Skip to main content
Log in

Stress relaxation behavior of isotropic and anisotropic magnetorheological elastomers

  • Original Article
  • Published:
Continuum Mechanics and Thermodynamics Aims and scope Submit manuscript

Abstract

The paper presents an experimental study and numerical simulation of stress relaxation behavior of isotropic and anisotropic magnetorheological elastomers (MREs) made from silicone rubber filled with micro-sized carbonyl iron powder. Effects of applied constant strains and magnetic fields of an electromagnet on the stress relaxation of the MREs were investigated for 10 h using the single relaxation test with double-lap shear samples. The isotropic MRE showed a linearly elastic behavior, while the anisotropic MRE indicated a highly nonlinear elastic response. The shear stress and relaxation modulus of anisotropic MRE are much higher than those of isotropic MRE. The shear stress of the MREs increased with increasing the constant strain, while their relaxation modulus decreased. The shear stress and relaxation modulus of the MREs within the first 0.25 h boosted with raising the magnetic flux density to about 0.5 T. However, the shear stress and relaxation modulus of the MREs under strong magnetic fields declined considerably after 0.25 h testing. This reduction was attributed to the temperature rise in the MRE samples caused by the heating of the electromagnet. The stress relaxation behavior of the MREs was examined using a four-parameter fractional derivative model. The model parameters were obtained by fitting the relaxation modulus to the measured data of the MREs. The shear stress and relaxation modulus with long-term predictions estimated from the studied model were in good agreement with the measured data for the MREs at various applied strains and under low magnetic fields. The model-predicted values did not agree well with the experimental data of the MREs under high magnetic fields because of the sample temperature gain caused by heat generation of the electromagnet. Therefore, the investigated model can be used to predict the long-term relaxation stress of the MREs under high magnetic fields of permanent magnets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Rigbi, Z., Jilken, L.: The response of an elastomer filled with soft ferrite to mechanical and magnetic influences. J. Magn. Magn. Mater. 37(3), 267–276 (1983)

    Article  ADS  Google Scholar 

  2. Ahamed, R., Choi, S.B., Ferdaus, M.M.: A state of art on magneto-rheological materials and their potential applications. J. Intell. Mater. Syst. Struct. 29(10), 2051–2095 (2018)

    Article  Google Scholar 

  3. Bastola, A.K., Hossain, H.: A review on magneto-mechanical characterizations of magnetorheological elastomers. Compos. B. Eng. 200, 108348 (2020)

    Article  Google Scholar 

  4. Bastola, A.K., Paudel, M., Li, L., Li, W.: Recent progress of magnetorheological elastomers: a review. Smart Mater. Struct. 29, 123002 (2020)

    Article  ADS  Google Scholar 

  5. Díez, A.G., Tubio, C.R., Etxebarria, J.G., Lanceros-Mendez, S.: Magnetorheological elastomer-based materials and devices: state of the art and future perspectives. Adv. Eng. Mater. 23(6), 2100240 (2021)

    Article  Google Scholar 

  6. Bastola, A.K., Hossain, M.: The shape-morphing performance of magnetoactive soft materials. Mater. Des. 211, 110172 (2021)

    Article  Google Scholar 

  7. Lucarini, S., Hossain, M., Garcia-Gonzalez, D.: Recent advances in hard-magnetic soft composites: synthesis, characterisation, computational modelling, and applications. Compos. Struct. 279, 114800 (2022)

    Article  Google Scholar 

  8. Deng, H.X., Gong, X.L.: Application of magnetorheological elastomer to vibration absorber. Commun. Nonlinear Sci. Numer. Simul. 13, 1938–1947 (2008)

    Article  ADS  Google Scholar 

  9. Kumbhar, S.B., Chavan, S.P., Gawade, S.S.: Adaptive tuned vibration absorber based on magnetorheological elastomer-shape memory alloy composite. Mech. Syst. Signal Process. 100, 208–223 (2018)

    Article  ADS  Google Scholar 

  10. Gao, P., Liu, H., Xiang, C., Yan, P., Mahmoud, T.: A new magnetorheological elastomer torsional vibration absorber: structural design and performance test. Mech. Sci. 12(1), 321–332 (2021). https://doi.org/10.5194/ms-12-321-2021

    Article  Google Scholar 

  11. Liao, G.J., Gong, X., Xuan, S.H., Kang, C.J., Zong, L.H.: Development of a real-time tunable stiffness and damping vibration isolator based on magnetorheological elastomer. J. Intell. Mater. Syst. Struct. 23, 25–33 (2012)

    Article  Google Scholar 

  12. Bastola, A.K., Li, L.: A new type of vibration isolator based on magnetorheological elastomer. Mater. Des. 157, 431–436 (2018)

    Article  Google Scholar 

  13. Liu, S., Feng, L., Zhao, D., Shi, X., Zhang, Y., Jiang, J., et al.: A real-time controllable electromagnetic vibration isolator based on magnetorheological elastomer with quasi-zero stiffness characteristic. Smart Mater. Struct. 28(8), 085037 (2019)

    Article  ADS  Google Scholar 

  14. Qi, S., Guo, H., Chen, J., Fu, J., Hu, C., Yu, M., Wang, Z.L.: Magnetorheological elastomers enabled high-sensitive self-powered tribo-sensor for magnetic field detection. Nanoscale 10(10), 4745–4752 (2018)

    Article  Google Scholar 

  15. Hu, T., Xuan, S., Ding, L., Gong, X.: Stretchable and magneto-sensitive strain sensor based on silver nanowire-polyurethane sponge enhanced magnetorheological elastomer. Mater. Des. 156, 528–537 (2018)

    Article  Google Scholar 

  16. Böse, H., Gerlach, T., Ehrlich, J.: Magnetorheological elastomers: an underestimated class of soft actuator materials. J. Intell. Mater. Syst. Struct. 32(14), 1550–1564 (2021)

    Article  Google Scholar 

  17. Wu, C., Zhang, Q., Fan, X., Song, Y., Zheng, Q.: Smart magnetorheological elastomer peristaltic pump. J. Intell. Mater. Syst. Struct. 30(7), 1084–1093 (2019)

    Article  Google Scholar 

  18. Lapipo, I.L., Fadly, J.D., Faris, W.F.: Characterization of magnetorheological elastomer (MRE) engine mounts. Mater. Today: Proc. 3, 411–418 (2016)

    Google Scholar 

  19. Lapine, M., Shadrivov, I.V., Powell, D.A., Kivshar, Y.S.: Magnetoelastic metamaterials. Nat. Mater. 11(1), 30–33 (2012)

    Article  ADS  Google Scholar 

  20. Harne, R.L., Deng, Z., Dapino, M.J.: Adaptive magnetoelastic metamaterials: a new class of magnetorheological elastomers. J. Intell. Mater. Syst. Struct. 29(2), 265–278 (2018)

    Article  Google Scholar 

  21. Maraghechi, S., Hoefnagels, J.P.M., Peerlings, R.H.J., Rokoš, O., Geers, M.G.: Experimental full-field analysis of size effects in miniaturized cellular elastomeric metamaterials. Mater. Des. 193, 108684 (2020)

    Article  Google Scholar 

  22. Li, Y., Li, J., Tian, T., Li, W.: A highly adjustable magnetorheological elastomer base isolator for applications of real-time adaptive control. Smart Mater. Struct. 22, 095020 (2013)

    Article  ADS  Google Scholar 

  23. Testa, P., Style, R.W., Cui, J., Donnelly, C., Borisova, E., Derlet, P.M., Dufresne, E.R., Heyderman, L.J.: Magnetically addressable shape-memory and stiffening in a composite elastomer. Adv. Mater. 31(29), 1900561 (2019)

    Article  Google Scholar 

  24. Wu, S., Hu, W., Ze, Q., Sitti, M., Zhao, R.: Multifunctional magnetic soft composites: a review. Multifunct. Mater. 3, 042003 (2020)

    Article  ADS  Google Scholar 

  25. Bira, N., Dhagat, P., Davidson, J.R.: A review of magnetic elastomers and their role in soft robotics. Front. Robot. AI 7, 146 (2020)

    Article  ADS  Google Scholar 

  26. Chen, L., Gong, X.L., Jiang, W.Q., Yao, J.J., Deng, H.X., Li, W.H.: Investigation on magnetorheological elastomers based on natural rubber. J. Mater. Sci. 42(14), 5483–5489 (2007)

    Article  ADS  Google Scholar 

  27. Shit, S.C., Shah, P.: A review on silicone rubber. Natl. Acad. Sci. Lett. 36(4), 355–365 (2013)

    Article  Google Scholar 

  28. Cvek, M., Kracalik, M., Sedlacik, M., Mrlik, M., Sedlarik, V.: Reprocessing of injection molded magnetorheological elastomers based on TPE matrix. Compos. B. Eng. 172, 253–261 (2019)

    Article  Google Scholar 

  29. Li, Y., Li, J., Li, W., Du, H.: A state-of-the-art review on magnetorheological elastomer devices. Smart Mater. Struct. 23(12), 123001 (2014)

    Article  Google Scholar 

  30. Sutrisno, J., Purwanto, A., Mazlan, S.A.: Recent progress on magnetorheological solids: materials, fabrication, testing, and applications. Adv. Eng. Mater. 17(5), 563–597 (2015)

    Article  Google Scholar 

  31. Nam, T.H., Petríková, I., Marvalová, B.: Experimental characterization and viscoelastic modeling of isotropic and anisotropic magnetorheological elastomers. Polym. Test. 81, 106272 (2020)

    Article  Google Scholar 

  32. Nam, T.H., Petríková, I., Marvalová, B.: Experimental and numerical research of stress relaxation behavior of magnetorheological elastomer. Polym. Test. 93, 106886 (2021)

    Article  Google Scholar 

  33. Nam, T.H., Petríková, I., Marvalová, B.: Effects of loading rate, applied shear strain, and magnetic field on stress relaxation behavior of anisotropic magnetorheological elastomer. Mech. Adv. Mater. Struct. (2021). https://doi.org/10.1080/15376494.2021.1883162

    Article  Google Scholar 

  34. Amin, A.F.M.S., Lion, A., Sekita, S., Okui, Y.: Nonlinear dependence of viscosity in modeling the rate-dependent response of natural and high damping rubbers in compression and shear: Experimental identification and numerical verification. Int. J. Plast. 22, 1610–1657 (2006)

    Article  Google Scholar 

  35. Wang, L., Han, Y.: Compressive relaxation of the stress and resistance for carbon nanotube filled silicone rubber composite. Compos. Part A Appl. Sci. Manuf. 47, 63–71 (2013)

    Article  ADS  Google Scholar 

  36. Sahu, R., Patra, K., Szpunar, J.: Experimental study and numerical modelling of creep and stress relaxation of dielectric elastomers. Strain 51, 43–54 (2015)

    Article  Google Scholar 

  37. Yamaguchi, K., Thomas, A.G., Busfield, J.J.: Stress relaxation, creep and set recovery of elastomers. Int. J. Non-Linear Mech. 68, 66–70 (2015)

    Article  ADS  Google Scholar 

  38. Qi, S., Yu, M., Fu, J., Zhu, M.: Stress relaxation behavior of magnetorheological elastomer: experimental and modeling study. J. Intell. Mater. Syst. Struct. 29, 205–213 (2018)

    Article  Google Scholar 

  39. Fan, Y., Qin, H., Lu, C., Liao, C., Chen, X., Yu, J., Xie, L.: Capacitance creep and recovery behavior of magnetorheological elastomers. J. Intell. Mater. Syst. Struct. 32(13), 1420–1431 (2021)

    Article  Google Scholar 

  40. Johari, M.A.F., Mazlan, S.A., Nordin, N.A., Aziz, S.A.A., Johari, N., Nazmi, N., Homma, K.: Shear band formation in magnetorheological elastomer under stress relaxation. Smart Mater. Struct. 30(4), 045015 (2021)

    Article  ADS  Google Scholar 

  41. Rey, T., Chagnon, G., Cam, J.B.L., Favier, D.: Influence of the temperature on the mechanical behavior of filled and unfilled silicone rubbers. Polym. Test. 32(3), 492–501 (2013)

    Article  Google Scholar 

  42. Laurent, H., Rio, G., Vandenbroucke, A., Hocine, N.A.: Experimental and numerical study on the temperature-dependent behavior of a fluoro-elastomer. Mech. Time-Depend. Mater. 18(4), 721–742 (2014)

    Article  ADS  Google Scholar 

  43. Dippel, B., Johlitz, M., Lion, A.: Thermo-mechanical couplings in elastomers-experiments and modelling. Z. Angew. Math. Mech. 95(11), 1117–1128 (2015). https://doi.org/10.1002/zamm.201400110

    Article  Google Scholar 

  44. Wan, Y., Xiong, Y., Zhang, S.: Temperature dependent dynamic mechanical properties of magnetorheological elastomers: experiment and modeling. Compos. Struct. 202, 768–773 (2018)

    Article  Google Scholar 

  45. Wen, Q., Shen, L., Li, J., Xuan, S., Li, Z., Fan, X., Li, B., Gong, X.: Temperature dependent magneto-mechanical properties of magnetorheological elastomers. J. Magn. Magn. Mater. 497, 165998 (2020)

    Article  Google Scholar 

  46. Mainardi, F.: Fractional Calculus and Waves in Linear Viscoelasticity: An Introduction to Mathematical Models. Imperial College Press, London (2010)

    Book  Google Scholar 

  47. Nadzharyan, T.A., Kostrov, S.A., Stepanov, G.V., Kramarenko, E.Y.: Fractional rheological models of dynamic mechanical behavior of magnetoactive elastomers in magnetic fields. Polymer 142, 316–329 (2018)

    Article  Google Scholar 

  48. Bonfanti, A., Kaplan, J.L., Charras, G., Kabla, A.: Fractional viscoelastic models for power-law materials. Soft Matter 16(26), 6002–6020 (2020)

    Article  ADS  Google Scholar 

  49. Shen, L.J.: Fractional derivative models for viscoelastic materials at finite deformations. Int. J. Solids Struct. 190, 226–237 (2020)

    Article  Google Scholar 

  50. Su, X., Yao, D., Xu, W.: Processing of viscoelastic data via a generalized fractional model. Int. J. Eng. Sci. 161, 103465 (2021)

    Article  MathSciNet  Google Scholar 

  51. Guo, X., Yan, G., Benyahia, L., Sahraoui, S.: Fitting stress relaxation experiments with fractional Zener model to predict high frequency moduli of polymeric acoustic foams. Mech. Time-Depend. Mater. 20(4), 523–533 (2016)

    Article  ADS  Google Scholar 

  52. Guo, Q., Zaïri, F., Guo, X.: A thermo-viscoelastic-damage constitutive model for cyclically loaded rubbers. Part II: experimental studies and parameter identification. Int. J. Plast. 101, 58–73 (2018)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Ministry of Education, Youth and Sports of the Czech Republic and the European Union - European Structural and Investment Funds in the frames of Operational Program Research, Development and Education -Project Hybrid Materials for Hierarchical Structures (HyHi, Reg. No. CZ.02.1.01/0.0/0.0/16_019/0000843).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tran Huu Nam.

Ethics declarations

Conflict of interest

The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

Additional information

Communicated by Andreas Öchsner.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nam, T.H., Petríková, I. & Marvalová, B. Stress relaxation behavior of isotropic and anisotropic magnetorheological elastomers. Continuum Mech. Thermodyn. 36, 299–315 (2024). https://doi.org/10.1007/s00161-022-01097-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00161-022-01097-5

Keywords

Navigation