Skip to main content

A Rat Model of Surgical Brain Injury

  • Chapter
  • First Online:
Animal Models of Acute Neurological Injury

Abstract

The rat model of surgical brain injury (SBI) mimics deleterious sequelae resulting from the unavoidable damage to healthy tissue during many neurosurgical procedures, such as peri-operative hemorrhage, brain edema, and neuroinflammation. The SBI model is ideal for evaluating pre-conditioning, pre-treatment, and peri-operative therapies. The SBI model is characterized by partial frontal lobe resection. First, a 5 × 5 mm cranial window in the right frontal bone is made to expose the underlying brain tissue. Next, partial resection of the frontal lobe is performed along margins of the bone window which is followed by saline irrigation and intraoperative packing to ensure complete hemostasis. The total time for completion of the SBI surgery in a rat is 30–40 min. The partial resection of frontal lobe results in contralateral sensorimotor deficits and anxiety-like behavior in rats. Neurological tests to evaluate anxiety-related behavior in SBI rats have been described in this chapter and are recommended for studies using the SBI rat model. The elevated plus maze test and open field test showed greater sensitivity than the forced swim test to detect anxiety-like behavior in rats after SBI. The rat model of SBI allows for investigation of therapeutics that target SBI-induced complications including intraoperative hemorrhage, post-operative hematoma, brain edema, blood brain barrier disruption, neuroinflammation, cell death and oxidative stress which are also briefly described in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Dautremont JF, et al. Cost-effectiveness analysis of a postoperative clinical care pathway in head and neck surgery with microvascular reconstruction. J Otolaryngol Head Neck Surg. 2013;42:59.

    Article  Google Scholar 

  2. Andrews RJ, Muto RP. Retraction brain ischaemia: cerebral blood flow, evoked potentials, hypotension and hyperventilation in a new animal model. Neurol Res. 1992;14:12–8.

    Article  CAS  Google Scholar 

  3. Deletis V, Sala F. The role of intraoperative neurophysiology in the protection or documentation of surgically induced injury to the spinal cord. Ann N Y Acad Sci. 2001;939:137–44.

    Article  Google Scholar 

  4. Hellwig D, Bertalanffy H, Bauer BL, Tirakotai W. Pontine hemorrhage. J Neurosurg. 2003;99:796; author reply: 796–7.

    PubMed  Google Scholar 

  5. Jadhav V, Solaroglu I, Obenaus A, Zhang JH. Neuroprotection against surgically induced brain injury. Surg Neurol. 2007;67:15–20; discussion 20.

    Article  Google Scholar 

  6. Borshchagovskii ML, Dubikaitis IuV. [Clinico-electroencephalographic characteristics of the condition of brain stem systems following surgical and non-surgical brain injury]. Zhurnal nevropatologii i psikhiatrii imeni S.S. Korsakova. 1976;76:337–344.

    Google Scholar 

  7. Eckermann JM, et al. Hydrogen is neuroprotective against surgically induced brain injury. Med Gas Res. 2011;1:7.

    Article  CAS  Google Scholar 

  8. Frontczak-Baniewicz M, Walski M. New vessel formation after surgical brain injury in the rat’s cerebral cortex I. Formation of the blood vessels proximally to the surgical injury. Acta Neurobiol Exp. 2003;63:65–75.

    Google Scholar 

  9. Jadhav V, Zhang JH. Surgical brain injury: prevention is better than cure. Front Biosci. 2008;13:3793–7.

    Article  Google Scholar 

  10. Sherchan P, Kim CH, Zhang JH. Surgical brain injury and edema prevention. Acta Neurochir Suppl. 2013;118:129–33.

    PubMed  Google Scholar 

  11. McBride DW, Wang YC, Sherchan P, Tang JP, Zhang JH. Correlation between subacute sensorimotor deficits and brain water content after surgical brain injury in rats. Behav Brain Res. 2015;290:161–71.

    Article  Google Scholar 

  12. Frumberg DB, Fernando MS, Lee DE, Biegon A, Schiffer WK. Metabolic and behavioral deficits following a routine surgical procedure in rats. Brain Res. 2007;1144:209–18.

    Article  CAS  Google Scholar 

  13. Lee DH, et al. Reproducible and persistent weakness in adult rats after surgical resection of motor cortex: evaluation with limb placement test. Childs Nerv Syst. 2009;25:1547–53.

    Article  Google Scholar 

  14. Frontczak-Baniewicz M, et al. Morphological evidence of the beneficial role of immune system cells in a rat model of surgical brain injury. Folia Neuropathol. 2013;51:324–32.

    Article  CAS  Google Scholar 

  15. Frontczak-Baniewicz M, Walski M, Madejska G, Sulejczak D. MMP2 and MMP9 in immature endothelial cells following surgical injury of rat cerebral cortex—a preliminary study. Folia Neuropathol. 2009;47:338–46.

    CAS  PubMed  Google Scholar 

  16. Frontczak-Baniewicz M, Walski M, Sulejczak D. Diversity of immunophenotypes of endothelial cells participating in new vessel formation following surgical rat brain injury. J Physiol Pharmacol. 2007;58(Suppl 5):193–203.

    PubMed  Google Scholar 

  17. Sulejczak D, Grieb P, Walski M, Frontczak-Baniewicz M. Apoptotic death of cortical neurons following surgical brain injury. Folia Neuropathol. 2008;46:213–9.

    PubMed  Google Scholar 

  18. Ayer RE, et al. Preoperative mucosal tolerance to brain antigens and a neuroprotective immune response following surgical brain injury. J Neurosurg. 2012;116:246–53.

    Article  CAS  Google Scholar 

  19. Bravo TP, et al. Role of histamine in brain protection in surgical brain injury in mice. Brain Res. 2008;1205:100–7.

    Article  CAS  Google Scholar 

  20. Jadhav V, et al. Hyperbaric oxygen preconditioning reduces postoperative brain edema and improves neurological outcomes after surgical brain injury. Acta Neurochir Suppl. 2010;106:217–20.

    Article  Google Scholar 

  21. Jadhav V, et al. Cyclo-oxygenase-2 mediates hyperbaric oxygen preconditioning-induced neuroprotection in the mouse model of surgical brain injury. Stroke. 2009;40:3139–42.

    Article  CAS  Google Scholar 

  22. Jafarian N, et al. Mucosal tolerance to brain antigens preserves endogenous TGFbeta-1 and improves neurological outcomes following experimental craniotomy. Acta Neurochir Suppl. 2011;111:283–7.

    Article  CAS  Google Scholar 

  23. Zheng Y, et al. An experimental study on thymus immune tolerance to treat surgical brain injury. Chin Med J. 2014;127:685–90.

    CAS  PubMed  Google Scholar 

  24. Frontczak-Baniewicz M, Chrapusta SJ, Sulejczak D. Long-term consequences of surgical brain injury—characteristics of the neurovascular unit and formation and demise of the glial scar in a rat model. Folia Neuropathol. 2011;49:204–18.

    PubMed  Google Scholar 

  25. Xu FF, et al. Effects of progesterone vs. dexamethasone on brain oedema and inflammatory responses following experimental brain resection. Brain Inj. 2014;28:1594–601.

    Article  Google Scholar 

  26. Benggon M, Chen H, Applegate R, Martin R, Zhang JH. Effect of dexmedetomidine on brain edema and neurological outcomes in surgical brain injury in rats. Anesth Analg. 2012;115:154–9.

    Article  CAS  Google Scholar 

  27. Di F, et al. Role of aminoguanidine in brain protection in surgical brain injury in rat. Neurosci Lett. 2008;448:204–7.

    Article  Google Scholar 

  28. Hao W, Wu XQ, Xu RT. The molecular mechanism of aminoguanidine-mediated reduction on the brain edema after surgical brain injury in rats. Brain Res. 2009;1282:156–61.

    Article  CAS  Google Scholar 

  29. Hyong A, et al. Rosiglitazone, a PPAR gamma agonist, attenuates inflammation after surgical brain injury in rodents. Brain Res. 2008;1215:218–24.

    Article  CAS  Google Scholar 

  30. Jadhav V, Matchett G, Hsu FP, Zhang JH. Inhibition of Src tyrosine kinase and effect on outcomes in a new in vivo model of surgically induced brain injury. J Neurosurg. 2007;106:680–6.

    Article  CAS  Google Scholar 

  31. Jadhav V, Yamaguchi M, Obenaus A, Zhang JH. Matrix metalloproteinase inhibition attenuates brain edema after surgical brain injury. Acta Neurochir Suppl. 2008;102:357–61.

    Article  Google Scholar 

  32. Khatibi NH, et al. Prostaglandin E2 EP1 receptor inhibition fails to provide neuroprotection in surgically induced brain-injured mice. Acta Neurochir Suppl. 2011;111:277–81.

    Article  Google Scholar 

  33. Lee S, et al. The antioxidant effects of melatonin in surgical brain injury in rats. Acta Neurochir Suppl. 2008;102:367–71.

    Article  Google Scholar 

  34. Lo W, et al. NADPH oxidase inhibition improves neurological outcomes in surgically-induced brain injury. Neurosci Lett. 2007;414:228–32.

    Article  CAS  Google Scholar 

  35. Manaenko A, et al. PAR-1 antagonist SCH79797 ameliorates apoptosis following surgical brain injury through inhibition of ASK1-JNK in rats. Neurobiol Dis. 2013;50:13–20.

    Article  CAS  Google Scholar 

  36. Westra D, Chen W, Tsuchiyama R, Colohan A, Zhang JH. Pretreatment with normobaric and hyperbaric oxygenation worsens cerebral edema and neurologic outcomes in a murine model of surgically induced brain injury. Acta Neurochir Suppl. 2011;111:243–51.

    Article  Google Scholar 

  37. Yamaguchi M, Jadhav V, Obenaus A, Colohan A, Zhang JH. Matrix metalloproteinase inhibition attenuates brain edema in an in vivo model of surgically-induced brain injury. Neurosurgery. 2007;61:1067–75; discussion 1075–6.

    Article  Google Scholar 

  38. Fan D, et al. The protective mechanism for the blood-brain barrier induced by aminoguanidine in surgical brain injury in rats. Cell Mol Neurobiol. 2011;31:1213–9.

    Article  Google Scholar 

  39. Asahi M, Asahi K, Wang X, Lo EH. Reduction of tissue plasminogen activator-induced hemorrhage and brain injury by free radical spin trapping after embolic focal cerebral ischemia in rats. J Cereb Blood Flow Metab. 2000;20:452–7.

    Article  CAS  Google Scholar 

  40. Choudhri TF, Hoh BL, Solomon RA, Connolly ES Jr, Pinsky DJ. Use of a spectrophotometric hemoglobin assay to objectively quantify intracerebral hemorrhage in mice. Stroke. 1997;28:2296–302.

    Article  CAS  Google Scholar 

  41. Tang JP, et al. MMP-9 deficiency enhances collagenase-induced intracerebral hemorrhage and brain injury in mutant mice. J Cereb Blood Flow Metab. 2004;24:1133–45.

    Article  Google Scholar 

  42. Sherchan P, et al. Recombinant Slit2 attenuates neuroinflammation after surgical brain injury by inhibiting peripheral immune cell infiltration via Robo1-srGAP1 pathway in a rat model. Neurobiol Dis. 2016;85:164–73.

    Article  CAS  Google Scholar 

  43. Huang L, et al. Phosphoinositide 3-kinase gamma contributes to neuroinflammation in a rat model of surgical brain injury. J Neurosci. 2015;35:10390–401.

    Article  CAS  Google Scholar 

  44. Walf AA, Frye CA. The use of the elevated plus maze as an assay of anxiety-related behavior in rodents. Nat Protoc. 2007;2:322–8.

    Article  CAS  Google Scholar 

  45. File SE, Lippa AS, Beer B Lippa MT. Animal tests of anxiety. Curr Protoc Neurosci. 2004;8:8.3.

    Google Scholar 

  46. Seibenhener ML, Wooten MC. Use of the open field maze to measure locomotor and anxiety-like behavior in mice. J Vis Exp. 2015;(96):e52434.

    Google Scholar 

  47. Abdollahnejad F, et al. Investigation of sedative and hypnotic effects of Amygdalus communis L. extract: behavioral assessments and EEG studies on rat. J Nat Med. 2016;70(2):190–7.

    Article  Google Scholar 

  48. Slattery DA, Cryan JF. Using the rat forced swim test to assess antidepressant-like activity in rodents. Nat Protoc. 2012;7:1009–14.

    Article  CAS  Google Scholar 

  49. Ohl F. Testing for anxiety. Clin Neurosci Res. 2003;3:233–8.

    Article  Google Scholar 

  50. Bertoglio LJ, Carobrez AP. Previous maze experience required to increase open arms avoidance in rats submitted to the elevated plus-maze model of anxiety. Behav Brain Res. 2000;108:197–203.

    Article  CAS  Google Scholar 

  51. Bertoglio LJ, Carobrez AP. Anxiolytic effects of ethanol and phenobarbital are abolished in test-experienced rats submitted to the elevated plus maze. Pharmacol Biochem Behav. 2002;73:963–9.

    Article  CAS  Google Scholar 

  52. Tatem KS, et al. Behavioral and locomotor measurements using an open field activity monitoring system for skeletal muscle diseases. J Vis Exp. 2014;(91):51785.

    Google Scholar 

  53. Cryan JF, Valentino RJ, Lucki I. Assessing substrates underlying the behavioral effects of antidepressants using the modified rat forced swimming test. Neurosci Biobehav Rev. 2005;29:547–69.

    Article  CAS  Google Scholar 

  54. Adhikari A, et al. Basomedial amygdala mediates top-down control of anxiety and fear. Nature. 2015;527:179–85.

    Article  CAS  Google Scholar 

  55. Uylings HB, Groenewegen HJ, Kolb B. Do rats have a prefrontal cortex? Behav Brain Res. 2003;146:3–17.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John H. Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sherchan, P. et al. (2019). A Rat Model of Surgical Brain Injury. In: Chen, J., Xu, Z., Xu, X., Zhang, J. (eds) Animal Models of Acute Neurological Injury. Springer Series in Translational Stroke Research. Springer, Cham. https://doi.org/10.1007/978-3-030-16082-1_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-16082-1_28

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-16080-7

  • Online ISBN: 978-3-030-16082-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics