Skip to main content

The antioxidant effects of melatonin in surgical brain injury in rats

  • Conference paper
Acta Neurochirurgica Supplements

Part of the book series: Acta Neurochirurgica Supplementum ((NEUROCHIRURGICA,volume 102))

Background Surgical brain injury (SBI) to normal brain tissue can occur as inevitable sequelae of neurosurgical operations. SBI can contribute to post-operative complications such as brain edema following blood-brain barrier (BBB) disruption leading to neurological deficits. Melatonin is a commonly used drug with known antioxidant properties and neuroprotective effects in experimental animal studies (Chen et al., J Pineal Res 41:175–182, 2006; Chen et al., J Pineal Res 40(3):242–250, 2006; Cheung, J Pineal Res 34:153–160, 2003; Lee et al., J Pineal Res 42(3):297–309, 2007; Reiter et al., Exp Biol Med (Maywood) 230(2):104–117, 2005)

Methods We tested different concentrations of melatonin (5 mg/kg, 15 mg/kg and 150 mg/kg) administered 1 hour before surgery for neuroprotection against SBI using a rodent model. Post-operative assessment included brain water content (brain edema), lipid peroxidation assays (oxidative stress), and neurological assessment.

Findings The results showed a trend in decreasing brain edema with lower doses of melatonin (5 mg/kg and 15 mg/ kg), however, high concentration of melatonin (150 mg/kg) significantly increased brain edema compared to all other groups. This deleterious effect of high-dose melatonin was also observed in lipid-peroxidation assay wherein lower-dose melatonin (15 mg/kg) attenuated oxidative stress, but high-dose melatonin (150 mg/kg) increased oxidative stress as compared to vehicle-treated group. Furthermore, high-dose melatonin also worsened neurological outcomes compared to other groups whereas; the low-dose melatonin group (15 mg/kg) showed some improved neurological parameters. Conclusions The study suggests that low-dose melatonin may provide neuroprotective effects against SBI. Further studies are needed to confirm this. More importantly, the findings of the study stress the need to carefully reassess safety issues with high doses of melatonin, which is considered to be a practically non-toxic drug.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Alvira D, Tajes M, Verdaguer E, Acuna-Castroviejo D, Folch J, Camins A, Pallas M (2006) Inhibition of the cdk5/p25 fragment formation may explain the antiapoptotic effects of melatonin in an experimental model of Parkinson's disease. J Pineal Res 40 (3):251–258

    Article  PubMed  CAS  Google Scholar 

  2. Chen H, Chen T, Lee M, Chen S, Hsu Y et al (2006) Melatonin decreases neurovascular oxidative/nitrosative damage and protects against early increases in the blood-brain barrier permeability after transient focal cerebral ischemia in mice. J Pineal Res 41:175–182

    Article  PubMed  CAS  Google Scholar 

  3. Chen T, Lee M, Chen H, Kuo Y, Lin S et al (2006) Melatonin attenuates the postischemic increase in blood-brain barrier permeability and decreases hemorrhagic transformation of tissue-plasminogen activator therapy following ischemic stroke in mice. J Pineal Res 40(3):242–250

    Article  PubMed  CAS  Google Scholar 

  4. Cheng Y, Feng Z, Zhang QZ, Zhang JT (2006) Beneficial effects of melatonin in experimental models of Alzheimer disease. Acta Pharmacol Sin 27(2):129–139 Review

    Article  PubMed  CAS  Google Scholar 

  5. Cheung RT, Tipoe GL, Tam S, Ma ES, Zou LY, Chan PS (2006) Preclinical evaluation of pharmacokinetics and safety of melatonin in propylene glycol for intravenous administration. J Pineal Res 41:337–343

    Article  PubMed  CAS  Google Scholar 

  6. Cheung RT (2003) The utility of melatonin in reducing cerebral damage resulting from ischemia and reperfusion. J Pineal Res 34:153–160

    Article  PubMed  CAS  Google Scholar 

  7. Costa EJ, Lopes RH, Lamy-Freund MT (1995) Permeability of pure lipid bilayers to melatonin. J Pineal Res 19:123–126

    Article  PubMed  CAS  Google Scholar 

  8. Del Zoppo GJ (2006) Stroke and neurovascular protection. N Engl J Med 354:553–555

    Article  PubMed  CAS  Google Scholar 

  9. Fasano VA, Penna G (1992) Postoperative complications in neurosurgery. Minerva Anestesiol 58:15–21

    PubMed  CAS  Google Scholar 

  10. Garcia JH, Wagner S, Liu KF, Hu XJ (1995) Neurological deficit and extent of neuronal necrosis attributable to middle cerebral artery occlusion in rats. Statistical validation. Stroke 26:627–634

    CAS  Google Scholar 

  11. Gul S, Celik SE, Kalayci M, Tasyurekli M, Cokar N, Bilge T (2005) Dose-dependent neuroprotective effects of melatonin on experimental spinal cord injury in rats. Surg Neurol. 64:355–361

    Article  PubMed  Google Scholar 

  12. Gursory-Ozdemir Y, Can A, Dalkara T (2004) Reperfusion-induced oxidative/nitrative injury to neurovascular unit after focal cerebral ischemia. Stroke 35:1449–1453

    Article  CAS  Google Scholar 

  13. Harderland R, Pandi-Perumal S, Cardinali D (2006) Melatonin. Int J Biochem Cell Biol 28:313–316

    Article  CAS  Google Scholar 

  14. Hua Y, Schallert T, Keep RF, Wu J, Hoff JT, Xi G (2002) Behavioral tests after intracerebral hemorrhage in the rat. Stroke 33(10):2478–2484

    Article  PubMed  Google Scholar 

  15. Jadhav V, Matchett G, Hsu FP, Zhang JH (2007) Inhibition of Src tyrosine kinase and effect on outcomes in a new in vivo model of surgically induced brain injury. J Neurosurg 106(4):680–686

    Article  PubMed  CAS  Google Scholar 

  16. Jadhav V, Solaroglu I, Obenaus A, Zhang JH (2007) Neuro-protection against surgically induced brain injury. Surg Neurol 67 (1):15–20 discussion 20. Review

    Article  PubMed  Google Scholar 

  17. Kilic U, Kilic E, Reiter RJ, Bassetti CL, Hermann DM (2005) Signal transduction pathways involved in melatonin-induced neuroprotection after focal cerebral ischemia in mice. J Pineal Res 38:67–71

    Article  PubMed  CAS  Google Scholar 

  18. Lee MY, Kuan YH, Chen HY, Chen TY, Chen ST, Huang CC, Yang IP, Hsu YS, Wu TS, Lee EJ (2007) Intravenous administration of melatonin reduces the intracerebral cellular inflammatory response following transient focal cerebral ischemia in rats. J Pineal Res 42(3):297–309

    Article  PubMed  CAS  Google Scholar 

  19. Lee SH, Chun W, Kong PJ, Han JA, Cho BP, Kwon OY, Lee HJ, Kim SS (2006) Sustained activation of Akt by melatonin contributes to the protection against kainic acid-induced neuronal death in hippocampus. J Pineal Res 40(1):79–85

    Article  PubMed  CAS  Google Scholar 

  20. Lo W, Bravo T, Jadhav V, Titova E, Zhang JH, Tang J (2007) NADPH oxidase inhibition improves neurological outcomes in surgically-induced brain injury. Neurosci Lett 414(3):228–232

    Article  PubMed  CAS  Google Scholar 

  21. Manninen PH, Raman SK, Boyle K, el-Beheiry H (1999) Early postoperative complications following neurosurgical procedures. Can J Anaesth 46:7–14

    Article  PubMed  CAS  Google Scholar 

  22. Reiter RJ, Tan DX, Terron MP, Flores LJ, Czarnocki Z (2007) Melatonin and its metabolites: new findings regarding their production and their radical scavenging actions. Acta Biochim Pol 54(1):1–9

    PubMed  CAS  Google Scholar 

  23. Reiter RJ, Acuna-Castroviejo D, Tan DX, Burkhardt S (2001) Free radical-mediated molecular damage. Mechanisms for the protective actions of melatonin in the central nervous system. Ann N Y Acad Sci 939:200–215 Review

    Article  PubMed  CAS  Google Scholar 

  24. Reiter RJ, Tan DX, Leon J, Kilic U, Kilic E (2005) When melatonin gets on your nerves: its beneficial actions in experimental models of stroke. Exp Biol Med (Maywood) 230(2):104–117 Review

    CAS  Google Scholar 

  25. Tomas-Zapico C, Coto-Montes A (2005) A proposed mechanism to explain the stimulatory effect of melatonin on antioxidative enzymes. J Pineal Res 39:99–104

    Article  PubMed  CAS  Google Scholar 

  26. Tommasino C (1992) Postoperative cerebral edema. Physiopa-thology of the edema and medical therapy. Minerva Anestesiol 58:35–42

    PubMed  CAS  Google Scholar 

  27. Xi G, Hua Y, Keep RF, Younger JG, Hoff JT (2002) Brain edema after intracerebral hemorrhage: the effects of systemic complement depletion. Acta Neurochir Suppl 81:253–256

    PubMed  CAS  Google Scholar 

  28. Yon JH, Carter LB, Reiter RJ, Jevtovic-Todorovic V (2006) Melatonin reduces the severity of anesthesia-induced apoptotic neurodegeneration in the developing rat brain. Neurobiol Dis 21:522–530

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

H. -J. Steiger

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag/Wien

About this paper

Cite this paper

Lee, S. et al. (2008). The antioxidant effects of melatonin in surgical brain injury in rats. In: Steiger, H.J. (eds) Acta Neurochirurgica Supplements. Acta Neurochirurgica Supplementum, vol 102. Springer, Vienna. https://doi.org/10.1007/978-3-211-85578-2_70

Download citation

  • DOI: https://doi.org/10.1007/978-3-211-85578-2_70

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-211-85577-5

  • Online ISBN: 978-3-211-85578-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics