Skip to main content
Log in

Sensitivity of Polarization Observables in \({\gamma}\boldsymbol{d\to}{\pi}^{\mathbf{0}}\boldsymbol{d}\) Reaction Near Threshold to the Choice of Elementary \({\gamma}\boldsymbol{N\to}{\pi}\boldsymbol{N}\) Amplitude and Deuteron Wave Function

  • Published:
Moscow University Physics Bulletin Aims and scope

Abstract

We study the sensitivity of polarization observables in \(\gamma d\to\pi^{0}d\) reaction near threshold to the choice of elementary \(\gamma N\to\pi N\) amplitude and \(NN\) potential model adapted for the deuteron wave function (DWF). Numerical results for various beam, target, and beam–target polarization observables are presented and systematic uncertainties caused by the use of different elementary operators and DWFs are evaluated. The calculations are based on a \(\gamma d\to\pi^{0}d\) approach in which realistic models for the elementary pion production amplitude and the DWF are used. We find considerable dependencies of the estimated results for all possible polarization observables on the elementary amplitude. The spin asymmetries \(\Sigma\), \(T_{21}^{c}\), \(T_{10}^{l}\), and \(T_{20}^{l}\) show large sensitivities to the DWF. In contrast, the asymmetries \(T_{11}\), \(T_{2M}\) (\(M=0,1,2\)), \(T_{10}^{c}\), and \(E\) as well as the helicity difference \(d(\sigma^{P}-\sigma^{A})/d\Omega\) have slight dependence on the DWF only at photon energies very close to \(\pi\)-threshold. The unpolarized differential cross section is also predicted and compared with the available experimental data, and a satisfactory agreement is obtained only at forward pion angles. We expect that the results presented here may be useful to interpret the recent measurements from Jefferson Lab, TAPS@ELSA, A2 and GDH@MAMI Collaborations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

REFERENCES

  1. B. Krusche and S. Schadmand, Prog. Part. Nucl. Phys. 51, 399 (2003)

    Article  ADS  Google Scholar 

  2. V. Burkert and T.-S. H. Lee, Int. J. Mod. Phys. E 13, 1035 (2004)

    Article  ADS  Google Scholar 

  3. K. Helbing, Prog. Part. Nucl. Phys. 57, 405 (2006)

    Article  ADS  Google Scholar 

  4. A. Thomas, Eur. Phys. J. A 28 (Suppl. 1), 161 (2006)

    Article  ADS  Google Scholar 

  5. A. M. Sandorfi et al., AIP Conf. Proc. 1155, 71 (2009)

    ADS  Google Scholar 

  6. H. R. Weller et al., Prog. Part. Nucl. Phys. 62, 275 (2009).

    Article  Google Scholar 

  7. B. Krusche, Eur. Phys. J. Spec. Top. 198, 199 (2011)

    Article  Google Scholar 

  8. I. Jaegle et al., Eur. Phys. J. A 47, 89 (2011)

    Article  ADS  Google Scholar 

  9. D. K. Hasell et al., Ann. Rev. Nucl. Part. Sci. 61, 409 (2011)

    Article  ADS  Google Scholar 

  10. B. Strandberg et al., EPJ Web Conf. 130, 05019 (2016).

  11. B. Strandberg, PhD Thesis (Univ. Glasgow, UK, 2017)

  12. S. E. Lukonin et al., Int. J. Mod. Phys. E 28, 1950010 (2019)

    Article  ADS  Google Scholar 

  13. B. Strandberg et al., Phys. Rev. C 101, 035207 (2020).

    Article  ADS  Google Scholar 

  14. U. Siodlaczek, PhD Thesis (Tübingen Univ., Germany, 2000)

  15. U. Siodlaczek et al., Eur. Phys. J. A 10, 365 (2001).

    Article  ADS  Google Scholar 

  16. D. K. Hasell et al., Ann. Rev. Nucl. Part. Sci. 61, 409 (2011).

    Article  ADS  Google Scholar 

  17. S. A. Zevakov et al., Bull. Russ. Acad. Sci.: Phys. 79, 864 (2015)

    Article  Google Scholar 

  18. S. A. Zevakov et al., Bull. Russ. Acad. Sci.: Phys. 78, 611 (2014)

    Article  Google Scholar 

  19. D. M. Nikolenko et al., JETP Lett. 89, 432 (2009)

    Article  ADS  Google Scholar 

  20. D. M. Nikolenko et al., Phys. Part. Nucl. 48, 102 (2017)

    Article  Google Scholar 

  21. I. A. Rachek et al., Few-Body Syst. 58, 29 (2017)

    Article  ADS  Google Scholar 

  22. V. V. Gauzshtein et al., Int. J. Mod. Phys. E 29, 2050011 (2020)

    Article  ADS  Google Scholar 

  23. V. V. Gauzshtein et al., Eur. Phys. J. A 56, 169 (2020).

    Article  ADS  Google Scholar 

  24. Y. Ilieva et al. (for the CLAS Collab.), in Proceedings of the 17th International IUPAP Conference on Few-Body Problems in Physics, Durham NC, 2003, Nucl. Phys. A 737, S158 (2004)

    Google Scholar 

  25. Y. Ilieva et al. (for the CLAS Collab.), arXiv: nucl-ex/0309017

  26. Y. Ilieva et al., Eur. Phys. J. A 43, 261 (2010); arXiv: nucl-ex/0703006.

    Article  ADS  Google Scholar 

  27. W. J. Briscoe et al. (A2 Collab. at MAMI), Phys. Rev. C 100, 065205 (2019)

    Article  ADS  Google Scholar 

  28. W. J. Briscoe et al. (A2 Collab. at MAMI), Eur. Phys. J. A 56, 218 (2020).

    Article  ADS  Google Scholar 

  29. D. G. Ireland, E. Pasyuk, and I. Strakovsky, Prog. Part. Nucl. Phys. 111, 103752 (2020).

    Article  Google Scholar 

  30. J. H. Koch and R. M. Woloshyn, Phys. Rev. C 16, 1968 (1977).

    Article  ADS  Google Scholar 

  31. P. Bosted and J. M. Laget, Nucl. Phys. A 296, 413 (1978) J. M. Laget, Phys. Rep. 69, 1 (1981).

    Article  ADS  Google Scholar 

  32. P. Wilhelm and H. Arenhövel, Few-Body Syst. Suppl. 7, 235 (1994)

    Article  Google Scholar 

  33. P. Wilhelm and H. Arenhövel, Nucl. Phys. A 593, 435 (1995)

    Article  ADS  Google Scholar 

  34. P. Wilhelm and H. Arenhövel, Nucl. Phys. A 609, 469 (1996).

    Article  ADS  Google Scholar 

  35. H. Garcilazo and E. M. de Guerra, Phys. Rev. C 52, 49 (1995)

    Article  ADS  Google Scholar 

  36. H. Garcilazo and E. M. de Guerra, Phys. Rev. C 49, R601 (1994).

    Article  ADS  Google Scholar 

  37. F. Blaazer, B. L. G. Bakker, and H. J. Boersma, Nucl. Phys. A 568, 681 (1994)

    Article  ADS  Google Scholar 

  38. F. Blaazer, B. L. G. Bakker, and H. J. Boersma, Nucl. Phys. A 590, 750 (1995)

  39. F. Blaazer, PhD Thesis (Free Univ. of Amsterdam, 1995).

  40. S. S. Kamalov, L. Tiator, and C. Bennhold, Phys. Rev. C 55, 98 (1997)

  41. S. S. Kamalov, L. Tiator, and C. Bennhold, Nucl. Phys. A 547, 559 (1992)

  42. S. S. Kamalov, L. Tiator, and C. Bennhold, Few-Body Syst. 10, 143 (1991).

  43. E. M. Darwish and S. S. Al-Thoyaib, Arab. J. Sci. Eng. 33, 401 (2008)

  44. E. M. Darwish and S. S. Al-Thoyaib, presented at the 7th NUPPAC‘09 Conference on Nuclear and Particle Physics, Sharm El-Sheik, Egypt, November 11–15, 2009.

  45. E. M. Darwish and M. Y. Hussein, in Proceedings of the 4th Annual Meeting of the Saudi Physical Society, King Abdulaziz City for Science and Technology, Riyadh, Saudi Arabia, Nov. 11–12, 2008

  46. E. M. Darwish and M. Y. Hussein, Appl. Math. Inf. Sci. 3, 321 (2009).

  47. E. M. Darwish, N. Akopov, and M. El-Zohry, AIP Conf. Proc. 1370, 242 (2011)

  48. E. M. Darwish, N. Akopov, and M. El-Zohry, in Proceedings of the 35th International Conference of High Energy Physics, Paris, France, July 22–28, PoS (ICHEP 2010), 185 (2010).

  49. E. M. Darwish and S. S. Al-Thoyaib, Ann. Phys. (N.Y.) 351, 35 (2014)

  50. E. M. Darwish and A. Hemmdan, Ann. Phys. (N.Y.) 356, 28 (2015).

  51. E. M. Darwish and H. Mansour, Coherent \(\pi\) -Production off Deuteron near \(\eta\) -Threshold: A Theoretical Oerview (LAP Lambert Academic, Saarbrücken, 2015).

  52. E. M. Darwish, Chin. Phys. Lett. 33, 041301 (2016).

  53. E. M. Darwish, H. M. Abou-Elsebaa, and Kh. S. A. Hassaneen, Braz. J. Phys. 48, 168 (2018)

  54. E. M. Darwish, E. M. Mahrous, and M. E. Alsehli, AIP Conf. Proc. 1976, 020035 (2018).

  55. E. M. Darwish, Quart. Phys. Rev. 4, 1 (2018).

  56. E. M. Darwish and M. Saleh Yousef, Mosc. Univ. Phys. Bull. 74, 595 (2019).

  57. E. M. Darwish, H. M. Abou-Elsebaa, Kh. S. Alsadi, and M. Saleh Yousef, Mosc. Univ. Phys. Bull. 75, 198 (2020)

  58. M. E. Alsehli, MSc Thesis (Taibah Univ., 2020).

  59. H. M. Al-Ghamdi, E. S. Almogait, E. M. Darwish, and S. Abdel-Khalek, Braz. J. Phys. 50, 615 (2020).

  60. H. M. Al-Ghamdi, E. S. Almogait, E. M. Darwish, and S. Abdel-Khalek, Res. Phys. 18, 103238 (2020).

  61. S. B. Gerasimov, Sov. J. Nucl. Phys. 2, 430 (1966)

  62. S. D. Drell and A. C. Hearn, Phys. Rev. Lett. 16, 908 (1966).

  63. E. M. Darwish, C. Fernández-Ramírez, E. Moya de Guerra, and J. M. Udías, Phys. Rev. C 76, 044005 (2007).

  64. M. I. Levchuk, Phys. Rev. C 82, 044002 (2010).

  65. E. M. Darwish and S. S. Al-Thoyaib, Ann. Phys. (N.Y.) 326, 604 (2011).

  66. E. M. Darwish et al., Ann. Phys. (N.Y.) 411, 167990 (2019).

  67. E. M. Darwish, M. M. Almarashi, and M. Saleh Yousef, Ann. Phys. (N.Y.) 420, 168254 (2020).

  68. E. M. Darwish, M. I. Levchuk, M. N. Nevmerzhitsky, M. M. Almarashi, and M. Saleh Yousef, Chin. J. Phys. (2020, in press).

  69. J. D. Bjorken and S. D. Drell, Relativistic Quantum Mechanics (McGraw-Hill, New York, 1964).

  70. D. Drechsel, S. Kamalov, and L. Tiator, Eur. Phys. J. A 34, 69 (2007)

  71. MAID-2007. https://maid.kph.uni-mainz.de/maid2007/.

  72. S. S. Kamalov and S. N. Yang, Phys. Rev. Lett. 83, 4494 (1999)

  73. S. S. Kamalov, S. N. Yang, D. Drechsel, O. Hanstein, and L. Tiator, Phys. Rev. C 64, 03220(R) (2001)

  74. DMT-2001. https://maid.kph.uni-mainz.de/dmt/.

  75. M. Hilt, S. Sherer, and L. Tiator, Phys. Rev. C 87, 045204 (2013)

  76. M. Hilt, B. C. Lehnhart, S. Sherer, and L. Tiator, Phys. Rev. C 88, 055207 (2013)

  77. Chiral MAID. https://maid.kph.uni-mainz.de/chiralmaid/.

  78. R. B. Wiringa, V. G. J. Stoks, and R. Schiavilla, Phys. Rev. C 51, 38 (1995).

  79. R. Machleidt, K. Holinde, and Ch. Elster, Phys. Rep. 149, 1 (1987).

  80. M. I. Levchuk, private commun. (2020).

  81. H. Arenhövel, Few-Body Syst. 27, 141 (1999).

  82. A. R. Edmonds, Angular Momentum in Quantum Mechanics (Princeton Univ. Press, New Jersey, 1957).

  83. H. Arenhövel, Few-Body Syst. 4, 55 (1988).

  84. H. Arenhövel, Int. J. Mod. Phys. E 18, 1226 (2009).

Download references

ACKNOWLEDGMENTS

The anonymous referees and the Editorial members deserve great thanks for their careful reading of the manuscript and valuable comments.

Funding

This research was funded by the Deanship of Scientific Research at Princess Nourah bint Abdulrahman University through the Fast-track Research Funding Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. M. Darwish.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Darwish, E.M., Al-Ghamdi, H.M. Sensitivity of Polarization Observables in \({\gamma}\boldsymbol{d\to}{\pi}^{\mathbf{0}}\boldsymbol{d}\) Reaction Near Threshold to the Choice of Elementary \({\gamma}\boldsymbol{N\to}{\pi}\boldsymbol{N}\) Amplitude and Deuteron Wave Function. Moscow Univ. Phys. 76, 136–150 (2021). https://doi.org/10.3103/S0027134921030036

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0027134921030036

Keywords:

Navigation