Skip to main content
Log in

Effect of non-animal-derived nitrogen sources on the production of hyaluronic acid by Streptococcus sp. KL0188

  • Article
  • Published:
Journal of the Korean Society for Applied Biological Chemistry Submit manuscript

Abstract

Hyaluronic acid (HA) is a linear high-molecular-weight polysaccharide with useful biomedical applications. Streptococcus zooepidemicus, a typical HA-producing bacterium, requires an animalderived nitrogen source such as tryptone, peptone or sheep blood as a nutrient. Sixteen nonanimal-derived (NAD) nitrogen sources were tested as a replacement for the expensive animalderived nitrogen sources, which may have safety issues. Among the sixteen tested NAD nitrogen sources, a yeast-derived nitrogen source (YE 0251) showed the highest HA productivity, which was equivalent to the control HA production medium containing tryptone in a 5-L jar and in 3,000-L industrial fermentations. In the 3,000-L fermentation, YE 0251 increased cell mass (dry cell weight) and HA production by 11% and 8%, respectively, compared with the control HA production medium. The final specific volumetric productivity (0.41 g/L • h) was improved by about 70% after reducing the fermentation time from 20 h to 12 h, compared to the conventional production medium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Balazs EA and Denlinger JL (1989) Clinical uses of hyaluronan. Ciba Found Symp 143, 265–285.

    CAS  Google Scholar 

  • Chien LJ and Lee CK (2007) Hyaluronic acid production by recombinant Lactococcus lactis. Appl Microbiol Biot 77, 339–346.

    Article  CAS  Google Scholar 

  • Chong BF, Blank LM, McLaughlin R, and Nielsen LK (2005) Microbial hyaluronic acid production. Appl Microbiol Biot 66, 341–351.

    Article  CAS  Google Scholar 

  • Chong BF and Nielsen LK (2003) Aerobic cultivation of Streptococcus zooepidemicus and the role of NADH oxidase. Biochem Eng J 16, 153–162.

    Article  CAS  Google Scholar 

  • Davidson JM, Nanney LB, Broadley KN, Whitsett JS, and Aquino AM (1991) Hyaluronate derivatives and their application to wound healing: preliminary observations. Clin Mater 8, 171–177.

    Article  CAS  Google Scholar 

  • Gariboldi S, Palazzo M, Zanobbio L, Selleri S, Sommariva M, Sfondrini L, Cavicchini S, Balsari A, and Rumio C (2008) Low molecular weight hyaluronic acid increases the self-Defense of skin epithelium by induction of â — defensin 2 via TLR2 and TLR4. J Immunol 181, 2103–2110.

    CAS  Google Scholar 

  • Holmstrom B and Ricica J (1967) Production of hyaluronic acid by a streptococcal strain in batch culture. Appl Microbiol 15, 1409–1413.

    CAS  Google Scholar 

  • Kim JH, Yoo SY, Oh DK, Kweon YG, Park DW, Lee CH, and Gil GH (1996) Selection of a Streptococcus equi mutant and optimization of culture conditions for the production of high molecular weight hyaluronic acid. Enzyme Microb Tech 19, 440–445.

    Article  CAS  Google Scholar 

  • Kogan G, Soltes L, Stern R, and Gemeiner P (2007) Hyaluronic acid: a natural biopolymer with a broad range of biomedical and industrial applications. Biotechnol Lett 29, 17–25.

    Article  CAS  Google Scholar 

  • Krahulec J and Krahulcova J (2006) Increase in hyaluronic acid production by Streptococcus equi subsp. zooepidemicus strain deficient in â-glucuronidase in laboratory conditions. Appl Microbiol Biot 71, 415–422.

    Article  CAS  Google Scholar 

  • Laurent TC, Laurent UB, and Fraser JR (1996) The structure and function of hyaluronan: An overview. Immunol Cell Biol 74, A1-A7.

    Article  CAS  Google Scholar 

  • Liu L, Wang M, Du G, and Chen J (2008) Enhanced hyaluronic acid production of Streptococcus zooepidemicus by an intermittent alkaline-stress strategy. Lett Appl Microbiol 46, 383–388.

    Article  CAS  Google Scholar 

  • Liu L, Du G, Chen J, Wang M, and Sun J (2008) Influence of hyaluronidase addition on the production of hyaluronic acid by batch culture of Streptococcus zooepidemicus. Food Chem 110, 923–926.

    Article  CAS  Google Scholar 

  • Meyer K and Palmer JW (1934) The polysaccharide of the vitreous humor. J Biol Chem 107, 629–634.

    CAS  Google Scholar 

  • Morimoto K, Yamaguchi H, Iwakura Y, Morisaka K, Ohashi Y, and Nakai Y (1991) Effects of viscous hyaluronate-sodium solutions on the nasal absorption of vasopressin and an analogue. Pharmaceut Res 8, 471–474.

    Article  CAS  Google Scholar 

  • O’Regan M, Martini I, Crescenzi F, De Luca C, and Lansing M (1994) Molecular mechanisms and genetics of hyaluronan biosynthesis. Int J Biol Macromol 16, 283–286.

    Article  Google Scholar 

  • Prestwich GD, Marecak DM, Marecek JF, Vercruysse KP, and Ziebell MR (1998) Controlled chemical modification of hyaluronic acid: synthesis, applications, and biodegradation of hydrazide derivatives. J Control Release 53, 93–103.

    Article  CAS  Google Scholar 

  • Rohwer RG (1996) Analysis of risk to biomedical products developed from animal sources (with special emphasis on the spongiform encephalopathy agents, scrapie and BSE). Dev Biol Stand 88, 247–256.

    CAS  Google Scholar 

  • Saettone MF, Monti D, Torracca MT, and Chetoni P (1994) Mucoadhesive ophthalmic vehicles: evaluation of polymeric low-viscosity formulations. J Ocul Pharmacol 10, 83–92.

    Article  CAS  Google Scholar 

  • Vercruysse KP and Prestwich GD (1998) Hyaluronate derivatives in drug delivery. Crit Rev Ther Drug 15, 513–555.

    CAS  Google Scholar 

  • Widner B, Behr R, Von Dollen S, Tang M, Heu T, Sloma A, Sternberg D, Deangelis PL, Weigel PH, and Brown S (2005) Hyaluronic acid production in Bacillus subtilis. Appl Environ Microbiol 71, 3747–3752.

    Article  CAS  Google Scholar 

  • Yu H and Stephanopoulos G (2008) Metabolic engineering of Escherichia coli for biosynthesis of hyaluronic acid. Metab Eng 10, 24–32.

    Article  CAS  Google Scholar 

  • Zhang J, Ding X, Yang L, and Kong Z (2006) A serum-free medium for colony growth and hyaluronic acid production by Streptococcus zooepidemicus NJUST01. Appl Microbiol Biot 72, 168–172.

    Article  CAS  Google Scholar 

  • Zhang J and Robinson D (2005) Development of animalfree, rrotein-free and chemically-defined media for NS0 cell culture. Cytotechnology 48, 59–74.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cheon-Seok Park.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, GY., Ha, SJ., Jung, JH. et al. Effect of non-animal-derived nitrogen sources on the production of hyaluronic acid by Streptococcus sp. KL0188. J. Korean Soc. Appl. Biol. Chem. 52, 283–289 (2009). https://doi.org/10.3839/jksabc.2009.050

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.3839/jksabc.2009.050

Key words

Navigation