Skip to main content
Log in

Tensor Target Spin Asymmetries in Coherent π0-Photoproduction on the Deuteron Including Intermediate ηNN Interaction Within a Three-Body Approach

  • Nuclear Physics
  • Published:
Brazilian Journal of Physics Aims and scope Submit manuscript

Abstract

Motivated by the recent measurements from the VEPP-3 electron storage ring, we investigate the tensor target polarization asymmetries T2M (M = 0, 1, 2) in the reaction γdπ0d with a particular interest in the effect of the intermediate ηNN three-body approach. This approach is based on realistic separable representations of the driving two-body interaction in the πN, ηN, and NN subsystems. It is shown that the influence of rescattering effects in the intermediate state on the tensor target spin asymmetries is sizable at extreme backward pion angles. At forward angles, the contribution from the pure impulse approximation is dominated and the spin asymmetries show very little influence of rescattering effects. The sensitivity of results to the elementary pion photoproduction operator and to the NN potential model adopted for the deuteron wave function is investigated, and considerable dependences are found. The predicted spin asymmetries are also compared with available experimental data, and a satisfactory agreement with the recent data from VEPP-3 is obtained at photon energies below 400 MeV. At higher energies, the calculated spin asymmetries slightly underestimate the data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. B. Krusche, S. Schadmand, Prog. Part. Nucl. Phys. 51, 399 (2003)

    Article  ADS  Google Scholar 

  2. V. Burkert, T.-S.H. Lee, Int. J. Mod. Phys. E. 13, 1035 (2004)

    Article  ADS  Google Scholar 

  3. B. Krusche, Eur. Phys. J. Special Topics. 198, 199 (2011)

    Article  ADS  Google Scholar 

  4. H. Arenhövel, Few-Body Syst. 27, 141 (1999)

    Article  ADS  Google Scholar 

  5. H. Garcilazo, E.M. de Guerra, Phys. Rev. C. 52, 49 (1995)

    Article  ADS  Google Scholar 

  6. H. Garcilazo, E. Moya de Guerra, Phys. Rev. C. 49, R601 (1994)

    Article  ADS  Google Scholar 

  7. F. Blaazer, B.L.G. Bakker, H.J. Boersma, Nucl. Phys. A. 590, 750 (1995)

    Article  ADS  Google Scholar 

  8. P. Wilhelm, H. Arenhövel, Nucl. Phys. A. 609, 469 (1996)

    Article  ADS  Google Scholar 

  9. S.S. Kamalov, L. Tiator, C. Bennhold, Phys. Rev. C. 55, 98 (1997)

    Article  ADS  Google Scholar 

  10. A.E. Kudryavtsev et al., Phys. Rev. C. 71, 035202 (2005)

    Article  ADS  Google Scholar 

  11. A. Fix, Eur. Phys. J. A. 26, 293 (2005)

    Article  ADS  Google Scholar 

  12. M. Schwamb, Phys. Rep. 485, 109 (2010)

    Article  ADS  Google Scholar 

  13. E.M. Darwish, N. Akopov, M. El-Zohry, AIP Conf. Proc. 1370, 242 (2011)

    Article  ADS  Google Scholar 

  14. E.M. Darwish, S.S. Al-Thoyaib, Ann. Phys. (N.Y.) 351, 35 (2014)

    Article  ADS  Google Scholar 

  15. E.M. Darwish, J. Phys. Soc. Jpn. 83, 084201 (2014)

    Article  ADS  Google Scholar 

  16. E.M. Darwish, A. Hemmdan, Ann. Phys. (N.Y.) 356, 128 (2015)

    Article  ADS  Google Scholar 

  17. E.M. Darwish, S.S. Al-Thoyaib, J. Phys. Soc. Jpn. 84, 124201 (2015)

    Article  ADS  Google Scholar 

  18. E.M. Darwish, A. Hemmdan, N.T. El-Shamy, Int. J. Mod. Phys. E. 24, 1550064 (2015)

    Article  ADS  Google Scholar 

  19. E.M. Darwish, Chin. Phys. Lett. 33, 041301 (2016)

    Article  ADS  Google Scholar 

  20. B. Krusche et al., Eur. Phys. J. A. 6, 309 (1999)

    Article  ADS  Google Scholar 

  21. Y. Ilieva, B.L. Berman, A.E. Kudryavtsev, I.I. Strakovsky, V.E. (for the CLAS Collaboration) Tarasov, Eur. Phys. J. A. 43, 261 (2010)

    Article  ADS  Google Scholar 

  22. F.V. Adamian et al., Phys. Lett. B. 232, 296 (1989)

    Article  ADS  Google Scholar 

  23. F.V. Adamian et al., Czech. J. Phys. B. 36, 945 (1986)

    Article  ADS  Google Scholar 

  24. F.V. Adamian et al., JETP Lett. 39, 710 (1984)

    ADS  Google Scholar 

  25. I.A. Rachek et al., Phys. Rev. Lett. 98, 182303 (2007)

    Article  ADS  Google Scholar 

  26. D.M. Nikolenko et al., JETP Lett. 89, 432 (2009)

    Article  ADS  Google Scholar 

  27. D.M. Nikolenko et al., Phys. Atom. Nucl. 73, 1322 (2010)

    Article  ADS  Google Scholar 

  28. I.A. Rachek et al., J. Phys. Conf. Ser. 295, 012106 (2011)

    Article  Google Scholar 

  29. I.A. Rachek et al., Few-Body Syst. 58, 29 (2017)

    Article  ADS  Google Scholar 

  30. I.A. Rachek et al., in Proc. of the 23rd Eur. Conf. on Few-Body Problems in Physics (EFB23), Aarhus, Denmark, August 8–12, (2016)

  31. S.A. Zevakov et al., Bull. Russ. Acad. Sci. Phys. 79, 864 (2015)

    Article  Google Scholar 

  32. S.A. Zevakov et al., Bull. Russ. Acad. Sci. Phys. 78, 611 (2014)

    Article  Google Scholar 

  33. D.M. Nikolenko et al., Phys. Part. Nucl. 48, 102 (2017)

    Article  Google Scholar 

  34. A. Messiah, Vol. II. Quantum Mechanics (North-Holland, Amsterdam, 1964)

    MATH  Google Scholar 

  35. H. Arenhövel, Few-Body Syst. 4, 55 (1988)

    Article  ADS  Google Scholar 

  36. D. Drechsel, S. Kamalov, L. Tiator, Eur. Phys. J. A. 34, 69 (2007)

    Article  ADS  Google Scholar 

  37. R. Machleidt, K. Holinde, Ch. Elster, Phys. Rep. 149, 1 (1987)

    Article  ADS  Google Scholar 

  38. C. Fernández-Ramírez, E. Moya de Guerra, J.M. Udías, Ann. Phys. (N.Y.) 321, 1408 (2006)

    Article  ADS  Google Scholar 

  39. D. Drechsel, O. Hanstein, S. Kamalov, L. Tiator, Nucl. Phys. A. 645, 145 (1999)

    Article  ADS  Google Scholar 

  40. M. Lacombe et al., Phys. Rev. C. 21, 861 (1980)

    Article  ADS  Google Scholar 

  41. M. Lacombe et al., Phys. Lett. B. 101, 139 (1981)

    Article  ADS  Google Scholar 

  42. R. Machleidt, F. Sammarruca, Y. Song, Phys. Rev. C. 53, R1483 (1996)

    Article  ADS  Google Scholar 

  43. R. Machleidt, Phys. Rev. C. 63, 024001 (2001)

    Article  ADS  Google Scholar 

  44. B.D. Day, Phys. Rev. Lett. 47, 226 (1981)

    Article  ADS  Google Scholar 

  45. M. Hjorth-Jensen, T.T.S. Kuo, E. Osnes, Phys. Rep. 261, 125 (1995)

    Article  ADS  Google Scholar 

  46. M. Gottschall et al., Phys. Rev. Lett. 112, 012003 (2014)

    Article  ADS  Google Scholar 

  47. J.A. Gómez Tejedor, S.S. Kamalov, E. Oset, Phys. Rev. C. 54, 3160 (1996)

    Article  ADS  Google Scholar 

  48. F. Ritz, H. Arenhövel, Phys. Rev. C. 64, 034005 (2001)

    Article  ADS  Google Scholar 

  49. E.M. Darwish, H.M. Abou-Elsebaa, E.A. Sultan, Kh.S.A. Hassaneen, Int. J. Mod. Phys. E. 26, 1750059 (2017)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

One of us (E. M. Darwish) wants to thank Professors D. M. Nikolenko, I. A. Rachek, M. I. Levchuk, and V. V. Gauzshtein for useful discussions and supplying us with the recent experimental data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eed M. Darwish.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Darwish, E.M., Abou-Elsebaa, H.M. & Hassaneen, K.S.A. Tensor Target Spin Asymmetries in Coherent π0-Photoproduction on the Deuteron Including Intermediate ηNN Interaction Within a Three-Body Approach. Braz J Phys 48, 168–178 (2018). https://doi.org/10.1007/s13538-018-0559-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13538-018-0559-7

Keywords

Navigation