Skip to main content
Log in

Optical properties of nanowire structures produced by the metal-assisted chemical etching of lightly doped silicon crystal wafers

  • Semiconductor Structures, Low-Dimensional Systems, and Quantum Phenomena
  • Published:
Semiconductors Aims and scope Submit manuscript

Abstract

Layers of Si nanowires produced by the metal-assisted chemical etching of (100)-oriented single-crystal p-Si wafers with a resistivity of 1–20 Ω · cm are studied by reflectance spectroscopy, Raman spectros-copy, and photoluminescence measurements. The nanowire diameters are 20–200 nm. The wafers are supplied by three manufacturing companies and distinguished by their different lifetimes of photoexcited charge carriers. It is established that the Raman intensity for nanowires longer than 1 μm is 3–5 times higher than that for the substrates. The interband photoluminescence intensity of nanowires at the wavelength 1.12 μm is substantially higher than that of the substrates and reaches a maximum for samples with the longest bulk lifetime, suggesting a low nonradiative recombination rate at the nanowire surfaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. Cui, L. J. Lauhon, M. S. Gudiksen, J. Wang, and C. M. Lieber, Appl. Phys. Lett. 78, 2214 (2001).

    Article  ADS  Google Scholar 

  2. F. M. Ross, J. Tersoff, and M. C. Reuter, Phys. Rev. Lett. 95, 146104 (2005).

    Article  ADS  Google Scholar 

  3. A. I. Hochbaum, R. Fan, R. He, and P. Yang, Nano Lett. 5, 457 (2005).

    Article  ADS  Google Scholar 

  4. V. Schmidt, S. Senz, and U. Gösele, Nano Lett. 5, 931 (2005).

    Article  ADS  Google Scholar 

  5. X. Duan, Y. Huang, Y. Cui, J. Wang, and C. M. Lieber, Nature 409, 66 (2001).

    Article  ADS  Google Scholar 

  6. M. D. Kelzenberg, D. B. Turner-Evans, B. M. Kayes, M. A. Filler, M. C. Putnam, N. S. Lewis, and H. A. At- water, Nano Lett. 8, 710 (2008).

    Article  ADS  Google Scholar 

  7. Th. Stelzner, M. Pietsch, G. Andr_, F. Falk, E. Ose, and S. H. Christiansen, Nanotechnology 19, 295203 (2008).

    Article  Google Scholar 

  8. E. I. Givargizov, J. Cryst. Growth 31, 20 (1975).

    Article  ADS  Google Scholar 

  9. R. S. Wagner and W. C. Ellis, Appl. Phys. Lett. 4, 89 (1964).

    Article  ADS  Google Scholar 

  10. M. K. Sunkara, S. Sharma, and R. Miranda, Appl. Phys. Lett. 79, 1546 (2001).

    Article  ADS  Google Scholar 

  11. C. M. Lieber, MRS Bull. 28, 486 (2003).

    Article  Google Scholar 

  12. J. E. Allen, E. R. Hemesath, D. E. Perea, J. L. Lensch- Falk, Z. Y. Li, F. Yin, M. H. Gass, P. Wang, A. L. Bleloch, R. E. Palmer, and L. J. Lauhon, Nature Nanotechnol. 3, 168 (2008).

    Article  ADS  Google Scholar 

  13. J. B. Hannon, S. Kodambaka F. M. Ross, and R. M. Tromp, Nature 440, 69 (2006).

    Article  ADS  Google Scholar 

  14. V. Sivakov, G. Andr_, A. Gawlik, A. Berger, J. Plentz, F. Falk, and S. H. Christiansen, Nano Lett. 9, 1549 (2009).

    Article  ADS  Google Scholar 

  15. K.-Q. Peng, Y.-J. Yan, S.-P. Gao, and J. Zhu, Adv. Mater. 14, 1164 (2002).

    Article  Google Scholar 

  16. V. A. Sivakov, G. Bronstrup, B. Pecz, A. Berger, G. Z. Radnoczi, M. Krause, and S. H. Christiansen, J. Phys. Chem. C 114, 3798 (2010).

    Article  Google Scholar 

  17. V. Yu. Timoshenko, K. A. Gonchar, L. A. Golovan, A. I. Efimova, V. A. Sivakov, A. Dellith, and S. H. Chris- tiansen, J. Nanoelectron. Optoelectron. 6, 519 (2011).

    Article  Google Scholar 

  18. K. A. Gonchar, L. A. Golovan, V. Yu. Timoshenko, V. A. Sivakov, and S. Christiansen, Bull. Russ. Acad. Sci.: Phys. 74, 1712 (2010).

    Article  Google Scholar 

  19. K. V. Bunkov, L. A. Golovan, K. A. Gonchar, V. Yu. Timoshenko, P. K. Kashkarov, M. Kulmas, and V. Sivakov, Semiconductors 47, 354 (2013).

    Article  ADS  Google Scholar 

  20. L. A. Osminkina, K. A. Gonchar, V. S. Marshov, K. V. Bunkov, D. V. Petrov, L. A. Golovan, F. Talken- berg, V. A. Sivakov, and V. Yu. Timoshenko, Nanoscale Res. Lett. 7, 524 (2012).

    Article  ADS  Google Scholar 

  21. L. A. Golovan, K. A. Gonchar, L. A. Osminkina, V. Yu. Timoshenko, G. I. Petrov, and V. V. Yakovlev, Laser Phys. Lett. 9, 145 (2012).

    Article  ADS  Google Scholar 

  22. K. A. Gonchar, L. A. Osminkina, R. A. Galkin, M. B. Gongalsky, V. S. Marshov, V. Yu. Timoshenko, M. N. Kulmas, V. V. Solovyev, A. A. Kudryavtsev, and V. A. Sivakov, J. Nanoelectron. Optoelectron. 7, 602 (2012).

    Article  Google Scholar 

  23. L. A. Golovan, V. Yu. Timoshenko, and P. K. Kashkarov, Phys. Usp. 50, 595 (2007).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. A. Gonchar.

Additional information

Original Russian Text © K.A. Gonchar, L.A. Osminkina, V. Sivakov, V. Lysenko, V.Yu. Timoshenko, 2014, published in Fizika i Tekhnika Poluprovodnikov, 2014, Vol. 48, No. 12, pp. 1654–1659.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gonchar, K.A., Osminkina, L.A., Sivakov, V. et al. Optical properties of nanowire structures produced by the metal-assisted chemical etching of lightly doped silicon crystal wafers. Semiconductors 48, 1613–1618 (2014). https://doi.org/10.1134/S1063782614120082

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063782614120082

Keywords

Navigation