Skip to main content
Log in

Increase in hyaluronic acid production by Streptococcus equi subsp. zooepidemicus strain deficient in β-glucuronidase in laboratory conditions

  • Biotechnological products and process engineering
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Streptococcus equi subsp. zooepidemicus is known to produce a hyaluronic acid capsule to resist the host immune defense. As the structure of the polysaccharide is identical to the one produced by humans, the bacteria S. equisubsp. zooepidemicusis used in biotechnological production of hyaluronic acid. In our laboratory we prepared mutated strains that are β-glucuronidase deficient. Comparing the wild-type strain, which is positive in β-glucuronidase activity, with the mutated strains named clone1 and clone2 in laboratory conditions, we observed that β-glucuronidase influences the production of hyaluronic acid considerably and the molecular weight of hyaluronan slightly. The production of hyaluronic acid by the mutated strains is higher by approximately 20% and the molecular weight is larger by about 2%. The significant increase in the production of hyaluronic acid and the slight increase in the molecular weight are probably caused by an absence of free β-glucuronic acid, due to its removal from the non-reducing termini of the polysaccharide by β-glucuronidase. The presence of free β-glucuronic acid would likely induce the expression of the β-glucuronic-acid-utilizing operon, which in turn would reflect into a misuse of energy in the glucose-rich media.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Alho AM, Underhill CB (1989) The hyaluronate receptor is preferentially expressed on proliferating epithelial cells. J Cell Biol 108:1557–1565

    Article  CAS  Google Scholar 

  • Baudouy JR, Portalier R, Stoeber F (1981) Regulation of hexuronate system genes in Escherichia coli k-12: multiple regulation of the uxu operon by exuR and uxuR gene products. J Bacteriol 145:211–220

    Article  Google Scholar 

  • Bettelheim FA, Popdimirova N (1992) Hyaluronic acid—syneretic glycosaminoglycan. Curr Eye Res 11:411–419

    Article  CAS  Google Scholar 

  • Chanter N, Collin NC, Mumford JA (1994) Resistance of Streptococcus equi to equine polymorphonuclear leucocytes. Equine Inf Dis 7:201–206

    Google Scholar 

  • DeAngelis LP, Padgett-McCue AJ (2000) Identification and molecular cloning of a chondroitin synthase from Pasteurella multocida type F. J Biol Chem 275:24124–24129

    Article  CAS  Google Scholar 

  • DeAngelis PL (2002) Microbial glycosaminoglycan glycosyltransferases. Glycobiology 12:9R–16R

    Article  CAS  Google Scholar 

  • Goldberg RL, Toole BP (1987) Hyaluronate inhibition of cell proliferation. Arthritis Rheum 30:769–778

    Article  CAS  Google Scholar 

  • Heinegard D, Sommarin Y (1987) Proteoglycans: an overview. Methods Enzymol 144D:305–319

    Article  Google Scholar 

  • Henrich CJ, Hawkes SP (1989) Molecular weight dependence of hyaluronic acid produced during oncogenic transformation. Cancer Biochem Biophys 10:257–267

    CAS  PubMed  Google Scholar 

  • Kass EH, Seastone CV (1944) The role of the mucoid polysaccharide (hyaluronic acid) in the virulence of group A hemolytic streptococci. J Exp Med 79:319–330

    Article  CAS  Google Scholar 

  • Kitchen JR, Cysyk RL (1995) Synthesis and release of hyaluronic acid by Swiss 3T3 fibroblasts. Biochemical J 309:649–656

    Article  CAS  Google Scholar 

  • Kujawa MJ, Carrino DA, Caplan AI (1986) Substrate-bonded hyaluronic acid exhibits a size-dependent stimulation of chondrogenic differentiation of stage 24 limb mesenchymal cells in culture. Dev Biol 114:519–528

    Article  CAS  Google Scholar 

  • Kumar S, Kumar P, Ponting JM, Sattar A, Rooney P, Pye D, Hunter RD (1992) Biotinylated hyaluronan: a versatile and highly sensitive probe capable of detecting nanogram level of hyaluronan binding proteins (hyaladherins) on electroblots by a novel affinity detection procedure. In: Maragoudakis, ME (ed) Angiogenesis in health and disease, NATO ASI Series A, vol 227. Plenum, New York, pp 253–263

    Chapter  Google Scholar 

  • Laurent TC, Fraser JR (1992) Hyaluronan. Faseb J 6:2397–2404

    Article  CAS  Google Scholar 

  • McCarty MF (1996) Glucosamine for wound healing. Med Hypotheses 47:273–275

    Article  CAS  Google Scholar 

  • Moses AE, Wessels MR, Zalcman K, Alberti S, Natanson-Yaron S, Menes T, Hanski E (1997) Relative contribution of hyaluronic acid capsule and M protein to virulence in a mucoid strain of the group A Streptococcus. Inf Immun 65:64–71

    Article  CAS  Google Scholar 

  • Pham PL, Dupont I, Roy D, Lapointe G, Cerning J (2000) Production of exopolysaccharide by Lactobacillus rhamnosum R and analysis of its enzymatic degradation during prolonged fermentation. Appl Environ Microbiol 66:2302–2310

    Article  CAS  Google Scholar 

  • Poole AR (1986) Proteoglycans in health and disease: structures and functions. Biochem J 236:1–14

    Article  CAS  Google Scholar 

  • Roberts IS (1996) The biochemistry and genetics of capsular polysaccharide production in bacteria. Annu Rev Microbiol 50:285–315

    Article  CAS  Google Scholar 

  • Shulami S, Gat O, Sonenshein AL, Shoham Y (1999) The glucuronic acid utilization gene cluster from Bacillus stearothermophilus T-6. J Bacteriol 181:3695–3704

    Article  CAS  Google Scholar 

  • Toole BP (1990) Hyaluronan and its binding proteins, the hyaladherins. Curr Opin Cell Biol 2:839–844

    Article  CAS  Google Scholar 

  • Turley EA, Bowman P, Kytryk MA (1985) Effects of hyaluronate and hyaluronate binding proteins on cell motile and contact behaviour. J Cell Sci 78:133–145

    CAS  PubMed  Google Scholar 

  • Van Brunt J (1986) More to hyaluronic acid than meets the eye. Biotechnology 4:780–782

    Google Scholar 

  • Weindl G, Schaller M, Schäfer-Korting M, Korting HC (2004) Hyaluronic acid in the treatment and prevention of skin diseases: molecular biological, pharmaceutical and clinical aspects. Skin Pharmacol Physiol 17:207–213

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ján Krahulec.

Appendices

Appendix A

First day: clone1

Cultivation time (h)

MW (Da)

Concentration (mg/ml)

Cell number

pH

6

  

7.31

8

1.969×106

0.1152

2.28×108

6.48

1.963×106

0.1085

10

2.323×106

0.1699

3.74×108

5.1

2.384×106

0.1594

12

 

4.53×108

4.95

2.274×106

0.2357

14

2.240×106

0.2964

4.93×108

4.95

2.110×106

0.3029

16

2.305×106

0.3255

5.28×108

5.15

2.213×106

0.3423

18

2.239×106

0.3696

5.26×108

5.18

20

2.257×106

0.4184

5.49×108

5.25

2.221×106

0.4247

Appendix B

First day: clone2

Cultivation time (h)

MW (Da)

Concentration (mg/ml)

Cell number

pH

6

  

7.3

8

2.493×106

0.0889

2.47×108

6.25

2.318×106

0.0924

10

2.367×106

0.1716

3.86×108

4.9

2.374×106

0.1679

12

 

4.63×108

4.9

2.394×106

0.2184

14

2.264×106

0.2895

5.03×108

4.95

2.343×106

0.2756

16

2.372×106

0.3033

5.29×108

5.05

2.268×106

0.3151

18

2.289×106

0.3499

5.37×108

5.24

2.190×106

0.3641

20

2.239×106

0.4111

5.44×108

5.24

2.244×106

0.4065

Appendix C

First day: wild type

Cultivation time (h)

MW (Da)

Concentration (mg/ml)

Cell number

pH

6

  

7.48

8

2.570×106

0.0396

1.21×108

6.98

2.611×106

0.0373

10

2.441×106

0.1173

2.85×108

5.4

2.460×106

0.1147

12

2.253×106

0.1960

4.00×108

4.75

2.136×106

0.2092

14

2.209×106

0.2505

4.41×108

4.84

2.341×106

0.2329

16

2.386×106

0.2662

4.82×108

4.9

2.242×106

0.2805

18

2.220×106

0.3208

4.69×108

4.88

2.361×106

0.3020

20

2.282×106

0.3387

4.84×108

4.86

2.275×106

0.3392

Appendix D

Second day: clone1

Cultivation time (h)

MW (Da)

Concentration (mg/ml)

Cell number

pH

6

  

5.36

8

2.461×106

0.1740

3.97×108

4.98

2.457×106

0.1708

10

2.284×106

0.2453

4.69×108

4.97

2.293×106

0.2461

12

2.256×106

0.2901

5.06×108

5.08

2.384×106

0.2728

14

2.298×106

0.3203

5.28×108

5.28

2.226×106

0.3269

16

2.193×106

0.3869

5.35×108

5.41

2.284×106

0.3675

18

2.264×106

0.4048

5.47×108

5.3

2.178×106

0.4281

20

2.204×106

0.4452

5.44×108

5.78

2.184×106

0.4501

Appendix E

Second day: clone2

Cultivation time (h)

MW (Da)

Concentration (mg/ml)

Cell number

pH

6

  

5.36

8

2.497×106

0.1735

3.98×108

4.9

2.347×106

0.1837

10

2.357×106

0.2402

4.71×108

4.96

2.337×106

0.2397

12

2.209×106

0.3036

5.14×108

5.05

2.260×106

0.2939

14

2.260×106

0.3359

5.29×108

5.26

2.265×106

0.3342

16

2.271×106

0.3722

5.51×108

5.47

2.295×106

0.3665

18

2.131×106

0.4354

5.60×108

5.33

2.176×106

0.4304

20

2.231×106

0.4678

5.54×108

5.7

2.178×106

0.4724

Appendix F

Second day: wild type

Cultivation time (h)

MW (Da)

Concentration (mg/ml)

Cell number

pH

6

  

5.28

8

2.483×106

0.1455

3.95×108

4.84

2.380×106

0.1447

10

2.264×106

0.2124

4.53×108

4.8

2.222×106

0.2150

12

2.188×106

0.2567

4.78×108

4.83

2.239×106

0.2528

14

2.159×106

0.2814

4.89×108

4.87

2.179×106

0.2781

16

2.006×106

0.3315

5.11×108

5.07

2.170×106

0.3119

18

2.104×106

0.3390

5.13×108

5.05

2.170×106

0.3239

20

2.133×106

0.3576

5.13×108

5.27

2.025×106

0.3692

Appendix G

Third day: clone1

Cultivation time (h)

MW (Da)

Concentration (mg/ml)

Cell number

pH

6

  

6.06

8

2.378×106

0.1714

3.77×108

5.00

2.391×106

0.1696

10

2.294×106

0.2393

4.50×108

5.00

2.224×106

0.2384

12

2.154×106

0.3148

4.97×108

5.05

2.287×106

0.3044

14

2.285×106

0.3230

5.20×108

5.15

2.299×106

0.3247

16

2.293×106

0.3644

5.27×108

5.34

2.261×106

0.3772

18

2.199×106

0.4445

5.45×108

5.45

2.382×106

0.4074

20

2.354×106

0.4520

5.54×108

5.54

2.200×106

0.4677

Appendix H

Third day: clone2

Cultivation time (h)

MW (Da)

Concentration (mg/ml)

Cell number

pH

6

  

5.58

8

2.289×106

0.1769

3.90×108

4.94

2.336×106

0.1710

10

2.244×106

0.2407

4.62×108

5.00

2.222×106

0.2420

12

2.354×106

0.2662

4.98×108

5.10

2.392×106

0.2712

14

2.144×106

0.3344

5.15×108

5.23

2.185×106

0.3292

16

2.188×106

0.3572

5.26×108

5.45

2.168×106

0.3548

18

2.254×106

0.4158

5.35×108

5.55

2.248×106

0.4147

20

2.413×106

0.4262

5.43×108

5.68

2.351×106

0.4264

Appendix I

Third day: wild type

Cultivation time (h)

MW (Da)

Concentration (mg/ml)

Cell number

pH

6

  

6.46

8

2.425×106

0.1457

3.32×108

5.09

2.456×106

0.1446

10

2.329×106

0.2064

4.14×108

4.85

12

2.256×106

0.2421

4.45×108

4.95

2.250×106

0.2438

14

2.285×106

0.2562

4.47×108

4.87

2.186×106

0.2780

16

2.190×106

0.3043

4.52×108

4.95

2.227×106

0.2865

18

2.268×106

0.3219

4.62×108

4.96

2.193×106

0.3205

20

2.233×106

0.3411

4.72×108

5.15

2.245×106

0.3229

Appendix J

Fourth day: clone1

Cultivation time (h)

MW (Da)

Concentration (mg/ml)

Cell number

pH

6

  

6.85

8

2.168×106

0.1532

3.19×108

5.16

10

2.145×106

0.2205

4.26×108

4.96

12

2.143×106

0.2785

4.74×108

4.93

2.190×106

0.2705

14

2.210×106

0.2835

5.03×108

5.17

2.197×106

0.2908

16

2.297×106

0.3370

5.19×108

5.25

2.293×106

0.3389

18

2.215×106

0.4039

5.32×108

5.4

2.250×106

0.3885

20

2.243×106

0.4236

5.38×108

5.94

Appendix K

Fourth day: clone2

Cultivation time (h)

MW (Da)

Concentration (mg/ml)

Cell number

pH

6

  

6.31

8

2.260×106

0.1873

3.96×108

4.85

2.276×106

0.1824

10

2.354×106

0.2402

4.84×108

5.00

2.241×106

0.2569

12

2.354×106

0.3103

5.23×108

4.86

2.243×106

0.3168

14

2.130×106

0.3604

5.46×108

5.16

2.239×106

0.3559

16

2.176×106

0.3945

5.63×108

5.20

2.108×106

0.4123

18

2.354×106

0.4386

5.75×108

5.40

2.240×106

0.4469

20

2.223×106

0.4834

5.80×108

5.97

2.221×106

0.4804

Appendix L

Fourth day: wild type

Cultivation time (h)

MW (Da)

Concentration (mg/ml)

Cell number

pH

6

  

5.94

8

2.178×106

0.1870

3.91×108

4.85

2.279×106

0.1831

10

2.253×106

0.2574

4.63×108

4.90

2.159×106

0.2639

12

2.295×106

0.2747

4.82×108

4.85

14

2.121×106

0.3252

4.94×108

4.90

2.118×106

0.3245

16

2.064×106

0.3520

5.00×108

4.93

2.156×106

0.3370

18

2.258×106

0.3406

4.99×108

5.04

2.258×106

0.3383

20

2.247×106

0.3422

5.08×108

5.42

2.196×106

0.3462

Rights and permissions

Reprints and permissions

About this article

Cite this article

Krahulec, J., Krahulcová, J. Increase in hyaluronic acid production by Streptococcus equi subsp. zooepidemicus strain deficient in β-glucuronidase in laboratory conditions. Appl Microbiol Biotechnol 71, 415–422 (2006). https://doi.org/10.1007/s00253-005-0173-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-005-0173-9

Keywords

Navigation