Skip to main content
Log in

Spin Asymmetries and Helicity Amplitudes in Photo-Production from Polarized Neutrons

  • Published:
Few-Body Systems Aims and scope Submit manuscript

Abstract

Pseudoscalar meson photoproduction experiments lead the search for an expanded \(N^*\) spectroscopy that is required by lattice solutions of QCD. Extensive data have been collected with proton targets that can potentially over-determine the production amplitude and allow a search for weak resonances. In contrast, data on photoproduction from neutrons is drastically limited. Both are needed since the \(\gamma p N^*\) and \(\gamma n N^*\) photo-couplings to \(I=1/2\) states are different and provide complementary information on the mechanisms for resonance excitation. The main subtleties in experiments with an effective polarized neutron target are reviewed. The considerable impact of new polarization data on multipole analyses are discussed, using the example of recent \(\pi ^- p\) measurements of the beam-target helicity asymmetry (E) from polarized \({ HD}\) in CLAS at Jefferson Lab. New partial wave analyses incorporating these data have found significant changes in helicity amplitudes of some established resonances, and signatures of weak resonances that previously were observed only in hyperon decay channels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M.S. Bhagwat, M.A. Pichowsky, C.D. Roberts, P.C. Tandy, Analysis of a quenched lattice-QCD dressed-quark propagator. Phys. Rev. C 68, 015203 (2003)

    Article  ADS  Google Scholar 

  2. S. Capstick, W. Roberts, Strange decays of nonstrange baryons. Phys. Rev. D 58, 074011 (1998)

    Article  ADS  Google Scholar 

  3. R. Bilker, J. Ferretti, G. Galatà, H. García-Tecocoatzi, E. Santopinto, Strong decays of baryons and missing resonances. Phys. Rev. D 94, 074040 (2016)

    Article  ADS  Google Scholar 

  4. A. Bazavov et al., Additional strange hadrons from QCD thermodynamics and strangeness freezeout in heavy ion collisions. Phys. Rev. Lett. 113, 072001 (2014)

    Article  ADS  Google Scholar 

  5. R. Edwards, J. Dudek, D. Richards, S. Wallace, Excited state baryon spectroscopy from lattice QCD. Phys. Rev. D 84, 074508 (2011)

    Article  ADS  Google Scholar 

  6. W.-T. Chaing, F. Tabakin, Completeness rules for spin observables in pseudoscalar meson photoproduction. Phys. Rev. C 55, 2054 (1997)

    Article  ADS  Google Scholar 

  7. A.M. Sandorfi, S. Hoblit, H. Kamano, T.-S.H. Lee, Determining pseudoscalar meson photoproduction amplitudes from complete experiments. J. Phys. G 38, 053001 (2011)

    Article  ADS  Google Scholar 

  8. N. Suzuki, B. Juliá-Díaz, H. Kamano, T.-S.H. Lee, A. Matsuyama, T. Sato, Disentangling the dynamical origin of \(P_{11}\) nucleon resonances. Phys. Rev. Lett. 104, 042302 (2010)

    Article  ADS  Google Scholar 

  9. K. Park et al., (CLAS Collaboration), Measurements of \(e p \rightarrow e^{\prime } \pi ^+ n\) at \(1.6 < W < 2.0\) GeV and extraction of nucleon resonance electrocouplings at CLAS. Phys. Rev. C 91, 045203 (2015)

  10. B.A. Mecking et al., The CEBAF large acceptance spectrometer (CLAS). Nucl. Inst. Meth. Phys. Res. A 503, 513 (2003)

    Article  ADS  Google Scholar 

  11. D. Ho et al., (CLAS Collaboration), Beam-target helicity asymmetry for \(\gamma n \rightarrow \pi ^- p\) in the \(N^*\) resonance region. Phys. Rev. Lett. 118, 242002 (2017)

  12. A.M. Sandorfi, B. Dey, A.V. Sarantsev, L. Tiator, R.L. Workman, A Rosetta Stone relating conventions in photo-meson partial wave analyses. AIP Conference Proceedings (vol. 1432, (2012), p. 219. arXiv:1108.5411v2

  13. C.D. Bass et al., A portable cryostat for the cold transfer of polarized solid HD targets: HDice-I. Nucl. Inst. Meth. Phys. Res. A 737, 107 (2014)

    Article  ADS  Google Scholar 

  14. M.M. Lowry et al., A cryostat to hold frozen-spin polarized HD targets in CLAS: HDice-II. Nucl. Inst. Meth. Phys. Res. A 815, 31 (2016)

    Article  ADS  Google Scholar 

  15. D. Ho, Measurements of the \(E\) polarization observable for \(\gamma d \rightarrow \pi ^- p (p_s)\), \(\gamma d \rightarrow K^0 \Lambda (p_s)\), and \(\gamma d \rightarrow \pi ^+ \pi ^- d(0)\) using CLAS \(g14\) data at Jefferson Lab. Ph.D. Thesis, Carnegie Mellon University (2015). http://repository.cmu.edu/dissertations/590

  16. J.J. Wu, T. Sato, T.-S.H. Lee, Incoherent pion production in neutrino-deuteron interactions. Phys. Rev. C 91, 035203 (2015)

    Article  ADS  Google Scholar 

  17. W.N. Polyzou, W. Glöckle, H. Witala, Spin and dynamics in relativistic quantum theories. Few Body Syst. 56, 395 (2015). Lee T-S.H. (priv. comm.)

    Article  ADS  Google Scholar 

  18. D.R. Giebink, Relativity and spin in one-, two-, and three-body systems. Phys. Rev. C 32, 502 (1985)

    Article  ADS  Google Scholar 

  19. S.X. Nakamura, H. Kamano, T.-S. H. Lee, T. Sato, Nuclear applications of ANL-Osaka amplitudes: pion photo-productions on deuteron (2018). arXiv:1804.04757v2

  20. R.L. Workman et al., GW Institute for Nuclear Studies: Data Analysis Center. http://gwdac.phys.gwu.edu

  21. V.A. Nikonov et al., Bonn–Gatchina Partial Wave Analysis. http://pwa.hiskp.uni-bonn.de

  22. R.L. Workman, M.W. Paris, W.J. Briscoe, I.I. Strakovsky, Unified Chew–Mandelstam SAID analysis of pion photoproduction data. Phys. Rev. C 86, 015202 (2012)

    Article  ADS  Google Scholar 

  23. E. Gutz et al., High statistics study of the reaction \(\gamma p \rightarrow p \pi ^0 \eta \). Eur. Phys. J. A 50, 74 (2014)

    Article  ADS  Google Scholar 

  24. P. Adlarson et al., Measurement of \(\pi ^0\) photoproduction on the proton at MAMI C. Phys. Rev. C 92, 024617 (2015). (and references therein)

    Article  ADS  Google Scholar 

  25. A.V. Anisovich et al., Neutron helicity amplitudes. Phys. Rev. C 96, 055202 (2017)

    Article  ADS  Google Scholar 

  26. A.V. Anisovich et al., Properties of baryon resonances from a multichannel partial wave analysis. Eur. Phys. J. A 48, 15 (2012)

    Article  ADS  Google Scholar 

  27. C. Patrignani, PDG, Review of particle physics, Chin. Phys. C 40, 100001 (2016)

  28. R.L. Workman, W.J. Briscoe, M.W. Paris, I.I. Strakovsky, Updated SAID analysis of pion photoproduction data. Phys. Rev. C 85, 025201 (2012)

    Article  ADS  Google Scholar 

  29. P.T. Mattione et al., (CLAS Collaboration), Differential cross section measurements for \(\gamma n \rightarrow \pi ^- p\) above the first nucleon resonance region, Phys. Rev. C 96, 035204 (2017); Mattione P., contribution to these Proceedings

  30. R.L. Workman, A. Svarc, unpublished - private communication (2017)

  31. A.V. Anisovich et al., Strong evidence for nucleon resonances near 1900 MeV. Phys. Rev. Lett. 119, 062004 (2017)

    Article  ADS  Google Scholar 

  32. H. Lu, Asymmetries with linearly polarized beams and longitudinally polarized targets in the N* resonance region, Few body systems topical collection “NSTAR 2017–The International Workshop on the Physics of Excited Nucleons”

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. M. Sandorfi.

Additional information

Work supported by the US Department of Energy, Office of Nuclear Physics Division, under contract DE-AC05-06OR23177 under which Jefferson Science Associates operate Jefferson Laboratory.

This article belongs to the Topical Collection “NSTAR 2017—The International Workshop on the Physics of Excited Nucleons”.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sandorfi, A.M. Spin Asymmetries and Helicity Amplitudes in Photo-Production from Polarized Neutrons. Few-Body Syst 60, 10 (2019). https://doi.org/10.1007/s00601-018-1478-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00601-018-1478-4

Navigation