Skip to main content

pRi-Transformed Plants as a Source of Secondary Metabolites

  • Chapter
  • First Online:
Hairy Roots

Abstract

pRi-transformed plants are obtained from hairy roots by Agrobacterium rhizogenes-mediated transformation. The hairy roots may be an attractive alternative for obtaining material from field-cultivated plants because of their rapid growth and often higher secondary metabolite production. Another value of the hairy roots may be their ability to regenerate whole transgenic plants. These transgenic plants are characterized by morphological changes known as hairy root syndrome. Additionally, the transformed plants also accumulated valuable secondary metabolites at higher levels than nontransformed plants. These alterations are associated mainly with the co-expression of rolA, rolB, and/or rolC genes derived from A. rhizogenes plasmids. Recent interest has grown in the application of pRi-transformed plants as a potentially rich source of pharmaceutically valuable metabolites, especially those which cannot be chemically synthesized. The chapter presents the recent progress made in the production of valuable secondary metabolites by pRi-transformed plants and the limitations associated with it.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Akinboye ES, Bakare O (2011) Biological activities of emetine. Open Nat Prod J 4:8–15

    Article  CAS  Google Scholar 

  • Aldred EM (2009) Chapter 21 – phenols. In: Aldred EM (ed) Pharmacology: a handbook for complementary healthcare professionals. Churchill Livingstone Elsevier, Edinburgh, pp 149–166

    Chapter  Google Scholar 

  • Andarwulan N, Shetty K (1999) Phenolic content in differentiated tissue cultures of untransformed and Agrobacterium-transformed roots of Anise (Pimpinella anisum L.). J Agric Food Chem 47:1776–1780

    Article  CAS  PubMed  Google Scholar 

  • Aoki T, Matsumoto H, Asako Y, Matsunaga Y, Shimomura K (1997) Variation of alkaloid productivity among several clones of hairy roots and regenerated plants of Atropa belladonna transformed with Agrobacterium rhizogenes 15834. Plant Cell Rep 16:282–286

    CAS  PubMed  Google Scholar 

  • Bakkali F, Averbeck S, Averbeck D, Idaomar M (2008) Biological effects of essential oils-a review. Food Chem Toxicol 46:446–475

    Article  CAS  PubMed  Google Scholar 

  • Bassolé IHN, Juliani HR (2012) Essential oils in combination and their antimicrobial properties. Molecules 17:3989–4006

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Beerhues L (2006) Hyperforin. Phytochemistry 67:2201–2207

    Article  CAS  PubMed  Google Scholar 

  • Boros CA, Stermitz FR (1991) Iridoids, an updated review. Part II. J Nat Prod 54:1173–1246

    Article  CAS  Google Scholar 

  • Borovsky D, Thomas BR, Carlson DA, Whisenton LR, Fuchs MS (1985) Juvenile hormone and 20-hydroxyecdysone as primary and secondary stimuli of vitellogenesis in Aedes aegypti. Arch Insec Biochem Physiol 2:75–90

    Article  CAS  Google Scholar 

  • Butterweck V, Petereit F, Winterhoff H, Nahrstedt A (1998) Solubilized hypericin and pseudohypericin from Hypericum perforatum exert antidepressant activity in the forced swimming test. Planta Med 64:291–294

    Article  CAS  PubMed  Google Scholar 

  • Celma CR, Palazón J, Cusidó RM, Piñol MT, Keil M (2001) Decreased scopolamine yield infield-grown Duboisia plants regenerated from hairy roots. Planta Med 67:249–253

    Article  CAS  Google Scholar 

  • Chae SC, Chung S-O, Park SU (2013) Influence of cytokinins and auxins on plant regeneration from hairy roots of Rehmannia elata. Life Sci J 10:1171–1174

    Google Scholar 

  • Chaudhuri KN, Ghosh B, Tepfer D, Jha S (2006) Spontaneous plant regeneration in transformed roots and calli from Tylophora indica: changes in morphological phenotype and tylophorine accumulation associated with transformation by Agrobacterium rhizogenes. Plant Cell Rep 25:1059–1066

    Article  CAS  PubMed  Google Scholar 

  • Chaudhuri K, Das S, Bandyopadhyay M, Zalar A, Kollmann A, Jha S, Tepfer D (2009) Transgenic mimicry of pathogen attack stimulates growth and secondary metabolite accumulation. Transgenic Res 18:121–134

    Article  CAS  PubMed  Google Scholar 

  • Choi PS, Kim YD, Choi KM, Chung HJ, Choi DW, Liu JR (2004) Plant regeneration from hairy-root cultures transformed by infection with Agrobacterium rhizogenes in Catharanthus roseus. Plant Cell Rep 22:828–831

    Article  CAS  PubMed  Google Scholar 

  • Christensen B, Sriskandarajah S, Serek M, Müller R (2008) Transformation of Kalanchoe blossfeldiana with rol-genes is useful in molecular breeding towards compact growth. Plant Cell Rep 27:1485–1495

    Article  CAS  PubMed  Google Scholar 

  • Christey MC (2001) Use of Ri-mediated transformation for production of transgenic plants. In Vitro Cell Dev Biol-Plant 37:687–700

    Article  CAS  Google Scholar 

  • Christmann J, Kreis W, Reinhard E (1993) Uptake, transport and storage of cardenolides in foxglove. Cardenolide sinks and occurrence of cardenolides in the sieve tubes of Digitalis lanata. Bot Acta 106:419–427

    Article  CAS  Google Scholar 

  • Clifford MN (1999) Appendix I. A nomenclature for phenols with special reference to tea. CRC Press LLC: Boca Raton, Florida 41, S5, Washington, DC 11/1999, pp 393–397

    Google Scholar 

  • Cornforth JW (1970) The chiral methyl group-its biochemical significance. Chem Britain 6:431–435

    CAS  Google Scholar 

  • Croteau R, Kutchan TM, Lewis NG (2000) Natural products (secondary metabolites). In: Buchanan B, Gruissem W, Jones R (eds) Biochemistry and molecular biology of plants, 2nd edn. American Society of Plant Biologists/Wiley Blackwell, Chichester, pp 1250–1318

    Google Scholar 

  • Didry N, Dubrevil L, Pinkas M (1994) Activity of anthraquinonic and naphthoquinonic compounds on oral bacteria. Pharmazie 49:681–683

    CAS  PubMed  Google Scholar 

  • Dinan L (2001) Phytoecdysteroids: biological aspects. Phytochemistry 57:325–339

    Article  CAS  PubMed  Google Scholar 

  • Dinda B, Debnath S, Harigaya Y (2007) Naturally occurring iridoids. A review, part 1. Chem Pharm Bull 55:159–222

    Article  CAS  Google Scholar 

  • Fischhof PK, Möslinger-Gehmayr R, Herrmann WM, Friedmann A, Ruβmann DL (1996) Therapeutic efficacy of vincamine in dementia. Neuropsychobiology 34:29–35

    Article  CAS  PubMed  Google Scholar 

  • Foderaro TA, Stermitz FR, Hope H (1992) (5αH)-6-epidihydrocornin, the first known iridoid glycosides with a trans-fused ring system. Tetrahedron Lett 33:2953–2954

    Article  CAS  Google Scholar 

  • Fossati E, Narcross L, Ekins A, Falgueyret JP, Martin VJJ (2015) Synthesis of morphinan alkaloids in Saccharomyces cerevisiae. PLoS One 10:e0124459. https://doi.org/10.1371/journal.pone.0124459

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gallo MBC, Beltrame FL, Vieira PC, Cass QB, Fernandes JB, da Silva MFGF (2006) Quantitative determination of 20-hydroxyecdysone in methanolic extract of twigs from Vitex polygama. Cham J Chromatogr B 832:36–40

    Article  CAS  Google Scholar 

  • Gamborg OL, Miller RA, Ojima K (1968) Nutrient requirements of suspension cultures of soybean root cells. Exp Cell Res 50:151–158

    Article  CAS  PubMed  Google Scholar 

  • Gangopadhyay M, Chakraborty D, Bhattacharyya S, Bhattacharya S (2010) Regeneration of transformed plants from hairy roots of Plumbago indica. Plant Cell Tissue Organ Cult 102:109–114

    Article  Google Scholar 

  • Garcia RMA, de Oliveira LO, Moreira MA, Silva Barros W (2005) Variation in emetine and cephaeline contents in roots of wild ipecac (Psychotria ipecacuanha). Biochem Syst Ecol 33:233–243

    Article  CAS  Google Scholar 

  • Ghisalberti EL (1998) Biological and pharmacological activity of naturally occurring iridoids and secoiridoids. Phytomedicine 5:147–163

    Article  CAS  PubMed  Google Scholar 

  • Guirimand G, Courdavault V, St-Pierre B, Burlat V (2010) Biosynthesis and regulation of alkaloids. In: Pua EC, Davey MR (eds) Plant developmental biology-biotechnological perspectives, vol 2. Springer-Verlag, Berlin Heidelberg

    Google Scholar 

  • Gunjan SK, Lutz J, Bushong A, Rogers DT, Littleton J (2013) Hairy root cultures and plant regeneration in Solidago nemoralis transformed with Agrobacterium rhizogenes. Am J Plant Sci 4:1675–1678

    Article  CAS  Google Scholar 

  • Habibi P, Grossi de Sa MF, Lopes da Silva AL, Makhzoum A, da Luz CJ, Borghetti IA, Soccol CR (2016) Efficient genetic transformation and regeneration system from hairy root of Origanum vulgare. Physiol Mol Biol Plants 22:271–277

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Han XL, Bu HY, Hao JG, Zhao YW, Jia JF (2006) Hairy root induction and plant regeneration of crownvetch (Coronilla varia L.) transformed by Agrobacterium rhizogenes. Sheng Wu Gong Cheng Xue Bao 22:107–113

    PubMed  Google Scholar 

  • Hao DC, Gu X-J, Xiao PG (2015) 9 – chemical and biological research of Clematis medicinal resources. In: Medicinal plants chemistry, biology and omics. Elsevier, Amsterdam, pp 341–371

    Google Scholar 

  • Hayashi T (1996) XXII Scoparia dulcis L. (Sweet Broomweed): In vitro culture and the production of diterpenoids and other secondary metabolites. In: Bajaj YPS (ed) Biotechnology in agriculture and forestry, vol 37. Medicinal and aromatic plants IX, Springer-Verlag, Berlin Heidelberg GmbH, pp 370–383

    Google Scholar 

  • Hazra B, Sarkar R, Bhattacharya S, Ghosh PK, Chel G, Dinda B (2008) Synthesis of plumbagin derivatives and their inhibitory activities against Ehrlich ascites carcinoma and Leishmania donovani promastigotes in vitro. Phytother Res 16:133–137

    Article  CAS  Google Scholar 

  • Herrmann K (1989) Occurrence and content of hydroxycinnamic and hydroxybenzoic acid compounds in foods. Crit Rev Food Sci Nutr 28:315–347

    Article  CAS  PubMed  Google Scholar 

  • Hollman PCH, Arts ICW (2000) Flavonols, flavones and flavanols-nature. Occurrence and dietary burden. J Sci Food Agric 80:1081–1093

    Article  CAS  Google Scholar 

  • Hwang SJ (2006) Plant regeneration from hairy root of Rehmannia glutinosa Liboschitz transformed by Agrobacterium rhizogenes. Korean J Med Crop Sci 14:31–35

    Google Scholar 

  • Jacob A, Malpathak N (2005) Plantlet regeneration enhances solasodine productivity in hairy root cultures of Solanum khasianum Clarke. In Vitro Cell Dev Biol Plant 41:291–295

    Article  CAS  Google Scholar 

  • Janković T, Krstić D, Savikin-Fodulović K, Menković N, Grubisić D (2002) Xanthones and secoiridoids from hairy root cultures of Centaurium erythraea and C. pulchellum. Planta Med 68:944–946

    Article  PubMed  Google Scholar 

  • Jensen KIN, Gaul SO, Specht EG, Doohan DJ (1995) Hypericin content of Nova Scotia biotypes of Hypericum perforatum L. Can J Plant Sci 75:923–926

    Article  CAS  Google Scholar 

  • Kakhia TI (2012) Alkaloids and alkaloids plants. Industry Joint Research Center. Adana University, Turkey. http://www.pdfdrive.net/alkaloids-alkaloids-plants-tarek-ismail-kakhia-e8072664.html. Accessed 20 May 2018

  • Kamble S, Gopalakrishnan R, Eapen S (2011) Production of camptothecin by hairy roots and regenerated transformed shoots of Ophiorrhiza rugosa var. decumbens. Nat Prod Res 25:1762–1765

    Article  CAS  PubMed  Google Scholar 

  • Kang HJ, Anbazhagan VR, You XL, Moon HK, Yil JS, Choi YE (2006) Production of transgenic Aralia elata regenerated from Agrobacterium rhizogenes-mediated transformed roots. Plant Cell Tissue Organ Cult 85:187–196

    Article  CAS  Google Scholar 

  • Kim J-A, Kim Y-S, Choi Y-E (2011) Triterpenoid production and phenotypic changes in hairy roots of Codonopsis lanceolata and the plants regenerated from them. Plant Biotechnol Rep 5:255–263

    Article  Google Scholar 

  • Kim YS, Kim YK, Xu H, Uddin MR, Park NI, Kim HH, Chae SC, Park SU (2012) Improvement of ornamental characteristics in Rehmannia elata through Agrobacterium rhizogenes-mediated transformation. POJ 5:376–380

    Google Scholar 

  • Koga M, Hirashima K, Nakahara T (2000) The transformation system in foxglove (Digitalis purpurea L.) using Agrobacterium rhizogenes and traits of the regenerants. Plant Biotechnol 17:99–104

    Article  CAS  Google Scholar 

  • Kubo I, Klocke JA, Asano S (1983) Effects of ingested phytoecdysteroids on the growth and development of two lepidopterous larvae. J Insect Physiol 29:307–316

    Article  CAS  Google Scholar 

  • Kuo PL, Hsu YL, Cho CY (2006) Plumbagin induces G2-M arrest and autophagy by inhibiting the AKT/mammalian target of rapamycin pathway in breast cancer cells. Mol Cancer Ther 5:3209–3221

    Article  CAS  PubMed  Google Scholar 

  • Lee KT, Choi J, Jung WT, Nam JH, Jung HJ, Park HJ (2002) Structure of a new echinocystic acid bisdesmoside isolated from Codonopsis lanceolata roots and the cytotoxic activity of prosapogenins. J Agric Food Chem 50:4190–4193

    Article  CAS  PubMed  Google Scholar 

  • Lioshina LG, Bulko OV (2014) Plant regeneration from hairy roots and calluses of periwinkle Vinca minor L. and foxglove purple Digitalis purpurea L. Cytol Genet 48:302–307

    Article  Google Scholar 

  • Lloyd G, McCown B (1980) Commercially-feasible micropropagation of mountain laurel, Kalmia latifolia by use of shoot-tip culture. Int Plant Prop Soc 30:421–427

    Google Scholar 

  • Majumdar S, Garai S, Jha S (2011) Genetic transformation of Bacopa monnieri by wild type strains of Agrobacterium rhizogenes stimulates production of bacopa saponins in transformed calli and plants. Plant Cell Rep 30:941–954

    Article  CAS  PubMed  Google Scholar 

  • Mathew AJ, Jayachandran K (2009) Production of scopadulcic acid B from Scoparia dulcis Linn. Using a Luffa sponge bioreactor. Plant Cell Tissue Organ Cult 98:197–203

    Article  CAS  Google Scholar 

  • Mehrotra S, Goel MK, Rahman LU, Kukreja AK (2013) Molecular and chemical characterization of plants regenerated from Ri-mediated hairy root cultures of Rauwolfia serpentina. Plant Cell Tissue Organ Cult 114:31–38

    Article  CAS  Google Scholar 

  • Mei WY, Wang JB, Luo D, Jia JF (2001) Regeneration of plants from callus cultures of roots induced by Agrobacterium rhizogenes on Alhagi pseudalhagi. Cell Res 11:279–284

    Article  Google Scholar 

  • Meruelo D, Lavie G, Lavie D (1988) Therapeutic agents with dramatic antiretroviral activity and little toxicity and effective doses, aromatic polycyclic diones hypericin and pseudohypericin. Proc Natl Acad Sci U S A 85:5230–5234

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Molyneux RJ, Pan YT, Goldmann A, Tepfer DA, Elbein AD (1993) Calystegins, a novel class of alkaloid glycosidase inhibitors. Arch Biochem Biophys 304:81–88

    Article  CAS  PubMed  Google Scholar 

  • Murashige T, Skoog FA (1962) Revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Ohara A, Akasaka Y, Daimon H, Mii M (2000) Plant regeneration from hairy roots induced by infection with Agrobacterium rhizogenes in Crotalaria juncea L. Plant Cell Rep 19:563–568

    Article  CAS  PubMed  Google Scholar 

  • Ohara A, Daimon H, Momota Y, Chin DP, Mii M (2012) Plant regeneration from Crotalaria spectabilis hairy roots which showed inhibited growth of root-knot nematodes (Meloidogyne hapla and M. incognita) in vitro. Plant Biotechnol 29:425–430

    Article  CAS  Google Scholar 

  • Oksman-Caldentey K-M, Kivelä O, Hiltunen R (1991) Spontaneous shoot organogenesis and plant regeneration from hairy root cultures of Hyoscyamus muticus. Plant Sci 78:129–136

    Article  CAS  Google Scholar 

  • Palazón J, Navarro-Ocaña A, Hernandez-Vazquez L, Mirjalili MH (2008) Application of metabolic engineering to the production of scopolamine. Molecules 13:1722–1742

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pawlicki-Jullian N, Sedira M, Welander M (2002) The use of Agrobacterium rhizogenes transformed roots to obtain transgenic shoots of the apple rootstock Jork 9. Plant Cell Tissue Organ Cult 70:163–171

    Article  CAS  Google Scholar 

  • Pellegrineschi A, Damon JP, Valtorta N, Paillard N, Tepfer D (1994) Improvement of ornamental characters and fragrance production in lemon scented geranium through genetic transformation by Agrobacterium rhizogenes. Nat Biotechnol 12:64–68

    Article  CAS  Google Scholar 

  • Peres LEP, Morgante PG, Vecchi C, Kraus JE, van Sluys M-A (2001) Shoot regeneration capacity from roots and transgenic hairy roots of tomato cultivars and wild related species. Plant Cell Tissue Organ Cult 65:37–44

    Article  CAS  Google Scholar 

  • Piątczak E, Wysokińska H (2013) Encapsulation of Centaurium erythraea Rafn-en efficient method for regeneration of transgenic plants. Acta Biol Cracov Ser Bot 55(2):37–44

    Google Scholar 

  • Piątczak E, Królicka A, Wysokinska H (2006) Genetic transformation of Centaurium erythraea Rafn by Agrobacterium rhizogenes and the production of secoiridoids. Plant Cell Rep 25:1308–1315

    Article  PubMed  CAS  Google Scholar 

  • Piątczak E, Kuźma Ł, Skała E, Żebrowska M, Balcerczak E, Wysokińska H (2015) Iridoid and phenylethanoid glycoside production and phenotypical changes in plants regenerated from hairy roots of Rehmannia glutinosa Libosch. Plant Cell Tissue Organ Cult 122:259–266

    Article  CAS  Google Scholar 

  • Piispanen R, Aronen T, Chen X, Saranpää P, Häggman H (2003) Silver birch (Betula pendula) plants with aux and rol genes show consistent changes in morphology, xylem structure and chemistry. Tree Physiol 23:721–733

    Article  CAS  PubMed  Google Scholar 

  • Pradel H, Dumke-Lehmann U, Diettrich B, Luckner M (1997) Hairy root cultures of Digitalis lanata. Secondary metabolism and plant regeneration. J Plant Physiol 151:209–215

    Article  CAS  Google Scholar 

  • Ramesha BT, Zuehlke S, Vijaya RC, Priti V, Ravikanth G, Ganeshaiah KN, Spiteller M, Shaanker RU (2011) Sequestration of camptothecin, an anticancer alkaloid, by chrysomelid beetles. J Chem Ecol 37:533–536

    Article  CAS  PubMed  Google Scholar 

  • Robbins RJ (2003) Phenolic acids in foods: an overview of analytical methodology. J Agric Food Chem 51:2866–2887

    Article  CAS  PubMed  Google Scholar 

  • Roychowdhury D, Ghosh B, Chaubey B, Jha S (2013) Genetic and morphological stability of six-year-old transgenic Tylophora indica plants. Nucleus 56:81–89

    Article  Google Scholar 

  • Roychowdhury D, Chaubey B, Jha S (2015) The fate of integrated Ri T-DNA rol genes during regeneration via somatic embryogenesis in Tylophora indica. J Bot 707831:1–16

    Google Scholar 

  • Saxena G, Banerjee S, Rahman L, Verma PC, Mallavarapu GR, Kumar S (2007) Rose-scented geranium (Pelargonium sp.) generated by Agrobacterium rhizogenes mediated Ri-insertion for improved essential oil quality. Plant Cell Tissue Organ Cult 90:215–223

    Article  CAS  Google Scholar 

  • Saxena M, Saxena J, Nema R, Singh D, Gupta A (2013) Phytochemistry of medicinal plants. J Pharmacogn Phytochem 1:168–182

    Google Scholar 

  • Seigler DS (1998) 8-Phenylpropanoids. Plant secondary metabolism. Springer, New York, pp 106–129

    Book  Google Scholar 

  • Sevón N, Dräger B, Hiltunen R, Oksman-Caldentey KM (1997) Characterization of transgenic plants derived from hairy roots of Hyoscyamus muticus. Plant Cell Rep 16:605–611

    Article  PubMed  Google Scholar 

  • Sharafi A, Sohi HH, Azadi P, Sharafi AA (2014) Hairy root induction and plant regeneration of medicinal plant Dracocephalum kotschyi. Physiol Mol Biol Plants 20:257–262

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shi H-P, Long Y-Y, Sun T-S, Tsang PKE (2011) Induction of hairy roots and plant regeneration from the medicinal plant Pogostemon cablin. Plant Cell Tissue Organ Cult 107:251–260

    Article  CAS  Google Scholar 

  • Šiler B, Mišić D (2016) Biologically active compounds from the genus Centaurium S.I. (Gentianaceae): current knowledge and future prospects in medicine. In: Rahman A (ed) Studies in natural products chemistry, vol 49, chapter 11. Elsevier Science Publishers, Amsterdam. https://doi.org/10.1016/B978-0-444-63601-0.00011-9

    Chapter  Google Scholar 

  • Steinhäuser B (1986) Vincamine in cerebrovascular insufficiency. Occupational medicine approaches in cerebral diseases. Fortschr Med 104:23–26

    PubMed  Google Scholar 

  • Tanaka N, Matsumoto T (1993) Regenerants from Ajuga hairy roots with high productivity of 20-hydroxyecdysone. Plant Cell Rep 13:87–90

    Article  CAS  PubMed  Google Scholar 

  • Tanaka N, Takao M, Matsumoto T (1995) Vincamine production in multiple shoot culture derived from hairy roots of Vinca minor. Plant Cell Tissue Organ Cult 41:61–64

    Article  CAS  Google Scholar 

  • Taskova R, Ljubka Evstatieva L, Handjieva N, Popov S (2002) Iridoid patterns of genus Plantago L. and their systematic significance. Z Naturforsch 57c:42–50

    Article  Google Scholar 

  • Thakkar A, Ray S (2014) Certain medicinal plants of Solanaceae and their alkaloids screening. Int Res J Med Sci 2:4–6

    Article  Google Scholar 

  • Thiem B, Kikowska M, Malinowski MP, Kruszka D, Napierała M, Florek E (2017) Ecdysteroids: production in plant in vitro cultures. Phytochem Rev 16:603–622

    Article  CAS  PubMed  Google Scholar 

  • Tietze LF (1983) Secologanin, a biogenetic key compound- synthesis and biogenesis of the iridoid and secoiridoid glycosides. Angew Chem 22:828–841

    Article  Google Scholar 

  • Tusevski O, Petreska Stanoeva J, Stefova M, Pavokovic D, Gadzovska Simic S (2014) Identification and quantification of phenolic compounds in Hypericum perforatum L. transgenic shoots. Acta Physiol Plant 36:2555–2569

    Article  CAS  Google Scholar 

  • van der Vijver LM (1974) Distribution of plumbagin in the Plumbaginaceae. Phytochemistry 11:3247–3248

    Article  Google Scholar 

  • Wang JW, Wu JY (2010) Tanshinone biosynthesis in Salvia miltiorrhiza and production in plant tissue cultures. Appl Microbiol Biotechnol 88:437–449

    Article  CAS  PubMed  Google Scholar 

  • Wang QJ, Zheng LP, Yuan HY, Wang JW (2013) Propagation of Salvia miltiorrhiza from hairy root explants via somatic embryogenesis and tanshinone content in obtained plants. Ind Crop Prod 50:648–653

    Article  CAS  Google Scholar 

  • Watase I, Sudo H, Yamazaki M, Saito K (2004) Regeneration of transformed Ophiorrhiza pumila plants producing campthothecin. Plant Biotechnol 21:337–342

    Article  CAS  Google Scholar 

  • Wu WL, Chang WL, Chen CF (1991) Cytotoxic activities of tanshinones against human carcinoma cell lines. Am J Chin Med 19:207–216

    Article  PubMed  Google Scholar 

  • Wu HJ, Wang XX, Li Y, Zhang DG, Zhang B, Wang XY (2011) Propagation of Gentiana macrophylla (Pall) from hairy root explants via indirect somatic embryogenesis and gentiopicroside content in obtained plants. Acta Physiol Plant 33:2229–2237

    Article  CAS  Google Scholar 

  • Xing L, Tan Z-R, Cheng J-L, Huang W-H, Zhang W, Deng W, Yuan C-S, Zhou H-H (2017) Bioavailability and pharmacokinetic comparison of tanshinones between two formulations of Salvia miltiorrhiza in healthy volunteers. Sci Rep 7:4709. https://doi.org/10.1038/s41598-017-02747-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu H, Zhou X, Lu J, Wang J, Wang X (2006) Hairy roots induced by Agrobacterium rhizogenes and production of regenerative plants in hairy root cultures in maize. Sci China Ser C49:305–310

    Article  CAS  Google Scholar 

  • Xu LP, Wang H, Yuan Z (2008) Triterpenoid saponins with antiinflammatory activity from Codonopsis lanceolata. Planta Med 74:1412–1415

    Article  CAS  PubMed  Google Scholar 

  • Yamane H, Konno K, Sabelis M, Takabayashi J, Sassa T, Oikawa H (2010) 4.08-Chemical defence and toxins of plants. In: Reedijk J, Kakeya H, Lammertsma K, Marquardt R, Morbidelli M, Nakai H, Natile G, Poole C, Quack M, Rissanen K, Wandelt K (eds) Reference module in chemistry, molecular sciences and chemical engineering, Comprehensive natural products II, Chemistry and biology, vol 4 Chemical ecology, pp 339–385. https://doi.org/10.1016/B978-008045382-8.00099-X

    Chapter  Google Scholar 

  • Yamazaki M, Son L, Hayashi T, Morita N, Asamizu T, Mourakshi T, Saito K (1996) Transgenic fertile Scoparia dulcis L., a folk medicinal plant, conferred with a herbicide-resistant trait using an Ri binary vector. Plant Cell Rep 15:317–321

    Article  CAS  PubMed  Google Scholar 

  • Yang D-C, Choi Y-E (2000) Production of transgenic plants via Agrobacterium rhizogenes-mediated transformation of Panax ginseng. Plant Cell Rep 19:491–496

    Article  CAS  PubMed  Google Scholar 

  • Yang YJ, Kim YJ, Yang YK, Kim JY, Kwon O (2012) Dietary flavan-3-ols intake and metabolic syndrome risk in Korean adults. Nutr Res Pract 6:68–77

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yarnell E (2007) Triterpenoid and steroidal saponins. Chapter 11-Plant chemistry in veterinary medicine: medicinal constituents and their mechanisms of action. In: Wynn SG, Fougére BJ (eds) Veterinary herbal medicine. Mosby Inc./Missouri, Elsevier Inc, St. Louis, pp 159–182

    Chapter  Google Scholar 

  • Yoshimatsu K, Shimomura K (1992) Transformation of opium poppy (Papaver somniferum L.) with Agrobacterium rhizogenes MAFF 03-01724. Plant Cell Rep 11:132–136

    Article  CAS  PubMed  Google Scholar 

  • Yoshimatsu K, Shimomura K, Yamazaki M, Saito K, Kiuchi F (2003) Transformation of ipecac (Cephaelis ipecacuanha) with Agrobacterium rhizogenes. Planta Med 69:1018–1023

    Article  CAS  PubMed  Google Scholar 

  • Yoshimatsu K, Sudo H, Kamada H, Kiuchi F, Kikuchi Y, Sawada J-I, Koichiro Shimomura K (2004) Tropane alkaloid production and shoot regeneration in hairy and adventitious root cultures of Duboisia myoporoides-D. leichhardtii hybryd. Biol Pharm Bull 27:1261–1265

    Article  CAS  PubMed  Google Scholar 

  • Zhang RX, Li MX, Jia ZP (2008) Rehmannia glutinosa: review of botany, chemistry and pharmacology. J Ethnopharmacol 117:363–367

    Google Scholar 

  • Zhou YQ, Niu JY, Hao RW, Lin X, Jia JF, Hao JG, Lu LD (2007) Hairy root induction and plant regeneration of Rehmannia glutinosa Libosch. f. hueichingensis (Chao et Schih) Hsiao transformed by Agrobacterium rhizogenes. Fen Zi Xi Bao Sheng Wu Xue Bao 40:223–231

    CAS  PubMed  Google Scholar 

  • Zhou YQ, Duan HY, Zhou CE, Li JJ, Gu FP, Wang F, Zhang ZY, Gao ZM (2009) Hairy root induction and plant regeneration of Rehmannia glutinosa Libosch. f. hueichingensis Hsiao via Agrobacterium rhizogenes-mediated transformation. Russ J Plant Physiol 56:224–231

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ewelina Piątczak .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Piątczak, E., Grąbkowska, R., Skała, E. (2018). pRi-Transformed Plants as a Source of Secondary Metabolites. In: Srivastava, V., Mehrotra, S., Mishra, S. (eds) Hairy Roots. Springer, Singapore. https://doi.org/10.1007/978-981-13-2562-5_3

Download citation

Publish with us

Policies and ethics