Skip to main content
Log in

Self-organized TiO2 nanotube arrays in the photocatalytic degradation of methylene blue under UV light irradiation

  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

Nanostructured titanium dioxide (NTiO2) is known to possess efficient photocatalytic activity and to have diverse applications in many fields due to its chemical stability, high surface area/volume ratio, high transmittance, and high refractive index in the visible and the near-ultraviolet regions. These facts prompted us to develop TiO2 nanotube (TiO2 NT) arrays through electrochemical anodic oxidation involving different electrolytes comprised of phosphoric acid — hydrofluoric acid aqueous systems by varying the voltage and the time. The annealing temperature of the nanotubes, TiO2 NTs, were varied to modify the surface morphology and were characterized by using X-ray diffraction and scanning electron microscopy. Scanning electron microscopy and X-ray diffraction results showed that the samples had uniform morphologies and good crystalline structures of the anatase phase at lower annealing temperatures and of the rutile phase at higher annealing temperatures. A secondary-ion mass-spectrometry analysis was used to investigate the surface atoms and to conduct a depth profile analysis of the TiO2 NTs. The efficiency of the photocatalytic activity of the TiO2 NT arrays in degrading methylene blue (MB) was investigated under UV-Vis light irradiation. The maximum photocatalytic activity was achieved for the samples with lower annealing temperatures due to their being in the anatase phase and having a higher surface area and a smaller crystal size, which play important roles in the degradation of organic pollutants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Liu, W. D. Yang, L. S. Qiang and J. F. Wu, Thin Solid Films 519, 6459 (2011).

    Article  ADS  Google Scholar 

  2. Y. Ji, K. C. Lin, K. C. Lin, H. Zheng, J. J. Zhu and A. C. S. Samia, Electrochem. Commun. 13, 1013 (2011).

    Article  Google Scholar 

  3. O. K. Varghese, D. Gong, M. Paulose, K. G. Ong and C. A. Grimes, Sensors and Actuators B: Chemical 93, 338 (2003).

    Article  Google Scholar 

  4. K. Y. Chun, B. W. Park, Y. M. Sung, D. J. Kwak, Y. T. Hyun and M. W. Park, Thin Solid Films 517, 4196 (2009).

    Article  ADS  Google Scholar 

  5. J. Wan, X. Yan, J. Ding, M. Wang and K. Hu, Mat. Characterization 60, 1534 (2009).

    Article  Google Scholar 

  6. X. Cui, H. M. Kim, M. Kawashita, L. Wang, T. Xiong, T. Kokubo and T. Nakamura, Dental Mat. 25, 80 (2009).

    Article  Google Scholar 

  7. H. H. Park, I. S. Park, K. S. Kim, W. Y. Jeon, B. K. Park, H. S. Kim, T. S. Bae and M. H. Lee, Electrochimica Acta 55, 6109 (2010).

    Article  Google Scholar 

  8. S. M. Kim, T. K. Yun and D. I. Hong, J. Korean Chem. Soc. 49, 567 (2005).

    Article  Google Scholar 

  9. S. Y. Lim, T. D. Nguyen-Phan and E W. Shin, Appl. Chem. Eng. 22, 61 (2011).

    Google Scholar 

  10. T. Peng, D. Zhao, D. Dai, W. Shi and K. Hirao, J. Phys. Chem. B 109, 4947 (2005).

    Article  Google Scholar 

  11. X. Zeng, Y. X. Gan, E. Clark and L. Su, J. Alloys Comp. 509, L221 (2011).

    Article  Google Scholar 

  12. S. Chen, Y. Xin, Y. Zhou, Y. Ma, H. Zhou and L. Qi, Energy Environ. Soc. DOI: 10.1039/C3EE42646G (2014).

    Google Scholar 

  13. B. Zhang, Y. Liu, Z. Huang, S. Oh, Y. Yu, U. W. Mai and J. K. Kim, J. Mater. Chem. 22, 12133 (2012).

    Article  Google Scholar 

  14. J. Qiu, C. Lai, E. Gray, S. Li, S. Qiu, E. Strounina, C. Sun, H. Zhao and S. Zhang, J. Mater. Chem. A 2, 6353 (2014).

    Article  Google Scholar 

  15. L. Miao, S. Tanemura, S. Toh, K. Kaneko and M. Tanemura, Appl. Surf. Sci. 238, 175 (2004).

    Article  ADS  Google Scholar 

  16. M. S. Sander, M. J. Côté, W. Gu, B. M. Kile and C. P. Tripp, Adv. Mater. 16, 2052 (2004).

    Article  Google Scholar 

  17. M. Miyauchi and H. Tokudome, J. Mater. Chem. 17, 2095 (2007).

    Article  Google Scholar 

  18. T. Ruff, R. Hahn and P. Schmuki, App. Surf. Sci. 257, 8177 (2011).

    Article  ADS  Google Scholar 

  19. N. K. Allam and C. A. Grimes, Solar Energy Mater. Solar Cells 92, 1468 (2008).

    Article  Google Scholar 

  20. S. Palmas, A. D. Pozzo, M. Mascia, A. Vacca, A. Ardu, R. Matarrese and I. Nova, Int. J. Hydrogen Energy 36, 8894 (2011).

    Article  Google Scholar 

  21. E. H. Chung et al., J. Korean Phy. Soc. 61, 924 (2012).

    Article  ADS  Google Scholar 

  22. R. Ruff, R. Hahn and P. Schmuki, Appl. Surf. Sci. 257, 8177 (2011).

    Article  ADS  Google Scholar 

  23. K. Bauer, S. Kleber and P. Schmuki, Electrochem. Commun. 8, 1321 (2006).

    Article  Google Scholar 

  24. H. Yang and C. Pan, J. Alloys Compd. 492, L33 (2010).

    Article  Google Scholar 

  25. Z. Zhang, M. F. Hossai and T. Takahashi, Int. J. Hydrogen Energy 35, 8528 (2010).

    Article  Google Scholar 

  26. X. Zeng, Y. X. Gan, E. Clark and L. Su, J. Alloys Compd. 509, L221 (2011).

    Article  Google Scholar 

  27. Y. X. Gan, B. J. Gan and L. Su, Mater. Sci. Engin. B 176, 1197 (2011).

    Article  Google Scholar 

  28. C. Xue, F. Zhang, S. Chen, Y. Yin and C. Lin, Mat. Sci. Semicond. Proc. 14, 157 (2011).

    Article  Google Scholar 

  29. Y. Sun, G. Wang and K. Yan, Int. J. Hydrogen Energy 36, 15502 (2011).

    Article  Google Scholar 

  30. S. Yamazaki, M. Sugihara, E. Yasunaga, T. Shimooka and K. Adachi, J. Photochem. Photobio. A: Chem. 209, 74 (2010).

    Article  Google Scholar 

  31. D. Miller, S. Mamiche-Afara, M. J. Dignam and M. Moskovits, Chem. Phys. Lett. 100, 236 (1983).

    Article  ADS  Google Scholar 

  32. K. A. McDonnell, N. J. English, C. P. Stallard, M. Rahman and D. P. Dowling, Appl. Surf. Sci. 275, 316 (2013).

    Article  ADS  Google Scholar 

  33. N. K. Allam and M. El-Sayed, J. Phys. Chem. C 114, 12024 (2010).

    Article  Google Scholar 

  34. D. Fang, Z. Luo, K. Huang and D. C. Lagoudas, Appl. Surf. Sci. 257, 6451 (2011).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Euh Duck Jeong.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chung, E.H., Baek, S.R., Yu, S.M. et al. Self-organized TiO2 nanotube arrays in the photocatalytic degradation of methylene blue under UV light irradiation. Journal of the Korean Physical Society 66, 1135–1139 (2015). https://doi.org/10.3938/jkps.66.1135

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3938/jkps.66.1135

Keywords

Navigation