Skip to main content

Mucosal Tolerance to Brain Antigens Preserves Endogenous TGFβ-1 and Improves Neurological Outcomes Following Experimental Craniotomy

  • Chapter
  • First Online:
Intracerebral Hemorrhage Research

Part of the book series: Acta Neurochirurgica Supplementum ((NEUROCHIRURGICA,volume 111))

Abstract

Intracranial surgery causes brain damage from cortical incisions, intraoperative hemorrhage, retraction, and electrocautery; collectively these injuries have recently been coined surgical brain injury (SBI). Inflammation following SBI contributes to neuronal damage. This study develops T-cells that are immunologically tolerant to brain antigen via the exposure of myelin basic protein (MBP) to airway mucosa. We hypothesize that these T-cells will migrate to the site of corticotomy, secrete immunosuppressive cytokines, such as TGFβ1, reduce inflammation, and improve neurological outcomes following SBI. A standard model for SBI was used for this experiment. C57 mice were divided into six groups: SHAM + Vehicle, SHAM + Ovalbumin, SHAM + MBP, SBI + Vehicle, SBI + OVA, and SBI + MBP. Induction of mucosal tolerance to vehicle, ovalbumin, or MBP was performed prior to SBI. Neurological scores and TBFβ1 cytokine levels were measured 48 h postoperatively. Mice receiving craniotomy demonstrated a reduction in neurological score. Animals tolerized to MBP (SBI + MBP) had better postoperative neurological scores than SBI + Vehicle and SBI + OVA. SBI inhibited the cerebral expression TGFβ1 in PBS and OVA treated groups, whereas MBP treated-animals preserved preoperative levels. Mucosal tolerance to MBP leads to significant improvement in neurological outcome that is associated with the preservation of endogenous levels of brain TGFβ1.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Li KW, Nelson C, Suk I, Jallo GI (2005) Neuroendoscopy: past, present, and future. Neurosurg Focus 19(6):E1

    Article  PubMed  Google Scholar 

  2. Maciunas RJ (2006) Computer-assisted neurosurgery. Clin Neurosurg 53:267–271

    PubMed  Google Scholar 

  3. Tharin S, Golby A (2007) Functional brain mapping and its applications to neurosurgery. Neurosurgery 60(4 suppl 2):185–201

    PubMed  Google Scholar 

  4. Raivich G, Bohatschek M, Kloss CU, Werner A, Jones LL, Kreutzberg GW (1999) Neuroglial activation repertoire in the injured brain: graded response, molecular mechanisms and cues to physiological function. Brain Res Brain Res Rev 30(1):77–105

    Article  PubMed  CAS  Google Scholar 

  5. Rozet I, Tontisirin N, Muangman S et al (2007) Effect of equiosmolar solutions of mannitol versus hypertonic saline on intraoperative brain relaxation and electrolyte balance. Anesthesiology 107(5):697–704

    Article  PubMed  CAS  Google Scholar 

  6. Jadhav V, Solaroglu I, Obenaus A, Zhang JH (2007) Neuroprotection against surgically induced brain injury. Surg Neurol 67(1):15–20

    Article  PubMed  Google Scholar 

  7. Jadhav V, Zhang JH (2008) Surgical brain injury: prevention is better than cure. Front Biosci 13:3793–3797

    Article  PubMed  Google Scholar 

  8. Williams AJ, Wei HH, Dave JR, Tortella FC (2007) Acute and delayed neuroinflammatory response following experimental penetrating ballistic brain injury in the rat. J Neuroinflammation 4:17

    Article  PubMed  Google Scholar 

  9. Hyong A, Jadhav V, Lee S et al (2008) Rosiglitazone, a PPAR gamma agonist, attenuates inflammation after surgical brain injury in rodents. Brain Res 1215:218–224

    Article  PubMed  CAS  Google Scholar 

  10. Wang Q, Tang XN, Yenari MA (2007) The inflammatory response in stroke. J Neuroimmunol 184(1–2):53–68

    Article  PubMed  CAS  Google Scholar 

  11. Esiri MM (2007) The interplay between inflammation and neurodegeneration in CNS disease. J Neuroimmunol 184(1–2):4–16

    Article  PubMed  CAS  Google Scholar 

  12. Allahtavakoli M, Moloudi R, Arababadi K, Shamsizadeh A, Kazem JM (2009) Delayed post ischemic treatment with Rosiglitazone attenuates infarct volume, neurological deficits and neutrophilia after embolic stroke in rat. Brain Res 1271:121–127

    Article  PubMed  CAS  Google Scholar 

  13. Solaroglu I, Cahill J, Tsubokawa T, Beskonakli E, Zhang JH (2009) Granulocyte colony-stimulating factor protects the brain against experimental stroke via inhibition of apoptosis and inflammation. Neurol Res 31(2):167–172

    Article  PubMed  CAS  Google Scholar 

  14. Yi JH, Park SW, Brooks N, Lang BT, Vemuganti R (2008) PPARgamma agonist rosiglitazone is neuroprotective after traumatic brain injury via anti-inflammatory and anti-oxidative mechanisms. Brain Res 1244:164–172

    Article  PubMed  CAS  Google Scholar 

  15. Roberts I, Yates D, Sandercock P et al (2004) Effect of intravenous corticosteroids on death within 14 days in 10008 adults with clinically significant head injury (MRC CRASH trial): randomised placebo-controlled trial. Lancet 364(9442):1321–1328

    Article  PubMed  Google Scholar 

  16. Khoury SJ, Lider O, al-Sabbagh A, Weiner HL (1990) Suppression of experimental autoimmune encephalomyelitis by oral administration of myelin basic protein. III. Synergistic effect of lipopolysaccharide. Cell Immunol 131(2):302–310

    Article  PubMed  CAS  Google Scholar 

  17. Miller A, Lider O, Weiner HL (1991) Antigen-driven bystander suppression after oral administration of antigens. J Exp Med 174(4):791–798

    Article  PubMed  CAS  Google Scholar 

  18. Chen Y, Kuchroo VK, Inobe J, Hafler DA, Weiner HL (1994) Regulatory T cell clones induced by oral tolerance: suppression of autoimmune encephalomyelitis. Science 265(5176):1237–1240

    Article  PubMed  CAS  Google Scholar 

  19. Khoury SJ, Hancock WW, Weiner HL (1992) Oral tolerance to myelin basic protein and natural recovery from experimental autoimmune encephalomyelitis are associated with downregulation of inflammatory cytokines and differential upregulation of transforming growth factor beta, interleukin 4, and prostaglandin E expression in the brain. J Exp Med 176(5):1355–1364

    Article  PubMed  CAS  Google Scholar 

  20. Miller A, Lider O, Roberts AB, Sporn MB, Weiner HL (1992) Suppressor T cells generated by oral tolerization to myelin basic protein suppress both in vitro and in vivo immune responses by the release of transforming growth factor beta after antigen-specific triggering. Proc Natl Acad Sci USA 89(1):421–425

    Article  PubMed  CAS  Google Scholar 

  21. Chen Y, Inobe J, Kuchroo VK, Baron JL, Janeway CA Jr, Weiner HL (1996) Oral tolerance in myelin basic protein T-cell receptor transgenic mice: suppression of autoimmune encephalomyelitis and dose-dependent induction of regulatory cells. Proc Natl Acad Sci USA 93(1):388–391

    Article  PubMed  CAS  Google Scholar 

  22. Fukaura H, Kent SC, Pietrusewicz MJ, Khoury SJ, Weiner HL, Hafler DA (1996) Induction of circulating myelin basic protein and proteolipid protein-specific transforming growth factor-beta1-secreting Th3 T cells by oral administration of myelin in multiple sclerosis patients. J Clin Invest 98(1):70–77

    Article  PubMed  CAS  Google Scholar 

  23. Bravo TP, Matchett GA, Jadhav V et al (2008) Role of histamine in brain protection in surgical brain injury in mice. Brain Res 1205:100–107

    Article  PubMed  CAS  Google Scholar 

  24. Becker KJ, McCarron RM, Ruetzler C et al (1997) Immunologic tolerance to myelin basic protein decreases stroke size after transient focal cerebral ischemia. Proc Natl Acad Sci USA 94(20):10873–10878

    Article  PubMed  CAS  Google Scholar 

  25. Becker KJ, Kindrick DL, Lester MP, Shea C, Ye ZC (2005) Sensitization to brain antigens after stroke is augmented by lipopolysaccharide. J Cereb Blood Flow Metab 25(12):1634–1644

    Article  PubMed  CAS  Google Scholar 

  26. Gee JM, Kalil A, Thullbery M, Becker KJ (2008) Induction of immunologic tolerance to myelin basic protein prevents central nervous system autoimmunity and improves outcome after stroke. Stroke 39(5):1575–1582

    Article  PubMed  Google Scholar 

  27. Jadhav V, Matchett G, Hsu FP, Zhang JH (2007) Inhibition of Src tyrosine kinase and effect on outcomes in a new in vivo model of surgically induced brain injury. J Neurosurg 106(4):680–686

    Article  PubMed  CAS  Google Scholar 

  28. Garcia JH, Wagner S, Liu KF, Hu XJ (1995) Neurological deficit and extent of neuronal necrosis attributable to middle cerebral artery occlusion in rats. Statistical validation. Stroke 26(4):627–634

    PubMed  CAS  Google Scholar 

  29. Ayer R, Chen W, Sugawara T, Suzuki H, Zhang JH (2009) Role of gap junctions in early brain injury following subarachnoid hemorrhage. Brain Res 1315:150–158

    Article  PubMed  Google Scholar 

  30. Nesathurai S (1998) Steroids and spinal cord injury: revisiting the NASCIS 2 and NASCIS 3 trials. J Trauma 45(6):1088–1093

    Article  PubMed  CAS  Google Scholar 

  31. Becker K, Kindrick D, Relton J, Harlan J, Winn R (2001) Antibody to the alpha4 integrin decreases infarct size in transient focal cerebral ischemia in rats. Stroke 32(1):206–211

    PubMed  CAS  Google Scholar 

  32. Enlimomab Acute Stroke Trial Investigators (2001) Use of anti-ICAM-1 therapy in ischemic stroke: results of the Enlimomab Acute Stroke Trial. Neurology 57(8):1428–1434

    Google Scholar 

  33. Edwards P, Arango M, Balica L et al (2005) Final results of MRC CRASH, a randomised placebo-controlled trial of intravenous corticosteroid in adults with head injury-outcomes at 6 months. Lancet 365(9475):1957–1959

    Article  PubMed  Google Scholar 

Download references

Acknowledgment

This study was partially supported by NIH NS053407 to J.H. Zhang and NS060936 to J. Tang.

Conflict of interest statement We declare that we have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John H. Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag/Wien

About this chapter

Cite this chapter

Jafarian, N. et al. (2011). Mucosal Tolerance to Brain Antigens Preserves Endogenous TGFβ-1 and Improves Neurological Outcomes Following Experimental Craniotomy. In: Zhang, J., Colohan, A. (eds) Intracerebral Hemorrhage Research. Acta Neurochirurgica Supplementum, vol 111. Springer, Vienna. https://doi.org/10.1007/978-3-7091-0693-8_47

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-0693-8_47

  • Published:

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-7091-0692-1

  • Online ISBN: 978-3-7091-0693-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics