Skip to main content
Log in

Optical Characterization of Luminescent Silicon Nanowires

  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

Visible photoluminescence (PL) at room temperature from silicon nanowires (Si NWs) prepared by using the metal-assisted chemical-etching (MACE) technique is reported. The morphology and the luminescence properties of Si NWs are characterized by using scanning electron microscopy (SEM), high resolution transmission electron microscopy (HR-TEM), and luminescence spectroscopy. TEM images of the luminescent Si NWs reveal that the surfaces of the Si NWs are very rough, with a few nano-sized silicon particles being attached to the Si NWs. Luminescent Si NWs are optically characterized by PL and Raman measurements. Temperature-dependent PL measurements are measured at temperatures from 5 K to room temperature to determine the origin of the PL. The PL intensity decreases and the wavelength of the PL is blue-shifted as the temperature is increased. The Raman spectra of luminescent Si NWs reveal quantum confinement of the Si NWs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Ma, C. Lee, F. Au, S. Tong and S. Lee, Science 299, 1874 (2003).

    Article  ADS  Google Scholar 

  2. Y. Cui and C. M. Lieber, Science 291, 851 (2001).

    Article  ADS  Google Scholar 

  3. Y. Huang, X. Duan, Y. Cui, L. J. Lauhon, K-H. Kim and C. M. Lieber, Science 294, 1313 (2001).

    Article  ADS  Google Scholar 

  4. A. Cullis and L. T. Canham, Nature 353, 335 (1991).

    Article  ADS  Google Scholar 

  5. L. T. Canham, Appl. Phys. Lett. 57, 1046 (1990).

    Article  ADS  Google Scholar 

  6. J. Valenta, B. Bruhn and J. Linnros, Nano Lett. 11, 3003 (2011).

    Article  ADS  Google Scholar 

  7. X. Lu, C. M. Hessel, Y. Yu, T. D. Bogart and B. A. Korgel, Nano Lett. 13, 3101 (2013).

    Article  ADS  Google Scholar 

  8. A. R. Guichard, D. N. Barsic, S. Sharma, T. I. Kamins and M. L. Brongersma, Nano Lett. 6, 2140 (2006).

    Article  ADS  Google Scholar 

  9. J. Wilcoxon and G. Samara, Appl. Phys. Lett. 74, 3164 (1999).

    Article  ADS  Google Scholar 

  10. G. Ledoux, J. Gong, F. Huisken, O. Guillois and C. Reynaud, Appl. Phys. Lett. 80, 4834 (2002).

    Article  ADS  Google Scholar 

  11. A. I. Hochbaum, R. Chen, R. D. Delgado, W. Liang, E. C. Garnett, M. Najarian, A. Majumdar and P. Yang, Nature 451, 163 (2008).

    Article  ADS  Google Scholar 

  12. B. Tian, X. Zheng, T. J. Kempa, Y. Fang, N. Yu, G. Yu, J. Huang and C. M. Lieber, Nature 449, 885 (2007).

    Article  ADS  Google Scholar 

  13. E. C. Garnett and P. Yang, J. Am. Chem. Soc. 130, 9224 (2008).

    Article  Google Scholar 

  14. M. D. Kelzenberg, D. B. Turner-Evans, B. M. Kayes, M. A. Filler, M. C. Putnam, N. S. Lewis and H. A. Atwater, Nano Lett. 8, 710 (2008).

    Article  ADS  Google Scholar 

  15. K. Bhowmik and A. Mondal, Electron. Mater. Lett. 11, 180 (2015).

    Article  ADS  Google Scholar 

  16. C. K. Chan, H. Peng, G. Liu, K. McIlwrath, X. F. Zhang, R. A. Huggins and Y. Cui, Nat. Nanotechnol. 3, 31 (2008).

    Article  ADS  Google Scholar 

  17. G. Zheng, F. Patolsky, Y. Cui, W. U. Wang and C. M. Lieber, Nat. Biotechnol. 23, 1294 (2005).

    Article  Google Scholar 

  18. S. M. Koo, Q. Li, M. D. Edelstein, C. A. Richter and E. M. Vogel, Nano Lett. 5, 2519 (2005).

    Article  ADS  Google Scholar 

  19. Y. Cui, Z. Zhong, D. Wang, W. U. Wang and C. M. Lieber, Nano Lett. 3, 149 (2003).

    Article  ADS  Google Scholar 

  20. X. F. Duan, Y. Huang and C. M. Lieber, Nano Lett. 2, 487 (2002).

    Article  ADS  Google Scholar 

  21. R. S. Wagner and W. C. Ellis, Appl. Phys. Lett. 4, 89 (1964).

    Article  ADS  Google Scholar 

  22. H. F. Yan, Y. J. Xing, Q. L. Hang, D. P. Yu, Y. P. Wang, J. Xu, Z. H. Xi and S. Q. Feng, Chem. Phys. Lett. 323, 224 (2000).

    Article  ADS  Google Scholar 

  23. D. P. Yu, Y. J. Xing, Q. L. Hang, H. F. Yan, J. Xu, Z. H. Xi and S. Q. Feng, Physica E 9, 305 (2001).

    Article  ADS  Google Scholar 

  24. Y. Wang, V. Schmidt, S. Senz and U. Gosele, Nat. Nanotechnol. 1, 186 (2006).

    Article  ADS  Google Scholar 

  25. B. Fuhrmann, H. S. Leipner, H-R. Höche, L. Schubert, P. Werner and U. Gösele, Nano Lett. 5, 2524 (2005).

    Article  ADS  Google Scholar 

  26. T. Kawashima, T. Mizutani, T. Nakagawa, H. Torii, T. Saitoh, K. Komori and M. Fujii, Nano Lett. 8, 362 (2008).

    Article  ADS  Google Scholar 

  27. K. Q. Peng, Y. J. Yan, S. P. Gao and J. Zhu, Adv. Mater. 14, 1164 (2002).

    Article  Google Scholar 

  28. K. Peng, J. Hu, Y. Yan, Y. Wu, H. Fang, Y. Xu, S. Lee and J. Zhu, Adv. Funct. Mater. 16, 387 (2006).

    Article  Google Scholar 

  29. K. Peng, Y. Xu, Y. Wu, Y. Yan, S. T. Lee and J. Zhu, Small 1, 1062 (2005).

    Article  Google Scholar 

  30. Z. Huang, N. Geyer, P. Werner, J. D. Boor and U. Gösele, Adv. Mater. 23, 285 (2011).

    Article  Google Scholar 

  31. F. Voigt, V. Sivakov, V. Gerliz, G. H. Bauer, B. Hoffmann, G. Z. Radnoczi, B. Pecz and S. Christiansen, Phys. Status Solidi A 208, 893 (2011).

    Article  ADS  Google Scholar 

  32. D. Jung, S. G. Cho, T. Moon and H. Sohn, Electron. Mater. Lett. 12, 17 (2016).

    Article  ADS  Google Scholar 

  33. J. Grawboska, M. Meaney, K. K. Nanda, J-P. Mosnier, M. O. Henry, J-R. Duclere and E. McGlynn, Phys. Rev. B 71, 115439 (2005).

    Article  ADS  Google Scholar 

  34. K. W. Adu, Q. Xiong, H. R. Gutierrez, G. Chen and P. C. Eklund, Appl. Phys. A-Mater. Sci. Process. 85, 287 (2006).

    Article  ADS  Google Scholar 

  35. Z. Iqbal and S. Veperk, J. Phys. C 15, 377 (1982).

    Article  ADS  Google Scholar 

  36. Z. F. Sui, P. P. Leong, I. P. Herman, G. S. Higashi and H. Temkin, Appl. Phys. Lett. 60, 2086 (1992).

    Article  ADS  Google Scholar 

  37. D. P. Yu, Z. G. Bai, Y. Ding, Q. L. Hang, H. Z. Zhang, J. J. Wang, Y. H. Zou, W. Qian, G. C. Xiong, H. T. Zhou and S. Q. Feng, Appl. Phys. Lett. 72, 3458 (1998).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Honglae Sohn.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jung, D., Sohn, H. & Kim, Y. Optical Characterization of Luminescent Silicon Nanowires. J. Korean Phys. Soc. 74, 140–144 (2019). https://doi.org/10.3938/jkps.74.140

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3938/jkps.74.140

Keywords

Navigation