Skip to main content
Log in

Alternative finite strain viscoelastic models: constant and strain rate-dependent viscosity

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

In this study, we present alternative viscoelastic models for materials developing large strains. The novelty of these models is the definition of isochoric strain components, from which we numerically calculate isochoric strain rates. The proposed models differ from the most usual frameworks present in the literature, namely Köner–Lee decomposition models, hereditary integral models and thermodynamically consistent models. The last mentioned framework also uses the Flory’s multiplicative strain decomposition, but not in the same way proposed here. Our models are developed for solid mechanics and their time evolution is done through finite differences, simplifying the algorithmic tangent viscoelastic constitutive tensor and the consideration of strain rate-dependent viscosity. Using simple examples, we show that using finite difference for isochoric strain rate evolution does not introduce volumetric changes in purely distortional viscoelastic situations and vice versa. We also present examples related to experimental results, including nonlinear viscoelastic response. Finally, we present examples that show how viscoelastic materials with instantaneous response may not provide satisfactory damping for some structural sets and a comparison of our models with important classical models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Petiteau, J.C., Verron, E., Othman, R., Le Sourne, H., Sigrist, J.F., Barras, G.: Large strain rate-dependent response of elastomers at different strain rates: convolution integral vs. internal variable formulations. Mech. Time-Depend. Mater. 17, 349–367 (2013)

    Article  Google Scholar 

  2. Green, A.E., Rivlin, R.S.: The mechanics of non-linear materials with memory. Part I. Arch. Ration. Mech. Anal. 1, 1–21 (1957)

    Article  Google Scholar 

  3. Coleman, B.D., Noll, W.: Foundations of linear viscoelasticity. Rev. Mod. Phys. 33(2), 239–249 (1961)

    Article  MathSciNet  Google Scholar 

  4. Kaye A (1962) Non-Newtonian Flow in Incompressible Fluids. CoA Note 134. College of Aeronautics, Cranfield.

  5. Zapas, L.J., Craft, T.: Correlation of large longitudinal deformations with different strain histories. J. Res. Natl. Bur. Stand. 69A, 541–546 (1965)

    Article  Google Scholar 

  6. Tanner, R.I.: From A to (BK)Z in constitutive relations. J. Rheol.Rheol. 32(7), 673–702 (1988)

    Article  Google Scholar 

  7. Christensen, R.M.: A nonlinear theory of viscoelasticity for application to elastomers. J. Appl. Mech. 47, 762–768 (1980)

    Article  MathSciNet  Google Scholar 

  8. Chang, W.V., Bloch, R., Tschoegl, N.W.: On the theory of the viscoelastic behavior of soft polymers in moderately large deformations. Rheol. Acta. Acta 15, 367–378 (1976)

    Article  Google Scholar 

  9. Morman, K.N., Jr.: An adaptation of finite linear viscoelasticity theory for rubber-like viscoelasticity by use of a generalized strain measure. Rheol. Acta. Acta 27, 3–14 (1988)

    Article  Google Scholar 

  10. Sullivan, J.L.: A nonlinear viscoelastic model for representing nonfactorizable time-dependent behavior of cured rubber. J. Rheol.Rheol. 31(3), 271–295 (1987)

    Article  Google Scholar 

  11. Holzapfel, G.A.: On large strain viscoelasticity: continuum formulation and finite element applications to elastomeric structures. Int. J. Numer. Methods Appl. Mech. Eng. 39, 3903–3926 (1996)

    Article  Google Scholar 

  12. Haupt, P., Lion, A.: On finite linear viscoelasticity of incompressible isotropic materials. Acta Mech. Mech. 159, 87–124 (2002)

    Article  Google Scholar 

  13. Ciambella, J., Paolone, A., Vidoli, S.: A comparison of nonlinear integral-based viscoelastic models through compression tests on filled rubber. Mech. Mater. 42, 932–944 (2010)

    Article  Google Scholar 

  14. Green, M.S., Tobolsky, A.V.: A new approach for the theory of relaxing polymeric media. J. Chem. Phys. 14, 87–112 (1946)

    Article  Google Scholar 

  15. Sidoroff, F.: Un modèle viscoélastique non linéaire avec configuration intermédiaire. J. Méc. 13, 679–713 (1974)

    MathSciNet  Google Scholar 

  16. Lubliner, J.: A model of rubber viscoelasticity. Mech. Res. Commun.Commun. 12, 93–99 (1985)

    Article  Google Scholar 

  17. Köner, E.: Allgemeine kontinuumstheorie der versetzungen und eigenspannungen. Arch. Ration. Mech. Anal. 4(4), 273–334 (1960)

    MathSciNet  Google Scholar 

  18. Lee, E.H.: Elastic-plastic deformation at finite strains. J. Appl. Mech. 36(1), 1–6 (1969)

    Article  MathSciNet  Google Scholar 

  19. Mandel, J.: Thermodynamics and plasticity. In: Domingos, J.J.D., Nina, M.N.R., Whitelaw, J.H. (eds.) Foundations of Continuum Thermodynamics, pp. 283–304. Macmillan Education UK, London (1973)

    Chapter  Google Scholar 

  20. Svendsen, B.: A thermodynamic formulation of finite-deformation elastoplasticity with hardening based on the concept of material isomorphism. Int. J. Plast.Plast. 14(6), 473–488 (1998)

    Article  Google Scholar 

  21. Svendsen, B., Arndt, S., Klingbeil, D., Sievert, R.: Hyperelastic models for elastoplasticity with non-linear isotropic and kinematic hardening at large deformation. Int. J. Solids Struct.Struct. 35(25), 3363–3389 (1998)

    Article  Google Scholar 

  22. Dettmer, W., Reese, S.: On the theoretical and numerical modelling of Armstrong-Frederick kinematic hardening in the finite strain regime. Comput. Methods Appl. Mech. Eng.. Methods Appl. Mech. Eng. 193(1), 87–116 (2004)

    Article  Google Scholar 

  23. Carvalho, P.R.P., Coda, H.B., Sanches, R.A.K.: A large strain thermodynamically-based viscoelastic–viscoplastic model with application to finite element analysis of polytetrafluoroethylene (PTFE). Eur. J. Mech. A. Solids 97, 104850 (2023)

    Article  MathSciNet  Google Scholar 

  24. Simo J, Hughes T (2000) Computational Inelasticity. In: Interdisciplinary Applied Mathematics, Springer, New York

  25. Pascon, J.P., Coda, H.B.: Finite deformation analysis of visco-hyperelastic materials via solid tetrahedral finite elements. Finite Elem. Anal. Des. 133, 25–41 (2017)

    Article  MathSciNet  Google Scholar 

  26. Haupt, P.: On the concept of an intermediate configuration and its application to a representation of viscoelastic-plastic material behavior. Int. J. Plast.Plast. 1(4), 303–316 (1985)

    Article  MathSciNet  Google Scholar 

  27. Simo, J.: Algorithms for static and dynamic multiplicative plasticity that preserve the classical return mapping schemes of the infinitesimal theory. Comput. Methods Appl. Mech. Eng.. Methods Appl. Mech. Eng. 99(1), 61–112 (1992)

    Article  MathSciNet  Google Scholar 

  28. Khan, A.S., Huang, S.: Continuum Theory of Plasticity. Wiley, New York (1995)

    Google Scholar 

  29. Benaarbia, A., Rouse, J., Sun, W.: A thermodynamically-based viscoelasticviscoplastic model for the high temperature cyclic behaviour of 9–12% Cr steels. Int. J. Plast.Plast. 107, 100–121 (2018)

    Article  Google Scholar 

  30. Gudimetla, M.R., Doghri, I.: A finite strain thermodynamically-based constitutive framework coupling viscoelasticity and viscoplasticity with application to glassy polymers. Int. J. Plast.Plast. 98, 197–216 (2017)

    Article  Google Scholar 

  31. Benítez, J.M., Montáns, F.J.: The mechanical behavior of skin: Structures and models for the finite element analysis. Comput. Struct. Struct 190, 75–107 (2017)

    Article  Google Scholar 

  32. Flory, P.J.: Thermodynamic relations for high elastic materials. Trans. Faraday Soc. 57, 829–838 (1961)

    Article  MathSciNet  Google Scholar 

  33. Ogden, R.W.: Nearly isochoric elastic deformations: application to rubberlike solids. J. Mech. Phys. Solids 26, 37–57 (1978)

    Article  MathSciNet  Google Scholar 

  34. Holzapfel, G.A.: Nonlinear Solid Mechanics. A Continuum Approach for Engineering. Wiley, Chichester (2000)

    Google Scholar 

  35. Holzapfel, G.A., Gasser, T.C., Stadler, M.: A structural model for the viscoelastic behavior of arterial walls: continuum formulation and finite element analysis. Eur. J. Mech. A/Solids 21(2002), 441–463 (2002)

    Article  Google Scholar 

  36. Holzapfel, G.A., Gasser, T.C.: A viscoelastic model for fiber-reinforced composites at finite strains: continuum basis, computational aspects and applications. Comput. Methods Appl. Mech. Eng.. Methods Appl. Mech. Eng. 190, 4379–4403 (2001)

    Article  Google Scholar 

  37. Valanis, K.C.: Irreversible Thermodynamics of Continuous Media, Internal Variable Theory. Springer, Wien (1972)

    Google Scholar 

  38. Lubliner, J.: Plasticity Theory. Macmillan Publishing Company, New York (1990)

    Google Scholar 

  39. Simo, J.C., Hughes, T.J.R.: Computational Inelasticity. Springer, New York (1998)

    Google Scholar 

  40. Leng, X., Deng, X., Ravindran, S., et al.: Viscoelastic behavior of porcine arterial tissue: experimental and numerical study. Exp. Mech. 62, 953–967 (2022)

    Article  Google Scholar 

  41. Stumpf, F.T.: An accurate and efficient constitutive framework for finite strain viscoelasticity applied to anisotropic soft tissues. Mech. Mater. 161, 104007 (2021)

    Article  Google Scholar 

  42. Liu, J., Latorre, M., Marsden, A.L.: A continuum and computational framework for viscoelastodynamics: I finite deformation linear models. Comput. Methods Appl. Mech. Eng.. Methods Appl. Mech. Eng. 385, 114059 (2021)

    Article  MathSciNet  Google Scholar 

  43. Schröder, J., Lion, A., Johlitz, M.: Numerical studies on the self-heating phenomenon of elastomers based on finite thermoviscoelasticity. J. Rubber Res. 24, 237–248 (2021)

    Article  Google Scholar 

  44. Matin, Z., Moghimi, Z.M., Salmani, T.M., Wendland, B.R., Dargazany, R.: A visco-hyperelastic constitutive model of short- and long-term viscous effects on isotropic soft tissues. Proc. Inst. Mech. Eng. C J. Mech. Eng. Sci. 234(1), 3–17 (2020)

    Article  Google Scholar 

  45. Coda, H.B., Paccola, R.R.: An alternative positional FEM formulation for geometrically non-linear analysis of shells: curved triangular isoparametric elements. Comput. Mech.. Mech. 40, 185–200 (2007)

    Article  Google Scholar 

  46. Coda, H.B.: A finite strain elastoplastic model based on Flory’s decomposition and 3D FEM applications. Comput. Mech.. Mech. 69, 245–266 (2022)

    Article  MathSciNet  Google Scholar 

  47. Coda, H.B., Sanches, R.A.K.: Unified solid-fluid Lagrangian FEM model derived from hyperelastic considerations. Acta Mec. 233(7), 2653–2685 (2022)

    Article  MathSciNet  Google Scholar 

  48. Holzapfel, G.A.: Nonlinear Solid Mechanics: A Continuum Approach for Engineering. Wiley, New York (2000)

    Google Scholar 

  49. Rivlin, R., Saunders, D.: Large elastic deformations of isotropic materials VII. Experiments on the deformation of rubber. Philos. Trans. R. Soc. Lond. Ser. ALond. Ser. A 243, 251–288 (1951)

    Google Scholar 

  50. Mooney, M.: A theory of large elastic deformation. J. Appl. Phys. 11(9), 582–592 (1940)

    Article  Google Scholar 

  51. Hartmann, S., Neff, P.: Polyconvexity of generalized polynomial-type hyperelastic strain energy functions for near-incompressibility. Int. J. Solids Struct.Struct. 40, 2767–2791 (2003)

    Article  MathSciNet  Google Scholar 

  52. Ogden, R.W.: Non-linear Elastic Deformations. Ellis Horwood, New York (1984)

    Google Scholar 

  53. Siqueira, T.M., Coda, H.B.: Flexible actuator finite element applied to spatial mechanisms by a finite deformation dynamic formulation. Comput. Mech.. Mech. 64, 1517–1535 (2019)

    Article  MathSciNet  Google Scholar 

  54. Coda HB (2018) The Positional Finite Elements: Solids—Structures and Nonlinear Dynamics, EESC/USP, São Carlos, Brazil, 2018

  55. Amin, A.F.M.S., Lion, A., Sekita, S., Okui, Y.: Nonlinear dependence of viscosity in modeling the rate-dependent response of natural and high damping rubbers in compression and shear: experimental identification and numerical verification. Int. J. Plast.Plast 22, 1610–1657 (2006)

    Article  Google Scholar 

  56. Fazekas, B., Goda, T.: Characterisation of large strain viscoelastic properties of polymers. Bánki Közlemények, v. 1 (1), Hungary (2018)

  57. Timoshenko, S.P., Woinowsky-Krieger, S.: Theory of Plates and Shells, 2nd edn. McGraw-Hill, New York (1959)

    Google Scholar 

  58. Carrazedo, R., Paccola, R.R., Coda, H.B., Salomão, R.C.: Vibration and stress analysis of orthotropic laminated panels by active face prismatic finite element. Compos. Struct.Struct. 244, 112254 (2020)

    Article  Google Scholar 

  59. Carrazedo, R., Paccola, R.R., Coda, H.B.: Active face prismatic positional finite element for linear and geometrically nonlinear analysis of honeycomb sandwich plates and shells. Compos. Struct.Struct. 200, 849–863 (2018)

    Article  Google Scholar 

  60. Reese, S., Govindjee, S.: A theory of finite viscoelasticity and numerical aspects. Int. J. Solids Struct.Struct. 35(26–27), 3455–3482 (1997)

    Google Scholar 

  61. Holzapfel, G.A.: On large strain viscoelasticity: continuum formulation and finite element applications to elastomeric structures. Int. J. Numer. Meth. Eng.Numer. Meth. Eng. 39, 3903–3926 (1996)

    Article  Google Scholar 

Download references

Acknowledgements

This research has been supported by the São Paulo Research Foundation, Brazil - Grant #2020/05393-4 and Coordenação de Aperfeiçoamento de Pessoal de Ní­vel Superior - Brasil (CAPES) - Finance Code 001.

Funding

No funding was received for conducting this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Humberto Breves Coda.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hayashi, E.Y., Coda, H.B. Alternative finite strain viscoelastic models: constant and strain rate-dependent viscosity. Acta Mech (2024). https://doi.org/10.1007/s00707-024-03914-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00707-024-03914-1

Navigation