Skip to main content
Book cover

Quaternion Algebras

  • Textbook
  • Open Access
  • © 2021

You have full access to this open access Textbook

Overview

  • Presents a comprehensive, open access treatment of the theory of quaternions, with the eBook free for all readers
  • Engages the student reader with an accessible, approachable writing style
  • Offers numerous options for constructing introductory and advanced courses
  • Encompasses a vast wealth of knowledge to form an essential reference

Part of the book series: Graduate Texts in Mathematics (GTM, volume 288)

Access this book

Softcover Book USD 37.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Other ways to access

Licence this eBook for your library

Institutional subscriptions

Table of contents (43 chapters)

  1. Algebra

  2. Arithmetic

Keywords

About this book

This open access textbook presents a comprehensive treatment of the arithmetic theory of quaternion algebras and orders, a subject with applications in diverse areas of mathematics. Written to be accessible and approachable to the graduate student reader, this text collects and synthesizes results from across the literature. Numerous pathways offer explorations in many different directions, while the unified treatment makes this book an essential reference for students and researchers alike.

Divided into five parts, the book begins with a basic introduction to the noncommutative algebra underlying the theory of quaternion algebras over fields, including the relationship to quadratic forms. An in-depth exploration of the arithmetic of quaternion algebras and orders follows. The third part considers analytic aspects, starting with zeta functions and then passing to an idelic approach, offering a pathway from local to global that includes strong approximation. Applications of unitgroups of quaternion orders to hyperbolic geometry and low-dimensional topology follow, relating geometric and topological properties to arithmetic invariants. Arithmetic geometry completes the volume, including quaternionic aspects of modular forms, supersingular elliptic curves, and the moduli of QM abelian surfaces.

Quaternion Algebras encompasses a vast wealth of knowledge at the intersection of many fields. Graduate students interested in algebra, geometry, and number theory will appreciate the many avenues and connections to be explored. Instructors will find numerous options for constructing introductory and advanced courses, while researchers will value the all-embracing treatment. Readers are assumed to have some familiarity with algebraic number theory and commutative algebra, as well as the fundamentals of linear algebra, topology, and complex analysis. More advanced topics call upon additional background, as noted, though essential concepts andmotivation are recapped throughout.

Reviews

“The book contains a huge amount of interesting and very well-chosen exercises. … This ‘encyclopedic’ character of the text may play an important role both as a guide to some special topics and as a source of information for both students and those whose research in related fields creates a need to familiarize themselves with the knowledge of the case when quaternion algebras are relevant.” (Juliusz Brzeziński, Mathematical Reviews, September, 2022)

Authors and Affiliations

  • Department of Mathematics, Dartmouth College, Hanover, USA

    John Voight

About the author

John Voight is Professor of Mathematics at Dartmouth College in Hanover, New Hampshire. His research interests lie in arithmetic algebraic geometry and number theory, with a particular interest in computational aspects. He has taught graduate courses in algebra, number theory, cryptography, as well as the topic of this book, quaternion algebras.

Bibliographic Information

Publish with us