037

    Article  CAS  Google Scholar 

  81. Mattiasson B, Adlercreutz P (1987) Perfluorochemicals in biotechnology. Trends Biotechnol 5:250–254. doi:10.1016/0167-7799(87)90101-6

    Article  CAS  Google Scholar 

  82. Rappaport C (2003) Review-progress in concept and practice of growing anchorage-dependent mammalian cells in three dimension. In Vitro Cell Dev Biol-Animal 39:187–192. doi:10.1290/1543-706X(2003)039<0187:RICAPO>2.0.CO;2

    Article  Google Scholar 

  83. Shiba Y, Ohshima T, Sato M (1998) Growth and morphology of anchorage-dependent animal cells in a liquid/liquid interface system. Biotechnol Bioeng 57:583–589

    Article  CAS  Google Scholar 

  84. Pilarek M, Neubauer P, Marx U (2011) Biological cardio-micro-pumps for microbioreactors and analytical micro-systems. Sens Actuators B-Chem 156:517–526. doi:10.1016/j.snb.2011.02.014

    Article  CAS  Google Scholar 

  85. Lowe KC, Wardrop J, Anthony P, Power JB, Davey MR (2003) Oxygen consumption and antioxidant status of plant cells cultured with oxygenated perfluorocarbon. Oxygen Transp Tissue Xxv 540:157–161

    Article  CAS  Google Scholar 

  86. Amaral PF, Freire MG, Rocha-Leao MH, Marrucho IM, Coutinho JA, Coelho MA (2008) Optimization of oxygen mass transfer in a multiphase bioreactor with perfluorodecalin as a second liquid phase. Biotechnol Bioeng 99:588–598. doi:10.1002/bit.21640

    Article  CAS  Google Scholar 

  87. Meyer A, Condon RGG, Keil G, Jhaveri N, Liu Z, Tsao YS (2012) Fluorinert, an oxygen carrier, improves cell culture performance in deep square 96-well plates by facilitating oxygen transfer. Biotechnol Prog 28:171–178. doi:10.1002/btpr.712

    Article  CAS  Google Scholar 

  88. Hillig F, Annemüller S, Chmielewska M, Pilarek M, Junne S, Neubauer P (2013) Bioprocess development in single-use systems for heterotrophic marine microalgae. Chem Ing Tech 85:153–161. doi:10.1002/cite.201200143

    Article  CAS  Google Scholar 

  89. de la Jara A, Mendoza H, Martel A, Molina C, Nordstron L, de la Rosa V, Diaz R (2003) Flow cytometric determination of lipid content in a marine dinoflagellate, Crypthecodinium cohnii. J Appl Phycol 15:433–438. doi:10.1023/A:1026007902078

    Article  Google Scholar 

  90. da Silva TL, Reis A (2008) The use of multi-parameter flow cytometry to study the impact of n-dodecane additions to marine dinoflagellate microalga Crypthecodinium cohnii batch fermentations and DHA production. J Ind Microbiol Biotechnol 35:875–887. doi:10.1007/s10295-008-0360-7

    Article  Google Scholar 

  91. De Jesus MJ, Girard P, Bourgeois M, Baumgartner G, Jacko B, Amstutz H, Wurm FM (2004) TubeSpin satellites: a fast track approach for process development with animal cells using shaking technology. Biochem Eng J 17:217–223. doi:10.1016/S1369-703X(03)00180-3

    Article  Google Scholar 

  92. Strnad J, Brinc M, Spudic V, Jelnikar N, Mirnik L, Carman B, Kravanja Z (2010) Optimization of cultivation conditions in spin tubes for Chinese hamster ovary cells producing erythropoietin and the comparison of glycosylation patterns in different cultivation vessels. Biotechnol Prog 26:653–663. doi:10.1002/btpr.390

    Article  CAS  Google Scholar 

  93. Stettler M, Zhang XW, Hacker DL, De Jesus M, Wurm FM (2007) Novel orbital shake bioreactors for transient production of CHO derived IgGs. Biotechnol Prog 23:1340–1346

    Article  CAS  Google Scholar 

  94. Xie QL, Michel P, Baldi L, Hacker D, Zhang XW, Wurm F (2011) TubeSpin bioreactor 50 for the high-density cultivation of Sf-9 insect cells in suspension. Biotechnol Lett 33:897–902. doi:10.1007/s10529-011-0527-6

    Article  CAS  Google Scholar 

  95. Huynh HT, Chan LCL, Tran TTB, Nielsen LK, Reid S (2012) Improving the robustness of a low-cost insect cell medium for baculovirus biopesticides production, via hydrolysate streamlining using a tube bioreactor-based statistical optimization routine. Biotechnol Prog 28:788–802. doi:10.1002/btpr.1529

    Article  CAS  Google Scholar 

  96. Werner S, Eibl R, Lettenbauer C, Roll M, Eibl D, De Jesus M, Zhang XW, Stettler M, Tissot S, Burki C, Broccard G, Kuhner M, Tanner R, Baldi L, Hacker D, Wurm FM (2010) Innovative, non-stirred bioreactors in scales from milliliters up to 1000 liters for suspension cultures of cells using disposable bags and containers—a Swiss contribution. Chimia 64:819–823

    Article  CAS  Google Scholar 

  97. Jia Q, Li H, Hui M, Hui N, Joudi A, Rishton G, Bao L, Shi M, Zhang X, Luanfeng L, Xu J, Leng G (2008) A bioreactor system based on a novel oxygen transfer method. Bioprocess Int 6:66–71

    Google Scholar 

  98. Klockner W, Buchs J (2012) Advances in shaking technologies. Trends Biotechnol 2012(30):307–314. doi:10.1016/j.tibtech.2012.03.001

    Article  Google Scholar 

  99. Buchs J (2001) Introduction to advantages and problems of shaken cultures. Biochem Eng J 7:91–98. doi:10.1016/S1369-703X(00)00106-6

  100. Tissot S, Farhat M, Hacker DL, Anderlei T, Kuhner M, Comninellis C, Wurm F (2010) Determination of a scale-up factor from mixing time studies in orbitally shaken bioreactors. Biochem Eng J 52:181–186. doi:10.1016/j.bej.2010.08.005

    Article  CAS  Google Scholar 

  101. Liu CM, Hong LN (2001) Development of a shaking bioreactor system for animal cell cultures. Biochem Eng J 7:121–125

    Article  CAS  Google Scholar 

  102. Stettler M (2007) Bioreactor processes based on disposable materials for the production of recombinant proteins from mammalien cells. Ph.D.Thesis, École Polytechnique Féde´rale de Lausanne, Lausanne, Switzerland

    Google Scholar 

  103. Broekhuizen N (1999) Simulating motile algae using a mixed Eulerian-Lagrangian approach: does motility promote dinoflagellate persistence or co-existence with diatoms? J Plankton Res 21:1191–1216. doi:10.1093/plankt/21.7.1191

    Article  Google Scholar 

  104. Duetz WA, Witholt B (2004) Oxygen transfer by orbital shaking of square vessels and deepwell microtiter plates of various dimensions. Biochem Eng J 17:181–185. doi:10.1016/S1369-703X(03)00177-3

    Article  CAS  Google Scholar 

  105. Hillig F, Junne S, Neubauer P (2011) Docosahexanoic acid production in the heterotrophic marine microalgae Crypthecodinium cohnii. 1st European congress of applied biotechnology poster presentation

    Google Scholar 

Download references

Acknowledgments

We thank the Bundesministerium für Ernährung, Landwirtschaft und Verbraucherschutz, Bundesanstalt für Landwirtschaft und Ernährung (Project: FENA: Fischmehl- und öl Ersatzstoffe für eine nachhaltige Aquakultur, No.: 511-06.01-28-1-73.026-10) and MareNutrica (Niendorf, Germany) for financial support. Furthermore, we thank the companies CELLution (Assen, The Netherlands), Kuhner (Birsfelden, Switzerland), and ATMI (Hoegaarden, Belgium) for providing the SUBs for experiments, and PreSens (Regensburg, Germany) for donation of the CO2 sensor. Furthermore, we thank Agnieszka Niedziolka, Magda Chmielewska, and Steffi Annemüller for conducting experiments with PFD and TubeSpin bioreactors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan Junne .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Hillig, F., Pilarek, M., Junne, S., Neubauer, P. (2013). Cultivation of Marine Microorganisms in Single-Use Systems. In: Eibl, D., Eibl, R. (eds) Disposable Bioreactors II. Advances in Biochemical Engineering/Biotechnology, vol 138. Springer, Berlin, Heidelberg. https://doi.org/10.1007/10_2013_219

Download citation

Publish with us

Policies and ethics