Skip to main content
Log in

An anisotropic finite strain viscoelastic model considering different spin effects on the intermediate configuration

  • Published:
Mechanics of Solids Aims and scope Submit manuscript

Abstract

In this paper, a model of viscoelastic anisotropic deformation is proposed with the different inelastic spin effects considered. The model considering three different inelastic spin assumptions. Numerical simulations show that when the cyclic load is applied, the results corresponding to the model considering different inelastic spins are very different. Thus, when the viscoelastic model is used to simulate actual material, the inelastic spin assumption should be carefully selected.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. K. A. Mokhireva and A. L. Svistkov, “A new approach to describe the elastic behavior of filled rubber-like materials under complex uniaxial loading,” Int. J. Solids Struct. 202, 816–821 (2020). https://doi.org/10.1016/j.ijsolstr.2020.07.005

    Article  Google Scholar 

  2. C. Rdbab, B. Dea, B. Rea, et al., “Mechanical properties of the spinal cord and brain: Comparison with clinical-grade biomaterials for tissue engineering and regenerative medicine,” Biomaterials 258, 120303 (2020). https://doi.org/10.1016/j.biomaterials.2020.120303

  3. P. Wang, M. Todai and T. Nakano, “Beta titanium single crystal with bone-like elastic modulus and large crystallographic elastic anisotropy,” J. Alloys Compd. 782, 667–671 (2019). https://doi.org/10.1016/j.jallcom.2018.12.236

    Article  Google Scholar 

  4. J. Gillibert, M. Brieu, and J. Diani, “Anisotropy of direction-based constitutive models for rubber-like materials,” Int. J. Solids Struct. 47, 640–646 (2010). https://doi.org/10.1016/j.ijsolstr.2009.11.002

    Article  MATH  Google Scholar 

  5. M. Onoda, T. Okamoto, K. Tada, et al., “Polypyrrole films with anisotropy for artificial muscles and examination of bending behavior,” Jpn. J. Appl. Phys. 38, 1070–1072 (1999). https://doi.org/10.1143/JJAP.38.L1070

    Article  Google Scholar 

  6. G. D’Avino, F. Greco, and P. L. Maffettone, “Particle migration due to viscoelasticity of the suspending liquid and its relevance in microfluidic devices,” Annu. Rev. Fluid Mech. 49, 341–360 (2017). https://doi.org/10.1146/annurev-fluid-010816-060150

    Article  ADS  MathSciNet  MATH  Google Scholar 

  7. C. R. Lee and H. Y. Jeong, “Development of headform impactor finite element model considering the hyperelastic and viscoelastic responses of rubber,” Int. J. Auto. Tech. 19, 523–534 (2018). https://doi.org/10.1007/s12239-018-0050-z

    Article  Google Scholar 

  8. Y. Shi, F. Yang and W. Qian, “Photoacoustic viscoelasticity imaging dedicated to mechanical characterization of biological tissues,” J. Innov. Opt. Heal. Sci. 10, 4 (2017). https://doi.org/10.1142/S1793545817300051

    Article  Google Scholar 

  9. H. Zhang, J. Y. Yu, Z. L. Cao, et al., “Rheological model and viscoelasticity of crumb rubber modified bitumen,” in Materials Science Forum, Vol. 913 (Trans Tech Publications Ltd., 2018), pp. 1076–1082. https://doi.org/10.4028/www.scientific.net/msf.913.1076

  10. J. C. Simo and Hughes, Computational Inelasticity (Springer-Verlag, New York, 2000).

  11. R. M. Christensen, “Theory of viscoelasticity,” J. Appl. Mech. 38, 720–720 (1971). https://doi.org/10.1115/1.3408900

    Article  ADS  Google Scholar 

  12. R. A. Schapery, “Nonlinear viscoelastic solids,” Int. J. Solids Struct. 37, 359–366 (2000). https://doi.org/10.1016/S0020-7683(99)00099-2

    Article  MathSciNet  MATH  Google Scholar 

  13. B. D. Coleman and W. Noll, “Foundations of linear viscoelasticity,” Rev. Mod. Phys. 33, 239–249 (1961). https://doi.org/10.1007/978-3-642-65817-4_6

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. P. Haupt and J. L. Wegner, Continuum Mechanics and Theory of Materials (Springer, Berlin, Heidelberg, 2002).

    Book  Google Scholar 

  15. R. Keunings, “Theory of viscoelasticity: an Introduction,” J. Non-Newtonian Fluid Mech. 13, 233–235 (1983). https://doi.org/10.1016/0377-0257(83)80020-2

    Article  Google Scholar 

  16. J. C. Simo, “On a fully three-dimensional finite-strain viscoelastic damage model: Formulation and computational aspects,” Comput. Method. Appl. M. 60, 153–173 (1987). https://doi.org/10.1016/0045-7825(87)90107-1

    Article  MATH  Google Scholar 

  17. J. C. Simo and M. Ortiz, “A unified approach to finite deformation elastoplastic analysis based on the use of hyperelastic constitutive equations,” Comput. Method. Appl. M. 49, 221–245 (1984). https://doi.org/10.1016/0045-7825(85)90061-1

    Article  MATH  Google Scholar 

  18. S. Reese and S. Govindjee, “A theory of finite viscoelasticity and numerical aspects,” Int. J. Solids Struct. 35, 3455–3482 (1998). https://doi.org/10.1016/S0020-7683(97)00217-5

    Article  MATH  Google Scholar 

  19. D. W. Holmes and J. G. Loughran, “Numerical aspects associated with the implementation of a finite strain, elasto-viscoelastic–viscoplastic constitutive theory in principal stretches,” Int. J. Numer. Meth. Eng. 83, 3 (2010). https://doi.org/10.1002/nme.2850

    Article  MathSciNet  MATH  Google Scholar 

  20. D. Peric and W. Dettmer, “A computational model for generalized inelastic materials at finite strains combining elastic, viscoelastic and plastic material behaviour,” Eng. Comput. 20, 768–787 (2013). https://doi.org/10.1108/02644400310488862

    Article  MATH  Google Scholar 

  21. J. Lubliner, “A model of rubber viscoelasticity,” Mech. Res. Commun. 12, 93–99 (1985). https://doi.org/10.1016/0093-6413(85)90075-8

    Article  Google Scholar 

  22. T. D. Nguyen, R. E. Jones, and B. L. Boyce, “Modeling the anisotropic finite-deformation viscoelastic behavior of soft fiber-reinforced tissues,” in Proc. of ASME Summer Bioengineering Conference, June 20–24, 2007, Keystone, Colorado, USA (ASME, 2007), pp. 445–446. https://doi.org/10.1115/SBC2007-176919

  23. J. E. Bischoff, E. M. Arruda, and K. Grosh, “A rheological network for the continuum anisotropic and viscoelastic behavior of soft tissue,” Biomech. Model. Mech. 3, 56–65 (2004). https://doi.org/10.1007/s10237-004-0049-4

    Article  Google Scholar 

  24. M. A. Caminero, F. J. Montáns, and K. J. Bathe, “Modeling large strain anisotropic elasto-plasticity with logarithmic strain and stress measures,” Comput. Struct. 89, 826–843 (2011). https://doi.org/10.1016/j.compstruc.2011.02.011

    Article  Google Scholar 

  25. M. Latorre and F. J. Montans, “On the interpretation of the logarithmic strain tensor in an arbitrary system of representation,” Int. J. Solids Struct. 51, 1507–1515 (2014). https://doi.org/10.1016/j.ijsolstr.2013.12.041

    Article  Google Scholar 

  26. M. Latorre and F. J. Montans, “Anisotropic finite strain viscoelasticity based on the Sidoroff multiplicative decomposition and logarithmic strains,” Comput. Mech. 56, 503–531 (2015). https://doi.org/10.1016/j.compstruc.2015.09.001

    Article  MathSciNet  MATH  Google Scholar 

  27. M. Latorre and F. J. Montans, “Fully anisotropic finite strain viscoelasticity based on a reverse multiplicative decomposition and logarithmic strains,” Comput. Struct. 163, 56–70 (2016). https://doi.org/10.1016/j.compstruc.2015.09.001

    Article  Google Scholar 

  28. C. Sansour and J. Bocko, “On the numerical implications of multiplicative inelasticity with an anisotropic elastic constitutive law,” Int. J. Numer. Methods Eng. 58, 2131–2160 (2003). https://doi.org/10.1002/nme.848

    Article  MATH  Google Scholar 

  29. M. Á. Sanz, F. J. Montáns, and M. Latorre, “Computational anisotropic hardening multiplicative elastoplasticity based on the corrector elastic logarithmic strain rate,” Comput. Method Appl. M. 320, 82–121 (2017). https://doi.org/10.1016/j.cma.2017.02.027

    Article  MathSciNet  MATH  Google Scholar 

  30. M. Latorre and F. J. Montans, “What-You-Prescribe-Is-What-You-Get orthotropic hyperelasticity,” Comput. Mech. 53, 1279–1298 (2014). https://doi.org/10.1007/s00466-013-0971-3

    Article  MathSciNet  MATH  Google Scholar 

  31. E. H. Lee, “Elasto-plastic deformation at finite strain,” J. Appl. Mech. 36, 1–23 (1969). https://doi.org/10.1115/1.3564580

    Article  ADS  Google Scholar 

  32. E. H. Lee and R. M., “Concerning elastic and plastic components of deformation,” Int. J. Solids Struct. 16, 715–721 (1980). https://doi.org/10.1016/0020-7683(80)90013-X

    Article  Google Scholar 

  33. H. Xiao, “Unified explicit basis-free expressions from time rate and conjugated stress of an arbitrary Hill’s strain,” Int. J. Solids Struct. 22, 3327–3340 (1995). https://doi.org/10.1016/0020-7683(94)00307-I

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to MingXiang Chen.

THE FOURTH-ORDER TRANSFORMATION TENSOR

THE FOURTH-ORDER TRANSFORMATION TENSOR

The Hill material strain is represented as follows:

$$\mathcal{E}\mathop {\text{ = }}\limits^{{\text{def}}} \sum\limits_{{\text{K}} = 1}^3 {f({{\lambda }_{{\text{K}}}}){{N}_{{\text{K}}}} \otimes {{N}_{{\text{K}}}}} .$$
(A-39)

The time derivative of the general material strain is [33]

$$\dot {\mathcal{E}} = \sum\limits_{I = 1}^3 {f{\kern 1pt} '\left( {{{\lambda }_{I}}} \right)\dot {\lambda }_{{\text{I}}}^{{}}{{N}_{I}} \otimes {{N}_{I}}} + \sum\limits_{I = 1}^3 {\sum\limits_{J \ne I}^3 {\left( {f\left( {{{\lambda }_{J}}} \right) - f\left( {{{\lambda }_{I}}} \right)} \right)\Omega _{{IJ}}^{\text{Lag}}} } {{N}_{I}} \otimes {{N}_{J}},$$
(A-40)

where \(\boldsymbol\Omega _{{}}^{\text{Lag}}\) is Lagrangian spin. Considering \(f\left( \lambda \right) = \ln \lambda \), then the time derivative of the logarithmic strain is

$$\dot{\boldsymbol{H}} = \sum\limits_{i = 1}^3 {\sum\limits_{j{\text{ = }}1}^3 {\frac{{2{{\lambda }_{i}}{{\lambda }_{j}}}}{{\lambda _{j}^{2} - \lambda _{i}^{2}}}\left( {\ln {{\lambda }_{j}} - \ln {{\lambda }_{i}}} \right){{N}_{i}} \otimes {{N}_{j}}\left( {{\boldsymbol{n}_{i}} \otimes {\boldsymbol{n}_{j}}:\boldsymbol{d}} \right)} } .$$
(A-41)

Notably, there is a limit

$$\mathop {\lim }\limits_{{{\lambda }_{j}} \to {{\lambda }_{i}}} \frac{{2{{\lambda }_{i}}{{\lambda }_{j}}}}{{\lambda _{j}^{2} - \lambda _{i}^{2}}}\left( {\ln {{\lambda }_{j}} - \ln {{\lambda }_{i}}} \right) = 1.$$
(A-42)

The time derivative of the logarithmic strain can also be expressed as follows:

$$\boldsymbol{R}\,\cdot \,\dot{\boldsymbol{H}}\,\cdot \,{\boldsymbol{R}^{\text{T}}} = \sum\limits_{{\text{i}} = 1}^3 {\sum\limits_{j{\text{ = }}1}^3 {\frac{{2{{\lambda }_{{\text{i}}}}{{\lambda }_{{\text{j}}}}}}{{\lambda _{{\text{j}}}^{2} - \lambda _{{\text{i}}}^{2}}}\left( {\ln {{\lambda }_{{\text{j}}}} - \ln {{\lambda }_{{\text{i}}}}} \right){\boldsymbol{a}_{i}} \boxtimes {\boldsymbol{a}_{j}}:\boldsymbol{d},} } $$
(A-43)

where \({\boldsymbol{a}_{i}} = {\boldsymbol{n}_{i}} \otimes {\boldsymbol{n}_{i}}\), the above-mentioned expression can be represented as follows:

$$\boldsymbol{R}\,\cdot \,\dot{\boldsymbol{H}}\,\cdot \,{\boldsymbol{R}^{\text{T}}} = \mathcal{T}:\boldsymbol{d},$$
(A-44)

where the transformation tensor is

$$\mathcal{T} = \sum\limits_{i = 1}^3 {\sum\limits_{j = 1}^3 {\frac{{{{\lambda }_{i}}{{\lambda }_{j}}(\ln {{\lambda }_{j}} - \ln {{\lambda }_{i}})}}{{\lambda _{j}^{2} - \lambda _{i}^{2}}}({\boldsymbol{a}_{i}} \boxtimes {\boldsymbol{a}_{j}} + {\boldsymbol{a}_{i}}\,\overline \boxtimes \,{\boldsymbol{a}_{j}})} } .$$
(A-45)

Eq. (A-41) can also be expressed as follows:

$$\dot{\boldsymbol{H}} = \mathbb{T}:\hat{\boldsymbol{d}},$$
(A-46)

where

$$\mathbb{T} = {{\left( {\boldsymbol{R} \boxtimes \boldsymbol{R}} \right)}^{\text{T}}}:\mathcal{T}:\left( {\boldsymbol{R} \boxtimes \boldsymbol{R}} \right).$$
(A-47)

Thereby

$$\mathbb{T} = \sum\limits_{i = 1}^3 {\sum\limits_{j{\text{ = }}1}^3 {\frac{{{{\lambda }_{i}}{{\lambda }_{j}}(\ln {{\lambda }_{j}} - \ln {{\lambda }_{i}})}}{{\lambda _{j}^{2} - \lambda _{i}^{2}}}({\boldsymbol{A}_{i}} \boxtimes {\boldsymbol{A}_{i}} + {\boldsymbol{A}_{i}}\,\overline \boxtimes \,{\boldsymbol{A}_{i}})} } .$$
(A-48)

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meng, C., Chen, M. An anisotropic finite strain viscoelastic model considering different spin effects on the intermediate configuration. Mech. Solids 57, 382–395 (2022). https://doi.org/10.3103/S002565442202008X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S002565442202008X

Keywords:

Navigation