Skip to main content
Log in

Site-specific recombinases in genetic engineering: Modern in vivo technologies

  • Published:
Cytology and Genetics Aims and scope Submit manuscript

Abstract

A review was conducted over the current achievements in the area of site-specific recombinases (SSR) and their applications for manipulations with pro- and eukaryotic genomes. The principles of SSR functioning and the types of genetic rearrangements catalyzed by SSR were analyzed. The examples given in this review show the SSR potential to solve a wide range of basic and practical problems. To use different methods for solving these problems, however, would be more difficult or even impossible. The main directions for further developing the technology of site-specific recombination are the following: the use of SSR for a wider range of biological systems; generation of the SSR, which are characterized by strictly controlled expression in space and time; and the search for recombinases with new substrate specificity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sambrook, J., Fritsch, E.F., and Maniatis, T., Molecular Cloning: A Laboratory Manual, New York: Cold Spring Harbor Lab., 2001.

    Google Scholar 

  2. Mardis, E.R., Next-Generation DNA Sequencing Methods, Annu. Rev. Genom. Hum. Genet., 2008, vol. 9, pp. 387–402.

    Article  CAS  Google Scholar 

  3. Wheeler, D.A., Srinivasan, M., Egholm, M., et al., The Complete Genome of an Individual by Massively Parallel DNA Sequencing, Nature, 2008, vol. 452, pp. 872–876.

    Article  PubMed  CAS  Google Scholar 

  4. Bentley, D.R., Balasubramanian, S., Swerdlow, H.P., et al., Accurate Whole Human Genome Sequencing using Reversible Terminator Chemistry, Nature, 2008, vol. 456, pp. 53–59.

    Article  PubMed  CAS  Google Scholar 

  5. Wang, J., Wang, W., Li, R., et al., The Diploid Genome Sequence of an Asian Individual, Nature, 2008, vol. 456, pp. 60–65.

    Article  PubMed  CAS  Google Scholar 

  6. Yu, B.J. and Kim, C., Minimization of the Escherichia coli Genome using the Tn5-Targeted Cre/LoxP Excision System, Meth. Mol. Biol., 2008, vol. 416, pp. 261–277.

    Article  CAS  Google Scholar 

  7. Sadowski, P., The Flp Recombinase of the 2-Mm Plasmid of Saccharomyces cerevisiae, Prog. Nucl. Acids. Res. Mol. Biol., 1995, vol. 51, pp. 53–91.

    Article  CAS  Google Scholar 

  8. Gidoni, D., Srivastava, V., and Carmi, N., Site-Specific Excisional Recombination Strategies for Elimination of Undesirable Transgenes from Crop Plants, In Vitro Cell Dev. Biol. Plant., 2008, vol. 44, pp. 457–467.

    Article  CAS  Google Scholar 

  9. Zhang, Y., Liu, H., Li, B., Zhang, J.T., Li, Y., and Zhang, H., Generation of Selectable Marker-Free Transgenic Tomato Resistant to Drought, Cold and Oxidative Stress using the Cre/LoxP DNA Excision System, Transgenic Res., 2009 (doi: 10.1007/s11248-009-9251-6).

  10. Moravcikova, J., Vaculkova, E., Bauer, M., and Libantova, J., Feasibility of the Seed Specific Cruciferin C Promoter in the Self Excision Cre/LoxP Strategy Focused on Generation of Marker-Free Transgenic Plants, Theor. Appl. Genet., 2008, vol. 117, pp. 1325–1334.

    Article  PubMed  CAS  Google Scholar 

  11. Branda, C.S. and Dymecki, S.M., Talking About a Revolution: The Impact of Site-Specific Recombinases on Genetic Analyses in Mice, Developmental Cell, 2004, vol. 6, pp. 7–28.

    Article  PubMed  CAS  Google Scholar 

  12. Schweizer, H.P., Applications of the Saccharomyces Cerevisiae Flp-FRT System in Bacterial Genetics, J. Mol. Microbiol. Biotechnol., 2003, vol. 5, pp. 67–77.

    Article  PubMed  CAS  Google Scholar 

  13. Wild, J., Sektas, M., Hradecna, Z., and Szybalski, W., Targeting and Retrofitting Pre-Existing Libraries of Transposon Insertions with FRT and OriV Elements for In-Vivo Generation of Large Quantities of Any Genomic Fragment, Gene, 1998, vol. 223, pp. 55–66.

    Article  PubMed  CAS  Google Scholar 

  14. Zhang, Y., Buchholz, F., Muyrers, J.P.P., and Stewart, A.F., A New Logic for DNA Engineering using Recombination in Escherichia coli, Nat. Genet., 1998, vol. 20, pp. 123–128.

    Article  PubMed  CAS  Google Scholar 

  15. Sharan, S.K., Thomason, L.C., Kuznetsov, S.G., and Court, D.L., Recombineering: A Homologous Recombination-Based Method of Genetic Engineering, Nat. Protocols, 2009, vol. 4, pp. 206–223.

    Article  CAS  Google Scholar 

  16. Bron, P.A., Grangette, C., Mercenier, A., de Vos, W.M., and Kleerebezem, M., Identification of Lactobacillus plantarum Genes That Are Induced in the Gastrointestinal Tract of Mice, J. Bacteriol., 2004, vol. 186, pp. 5721–5729.

    Article  PubMed  CAS  Google Scholar 

  17. Jackson, R.W. and Giddens, S.R., Development and Application of in Vivo Expression Technology (IVET) for Analyzing Microbial Gene Expression in Complex Environments, Infect. Disorders-Drug Targets, 2006, vol. 6, pp. 207–240.

    Article  CAS  Google Scholar 

  18. Sharma, N., Moldt, B., Dalsgaard, T., Jensen, T.G., and Mikkelsen, J.G., Regulated Gene Insertion by Steroid-Induced C31 Integrase, Nucleic Acids Res., 2008, vol. 36, pp. 1–12.

    Article  CAS  Google Scholar 

  19. Luzhetskyy, A., Fedoryshin, M., Gromyko, O., et al., IncP Plasmids Are Most Effective in Mediating Conjugation between Escherichia coli and Streptomycetes, Russ. J. Genet., 2006, vol. 42, pp. 476–481.

    Article  CAS  Google Scholar 

  20. Keravala, A. and Calos, M.P., Site-Specific Chromosomal Integration Mediated by C31 Integrase, Meth. Mol. Biol., 2006, vol. 435, pp. 165–173.

    Article  Google Scholar 

  21. Thomason, L.C., Calendar, R., and Ow, D.W., Gene Insertion and Replacement in Schizosaccharomyces pombe Mediated by the Streptomyces Bacteriophage C31 Site-Specific Recombination System, Mol. Genet. Genom., 2001, vol. 265, pp. 1031–1038.

    Article  CAS  Google Scholar 

  22. Fedoroyshin, M., Petzke, L., Welle, E., et al., Marker Removal from Actinomycete Genomes using Flp Recombinase, Gene, 2008, vol. 213, pp. 114–119.

    Google Scholar 

  23. Fedoryshin, M., Welle, E., Bechthold, A., and Luzhetskyy, A., Functional Expression of the Cre Recombinase in Actinomycetes, Appl. Microbiol. Biotechnol., 2008, vol. 78, pp. 1065–1070.

    Article  CAS  Google Scholar 

  24. Blume, Ya., Sivolap, Yu., Rudii, R., and Sozinov, O., New Wave of “Green Revolution:” Prospects of Use of Advances in Biotechnology and Genomics in Ukraine, Visn. NAN Ukraini, 2006, vol. 3, pp. 21–31.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Ostash.

Additional information

Original Ukrainian Text © B. Ostash, 2010, published in Tsitologiya i Genetika, 2010, Vol. 44, No. 4, pp. 61–69.

About this article

Cite this article

Ostash, B. Site-specific recombinases in genetic engineering: Modern in vivo technologies. Cytol. Genet. 44, 244–251 (2010). https://doi.org/10.3103/S0095452710040109

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0095452710040109

Keywords

Navigation