BPhysMGU2003008Darwish-m1 Reaction Near Threshold and Its Implication to the GDH Sum Rule and the Double Polarization $$\boldsymbol{E}$$ -Asymmetry"/> Skip to main content
Log in

The Spin Response of the \(\vec{\boldsymbol{\gamma}}\vec{\boldsymbol{d}}\to\pi^{0}\boldsymbol{d}\) Reaction Near Threshold and Its Implication to the GDH Sum Rule and the Double Polarization \(\boldsymbol{E}\)-Asymmetry

  • Published:
Moscow University Physics Bulletin Aims and scope

Abstract

The spin response of the \(\vec{\gamma}\vec{d}\to\pi^{0}d\) reaction near threshold is investigated. Our formalism based on the impulse approximation, uses the realistic Bonn \(NN\) potential (full model) for the deuteron wave function and the unitary isobar MAID-2007 model for the elementary \(\gamma N\to\pi N\) amplitude. We present the first results for the double polarized differential and total cross sections for parallel and antiparallel helicity states, the deuteron spin asymmetry, the helicity \(E\)-asymmetry, the deuteron GDH integral, and the double spin asymmetries of the total cross section in the near-threshold region. Sensitivity of the estimated results to the \(D\)-wave effect of the deuteron wave function for a realistic \(NN\) potential is studied. We find an insignificant sensitivity of most of the estimated observables to the \(D\)-wave component. A noticeable role is obtained only in the double polarized differential cross section with antiparallel spins of photon and deuteron \(d\sigma^{A}/d\Omega_{\pi}\) close to the threshold energy at forward and backward pion angles as well as in the double spin asymmetry of the total cross section \(\sigma\tilde{T}_{20}\) at relatively large photon energies. Thus, we compare results for these two observables using various \(NN\) potential models with different \(D\)-state probabilities, and a noticeable influence is found.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

REFERENCES

  1. E. M. Darwish, H. Arenhövel, and M. Schwamb, Eur. Phys. J. A 16, 111 (2003);

    Article  ADS  Google Scholar 

  2. E. M. Darwish, H. Arenhövel, and M. Schwamb, Eur. Phys. J. A 17, 513 (2003).

    Article  ADS  Google Scholar 

  3. I. T. Obukhovsky et al., J. Phys. G 29, 2207 (2003).

    Article  ADS  Google Scholar 

  4. H. Arenhövel and A. Fix, Phys. Rev. C 72, 064004 (2005);

    Article  ADS  Google Scholar 

  5. A. Fix and H. Arenhövel, Phys. Rev. C 72, 064005 (2005).

    Article  ADS  Google Scholar 

  6. V. Lensky, V. Baru, J. Haidenbauer, C. Hanhart, A. Kudryavtsev, and U.-G. Mei\(\ss\)ner, Eur. Phys. J. A 26, 107 (2005).

    Article  ADS  Google Scholar 

  7. M. I. Levchuk et al., Phys. Rev. C 74, 014004 (2006).

    Article  ADS  Google Scholar 

  8. E. M. Darwish, C. Fernández-Ramírez, E. Moya de Guerra, and J. M. Udías, Phys. Rev. C 76, 044005 (2007);

  9. E. M. Darwish, M. A. Shehata, and S. S. Al-Thoyaib, Chin. J. Phys. 45, 4 (2007).

    Google Scholar 

  10. M. I. Levchuk, Phys. Rev. C 82, 044002 (2010).

    Article  ADS  Google Scholar 

  11. E. M. Darwish and S. S. Al-Thoyaib, Ann. Phys. (N.Y.) 326, 604 (2011).

    Article  ADS  Google Scholar 

  12. E. M. Darwish, N. Akopov, and M. El-Zohry, AIP Conf. Proc. 1370, 242 (2011).

    Article  ADS  Google Scholar 

  13. V. E. Tarasov et al., Phys. Rev. C 84, 035203 (2011);

    Article  ADS  Google Scholar 

  14. V. E. Tarasov, W. J. Briscoe, M. Dieterle, B. Krusche, A. E. Kudryavtsev, M. Ostrick, and I. I. Strakovsky, Phys. At. Nucl. 79, 216 (2016).

    Article  Google Scholar 

  15. E. M. Darwish and S. S. Al-Thoyaib, Ann. Phys. (N.Y.) 351, 35 (2014).

    Article  ADS  Google Scholar 

  16. E. M. Darwish and A. Hemmdan, Ann. Phys. (N.Y.) 356, 28 (2015);

    Article  Google Scholar 

  17. E. M. Darwish, Appl. Math. Inf. Sci. 9, 527 (2015);

    Google Scholar 

  18. E. M. Darwish and S. S. Al-Thoyaib, J. Phys. Soc. Jpn. 84, 124201 (2015).

    Article  ADS  Google Scholar 

  19. E. M. Darwish, Chin. Phys. Lett. 33, 041301 (2016).

    Article  ADS  Google Scholar 

  20. E. M. Darwish, H. M. Abou-Elsebaa, E. A. Sultan, and Kh. S. A. Hassaneen, Int. J. Mod. Phys. E 26, 1750059 (2017).

    Article  ADS  Google Scholar 

  21. E. M. Darwish, H. M. Abou-Elsebaa, and Kh. S. A. Hassaneen, Braz. J. Phys. 48, 168 (2018).

    Article  ADS  Google Scholar 

  22. S. X. Nakamura, Phys. Rev. C 98, 042201 (2018);

    Article  ADS  Google Scholar 

  23. S. X. Nakamura, H. Kamano, and T. Sato, Phys. Rev. D 99, 031301 (2019);

    Article  ADS  Google Scholar 

  24. S. X. Nakamura, H. Kamano, T.-S. H. Lee, and T. Sato, arXiv: nucl-th/1804.04757.

  25. A. Fix and H. Arenhövel, Phys. Rev. C 100, 034003 (2019).

    Article  ADS  Google Scholar 

  26. E. M. Darwish and M. Saleh Yousef, Mosc. Univ. Phys. Bull. 74, 595 (2019).

    Article  ADS  Google Scholar 

  27. E. M. Darwish, M. M. Almarashi, and M. Saleh Yousef (2020, in press).

  28. B. Krusche and S. Schadmand, Prog. Part. Nucl. Phys. 51, 399 (2003);

    Article  ADS  Google Scholar 

  29. V. Burkert and T.-S. H. Lee, Int. J. Mod. Phys. E 13, 1035 (2004);

    Article  ADS  Google Scholar 

  30. K. Helbing, Prog. Part. Nucl. Phys. 57, 405 (2006);

    Article  ADS  Google Scholar 

  31. A. Thomas, Eur. Phys. J. A 28 (Suppl. 1), 161 (2006);

    Article  ADS  Google Scholar 

  32. A. M. Sandorfi et al., AIP Conf. Proc. 1155, 71 (2009);

    ADS  Google Scholar 

  33. H. R. Weller et al., Prog. Part. Nucl. Phys. 62, 275 (2009);

    Article  Google Scholar 

  34. B. Krusche, Eur. Phys. J. Spec. Top. 198, 199 (2011);

    Article  Google Scholar 

  35. I. Jaegle et al., Eur. Phys. J. A 47, 89 (2011);

    Article  ADS  Google Scholar 

  36. D. K. Hasell et al., Ann. Rev. Nucl. Part. Sci. 61, 409 (2011);

    Article  ADS  Google Scholar 

  37. B. Strandberg et al., EPJ Web Conf. 130, 05019 (2016);

  38. B. Strandberg, PhD Dissertation (Univ. of Glasgow, UK, 2017); S. E. Lukonin et al., Int. J. Mod. Phys. E 28, 1950010 (2019);

  39. B. Strandberg et al., Phys. Rev. C 101, 035207 (2020).

    Article  ADS  Google Scholar 

  40. J. H. Koch and R. M. Woloshyn, Phys. Rev. C 16, 1968 (1977).

    Article  ADS  Google Scholar 

  41. P. Bosted and J. M. Laget, Nucl. Phys. A 296, 413 (1978);

    Article  ADS  Google Scholar 

  42. J. M. Laget, Phys. Rep. 69, 1 (1981).

    Article  ADS  Google Scholar 

  43. S. S. Kamalov, L. Tiator, and C. Bennhold, Phys. Rev. C 55, 98 (1997);

    Article  ADS  Google Scholar 

  44. S. S. Kamalov, L. Tiator, and C. Bennhold, Nucl. Phys. A 547, 559 (1992);

    Article  ADS  Google Scholar 

  45. S. S. Kamalov, L. Tiator, and C. Bennhold, Few-Body Syst. 10, 143 (1991).

    Article  ADS  Google Scholar 

  46. F. Blaazer, B. L. G. Bakker, and H. J. Boersma, Nucl. Phys. A 568, 681 (1994);

    Article  ADS  Google Scholar 

  47. F. Blaazer, B. L. G. Bakker, and H. J. Boersma, Nucl. Phys. A 590, 750 (1995);

    Article  ADS  Google Scholar 

  48. F. Blaazer, PhD Dissertation (Free Univ. of Amsterdam, Amsterdam, 1995).

  49. H. Garcilazo and E. M. de Guerra, Phys. Rev. C 52, 49 (1995);

    Article  ADS  Google Scholar 

  50. H. Garcilazo and E. M. de Guerra, Phys. Rev. C 49, R601 (1994).

    Article  ADS  Google Scholar 

  51. P. Wilhelm and H. Arenhцvel, Few-Body Syst. Suppl. 7, 235 (1994);

    Article  Google Scholar 

  52. P. Wilhelm and H. Arenhцvel, Nucl. Phys. A 593, 435 (1995);

    Article  ADS  Google Scholar 

  53. P. Wilhelm and H. Arenhvel, Nucl. Phys. A 609, 469 (1996).

    Article  ADS  Google Scholar 

  54. D. Drechsel, S. Kamalov, and L. Tiator, Eur. Phys. J. A 34, 69 (2007);

    Article  ADS  Google Scholar 

  55. MAID2007 Program. http://wwwkph.kph.uni-mainz.de/MAID/maid2007/

  56. R. Machleidt, K. Holinde, and Ch. Elster, Phys. Rep. 149, 1 (1987).

    Article  ADS  Google Scholar 

  57. S. B. Gerasimov, Sov. J. Nucl. Phys. 2, 430 (1966);

    Google Scholar 

  58. S. D. Drell and A. C. Hearn, Phys. Rev. Lett. 16, 908 (1966).

    Article  ADS  Google Scholar 

  59. J. D. Bjorken and S. D. Drell, Relativistic Quantum Mechanics (McGraw-Hill, New York, 1964).

    MATH  Google Scholar 

  60. R. B. Wiringa, V. G. J. Stoks, and R. Schiavilla, Phys. Rev. C 51, 38 (1995).

    Article  ADS  Google Scholar 

Download references

ACKNOWLEDGMENTS

One of the authors, E.M. Darwish, would like to thank M. Levchuk for several enlightening discussions and guidance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. M. Darwish.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Darwish, E., Abou-Elsebaa, H., Alsadi, K. et al. The Spin Response of the \(\vec{\boldsymbol{\gamma}}\vec{\boldsymbol{d}}\to\pi^{0}\boldsymbol{d}\) Reaction Near Threshold and Its Implication to the GDH Sum Rule and the Double Polarization \(\boldsymbol{E}\)-Asymmetry. Moscow Univ. Phys. 75, 198–207 (2020). https://doi.org/10.3103/S002713492003008X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S002713492003008X

Keywords:

Navigation