Chemical Papers

, Volume 67, Issue 7, pp 703–712 | Cite as

Hydrogen production by steam reforming of glycerol over Ni/Ce/Cu hydroxyapatite-supported catalysts

  • Lukman Hakim
  • Zahira Yaakob
  • Manal Ismail
  • Wan Ramli Wan Daud
  • Ratna Sari
Original Paper


Hydroxyapatite-supported Ni-Ce-Cu catalysts were synthesised and tested to study their potential for use in the steam reforming of glycerol to produce hydrogen. The catalysts were prepared by the deposition-precipitation method with variable nickel, cerium, and copper loadings. The performance of the catalysts was evaluated in terms of hydrogen yield at 600°C in a tubular fixed-bed microreactor. All catalysts were characterised by the BET surface area, XRD, TPR, TEM, and FE-SEM techniques. The reaction time was 240 min in a fixed-bed reactor at 600°C and atmospheric pressure with a water-to-glycerol feed molar ratio of 8: 1. It was found that the Ni-Ce-Cu (3 mass %-7.5 mass %-7.5 mass %) hydroxyapatite-supported catalyst afforded the highest hydrogen yield (57.5 %), with a glycerol conversion rate of 97.3 %. The results indicate that Ni/Ce/Cu/hydroxyapatite has great potential as a catalyst for hydrogen production by steam reforming of glycerol.


hydroxyapatite glycerol steam reforming catalyst deposition-precipitation hydrogen 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adikhari, S., Fernando, S. D., & Haryanto, A. (2008). Hydrogen production from glycerin by steam reforming over nickel catalysts. Renewable Energy, 33, 1097–1100. DOI: 10.1016/j.renene.2007.09.005.CrossRefGoogle Scholar
  2. Atir, R., Mallouk, S., Bougrin, K., Soufiaoui, M., & Laghzizil, A. (2006). Porous calcium hydroxyapatite as an efficient catalysts for synthesis of pyrazolines via 1.3-dipolar cycloaddition under solvent-free microwave irradition. Synthetic Communications, 36, 111–120. DOI: 10.1080/00397910500330619.CrossRefGoogle Scholar
  3. Ashok, J., Kumar, S. N., Subrahmanyam, M., & Venugopal, A. (2008). Pure H2 production by decomposition of methane over Ni supported on hydroxyapatite catalysts. Catalysis Letters, 121, 283–290. DOI 10.1007/s10562-007-9334-z.CrossRefGoogle Scholar
  4. Bshish, A., Yakoob, Z., Narayanan, B., Ramakrishnan, R., & Ebshish, A. (2011). Steam-reforming of ethanol for hydrogen production. Chemical Papers, 65, 251–266. DOI: 10.2478/s11696-010-0100-0.CrossRefGoogle Scholar
  5. Buffoni, I. N., Pompeo, F., Santori, G. F., & Nichio, N. N. (2009). Nickel catalysts applied in steam reforming of glycerol for hydrogen production. Catalysis Communications, 10, 1656–1660. DOI: 10.1016/j.catcom.2009.05.003.CrossRefGoogle Scholar
  6. Calderín, L., Stott, M. J., & Rubio, A. (2003). Electronic and crystallographic structure of apatites. Physical Review B, 67, 134106. DOI: 10.1103/PhysRevB.67.134106.CrossRefGoogle Scholar
  7. Chen, W., Huang, Z. L., Liu, Y., & He, Q. J. (2008). Preparation and characterization of a novel solid base catalyst hydroxyapatite loaded with strontium. Catalysis Communications, 9, 516–521. DOI: 10.1016/j.catcom.2007.02.011CrossRefGoogle Scholar
  8. Choudary, B. M., Sridhar, C., Kantam, M. L., & Sreedhar, B. (2004). Hydroxyapatite supported copper catalyst for effective three-component coupling. Tetrahedron Letters, 45, 7319–7321. DOI: 10.1016/j.tetlet.2004.08.004.CrossRefGoogle Scholar
  9. Dan, M., Mihet, M., Biris, A. R., Marginean, P., Almasan, V., Borodi, G., Watanabe, F., Biris, A. S., & Lazar, M. D. (2012). Supported nickel catalysts for low temperature methane steam reforming: comparison between metal additives and support modification. Reaction Kinetics, Mechanisms and Catalysis, 105, 173–193. DOI 10.1007/s11144-011-0406-0.CrossRefGoogle Scholar
  10. Djinović, P., Batista, J., Levec, J., & Pintar, A. (2009). Comparison of water-gas shift reaction activity and long-term stability of nanostructured CuO-CeO2 catalysts prepared by hard template and co-precipitation methods. Applied Catalysis A: General, 364, 156–165. DOI: 10.1016/j.apcata.2009.05.044.CrossRefGoogle Scholar
  11. European Commission (2003). Hydrogen energy and fuel cells: A vision of our future. Brussels, Belgium: European Commission. (EUR 20719 EN)Google Scholar
  12. Iriondo, A., Bario, V. L., Cambra, J. F., Arias, P. L., Güemez, M. B., Navarro, R. M., Sánchez-Sánchez, M. C., & Fierro, J. L. G. (2008). Hydrogen production from glycerol over nickel catalysts supported on Al2O3 modified by Mg, Zr, Ce or La. Topics in Catalysis, 49, 46–58. DOI: 10.1007/s11244-008-9060-9.CrossRefGoogle Scholar
  13. Iriondo, A., Bario, V. L., Cambra, J. F., Arias, P. L., Güemez, M. B., Navarro, R. M., Sánchez-Sánchez, M. C., & Fierro, J. L. G. (2009). Influence of La2O3 modified support and Ni and Pt active phase on glycerol steam reforming to produce hydrogen. Catalysis Communications, 10, 1275–1278. DOI: 10.1016/j.catcom.2009.02.004.CrossRefGoogle Scholar
  14. Jun, J. H., Lee, T. J., Lim, T. H., Nam, S. W., Hong, S. A., & Yoon, K. J. (2004). Nickel-calcium phosphate/hydroxyapatite catalysts for partial oxidation of methane to syngas: char acterization and activation. Journal of Catalysis, 221, 178–190. DOI: 10.1016/j.jcat.2003.07.004.CrossRefGoogle Scholar
  15. Kaneda, K., Mori, K., Hara, T., Mizugaki, T., & Ebitani, K. (2004). Design of hydroxyapatite-bound transition metal catalysts for environmentally-benign organic syntheses. Catalysis Surveys from Asia, 8, 231–239. DOI: 10.1007/s10563-004-9114-3.CrossRefGoogle Scholar
  16. Kim, K. H., Lee, S. Y., Nam, S. W., Lim, T. H., Hong, S. A., & Yoon, K. J. (2006). Promotion effects of ceria in partial oxidation of methane over Ni-calcium hydroxyapatite. Korean Journal of Chemical Engineering, 23, 17–20. DOI: 10.1007/bf02705686.CrossRefGoogle Scholar
  17. Liu, Q. H., Liu, Z. L., Zhou, X. H., Li, C. J., & Ding, J. (2011). Hydrogen production by steam reforming of ethanol over copper doped Ni/CeO2 cstalysts. Journal of Rare Earths, 29, 872–877. DOI: 10.1016/s1002-0721(10)60558-3.CrossRefGoogle Scholar
  18. Lukman, H., Yaakob, Z., Manal, I., Daud, W. R. W., & Majlan, E. D. (2011). Effect of nickel composition and preparation method for production of hydrogen via glycerol steam reforming. Key Engineering Material, 471-472, 1046–1051. DOI: 10.4028/ Scholar
  19. Profeti, L. P. R., Ticianelli, E. A., & Assaf, E. M. (2009). Production of hydrogen via steam reforming of biofuels on Ni/CeO2-Al2O3 catalysts promoted by noble metals. International Journal of Hydrogen Energy, 34, 5049–5060. DOI: 10.1016/j.ijhydene.2009.03.050.CrossRefGoogle Scholar
  20. Sánchez, E. A., D’Angelo, M. A., & Comelli, R. A. (2010). Hydrogen production from glycerol on Ni/Al2O3 catalyst. International Journal of Hydrogen Energy, 35, 5902–5907. DOI: 10.1016/j.ijhydene.2009.12.115.CrossRefGoogle Scholar
  21. Shan, W. J., Feng, Z. C., Li, Z. L., Zhang, J., Shen, W. J., & Li, C. (2004). Oxidative steam reforming of methanol on Ce0.9Cu0.1OY catalysts prepared by deposition-precipitation, coprecipitation, and complexation-combustion methods. Journal of Catalysis, 228, 206–217. DOI: 10.1016/j.jcat.2004.07.010.CrossRefGoogle Scholar
  22. Shi, Q. J., Liu, C. W., & Chen, W. Q. (2009). Hydrogen production from steam reforming of ethanol over Ni/MgO-CeO2 catalysts at low temperature. Journal of Rare Earths, 27, 948–954. DOI: 10.1016/s1002-0721(08)60368-3.CrossRefGoogle Scholar
  23. Simón, E., Rosas, J. M., Santos, A., & Romero, A. (2012). Study of the deactivation of copper-based catalysts for dehydrogenation of cyclohexanol to cyclohexanone. Catalysis Today, 187, 150–158. DOI: 10.1016/j.cattod.2011.10.010.CrossRefGoogle Scholar
  24. Srinivasan, M., Ferraris, C., & White, T. (2006). Cadmium and lead ion capture with three dimensionally ordered macroporous hydroxyapatite. Environmental Science & Technology, 40, 7054–7059. DOI: 10.1021/es060972s.CrossRefGoogle Scholar
  25. Srisiriwat, N., Therdthianwong, S., & Therdthianwong, A. (2009). Oxidative steam reforming of ethanol over Ni/Al2O3 catalysts promoted by CeO2, ZrO2 and CeO2-ZrO2. International Journal of Hydrogen Energy, 34, 2224–2234. DOI: 10.1016/j.ijhydene.2008.12.058.CrossRefGoogle Scholar
  26. Teixeira, S., Rodriguez, M. A., Pena, P., De Aza, A. H., De Aza, S., Ferraz, M. P., & Monteiro, F. J. (2009). Physical characterization of hydroxyapatite porous scaffolds for tissue engineering. Material Science and Engineering C, 29, 1510–1514. DOI: 10.1016/j.msec.2008.09.052.CrossRefGoogle Scholar
  27. Wakamura, M., Kandori, K., & Ishikawa, T. (1998). Surface composition of calcium hydroxyapatite modified with metal ions. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 142, 107–116. DOI: 10.1016/s0927-7757(98)00486-5.CrossRefGoogle Scholar
  28. Wang, X. Q., Rodriguez, J. A., Hanson, J. C., Gamarra, D., Martínez-Arias, A., & Fernández-García, M. (2006). In situ studies of the active sites for the water gas shift reaction over Cu-CeO2 catalysts: Complex interaction between metallic copper and oxygen vacancies of ceria. The Journal of Physical Chemistry B, 110, 428–434. DOI: 10.1021/jp055467g.CrossRefGoogle Scholar
  29. Xia, Z. G., Liao, L. B., & Zhao, S. L. (2009). Synthesis of mesoporous hydroxyapatite using a modified hard-templating route. Materials Research Bulletin, 44, 1626–1229. DOI: 10.1016/j.materresbull.2009.04.014CrossRefGoogle Scholar
  30. Yacobucci, B. D., & Curtright, A. E. (2004). A hydrogen economy and fuel cells: An overview. Retrieved April 4, 2012, from Google Scholar
  31. Ye, J. L., Wang, Y. Q., Liu, Y., & Wang, H. (2008). Steam reforming of ethanol over Ni/CexTi1−xO2 catalysts. International Journal of Hydrogen Energy, 33, 6602–6611. DOI: 10.1016/j.ijhydene.2008.08.036.CrossRefGoogle Scholar
  32. Zhang, B. C., Tang, X. L., Li, Y., Xu, Y. D., & Shen, W. J. (2007). Hydrogen production from steam reforming of ethanol and gycerol over ceria-supported metal catalysts. International Journal of Hydrogen Energy, 32, 2367–2373. DOI: 10.1016/j.ijhydene.2006.11.003CrossRefGoogle Scholar
  33. Zhang, Y., Li, Z., Sun, W., & Xia, C. G. (2008). A magnetically recyclable heterogeneous catalyst: Cobalt nano-oxide supported on hydroxyapatite-encapsulated γ-Fe2O3 nanocrystallites for highly efficient olefin oxidation with H2O2. Catalysis Communications, 10, 237–242. DOI: 10.1016/j.catcom.2008.08.030.CrossRefGoogle Scholar
  34. Zhang, L. F., Liu, J., Li, W., Guo, C. L., & Zhang, J. (2009). Ethanol steam reforming over Ni-Cu/Al2O3-MyOz (M = Si, La, Mg, and Zn) catalysts. Journal of Natural Gas Chemistry, 18, 55–65. DOI: 10.1016/s1003-9953(08)60078-x.CrossRefGoogle Scholar

Copyright information

© Institute of Chemistry, Slovak Academy of Sciences 2013

Authors and Affiliations

  • Lukman Hakim
    • 1
    • 2
    • 3
  • Zahira Yaakob
    • 1
    • 2
  • Manal Ismail
    • 1
    • 2
  • Wan Ramli Wan Daud
    • 1
    • 2
  • Ratna Sari
    • 1
    • 2
    • 4
  1. 1.Fuel Cell InstituteUniversiti Kebangsaan MalaysiaUKM Bangi, SelangorMalaysia
  2. 2.Department of Chemical and Process EngineeringUniversiti Kebangsaan MalaysiaUKM Bangi, SelangorMalaysia
  3. 3.Malikussaleh UniversityNorth AcehIndonesia
  4. 4.Lhokseumawe State PolytechnicNorth AcehIndonesia

Personalised recommendations