Skip to main content

Advertisement

Log in

Glycerol steam reforming over Ni–Fe–Ce/Al2O3 catalyst for hydrogen production

  • Published:
Research on Chemical Intermediates Aims and scope Submit manuscript

Abstract

In this study, we focused on the catalytic activity, stability, and kinetics of glycerol steam reforming (GSR) for the hydrogen production over Ni–Fe–Ce/Al2O3 catalyst. The GSR was investigated in a quartz fixed-bed reactor with an internal diameter of 6 mm under atmospheric pressure, 18.44–44.56 g h/mol weight of catalyst per molar flow rate of glycerol at the inlet (W cat/F AO ratio), 20 wt% glycerol solution concentration, and the temperature range 450–550 °C. Ni–Fe–Ce/Al2O3 catalyst was characterized by N2 physisorption [Brunauer–Emmett–Teller (BET) method], X-ray spectroscopy, temperature-programmed reduction with H2, temperature-programmed desorption of adsorbed CO2 (CO2-TPD), scanning electron microscopy, and thermogravimetric analysis. H2, CO2, CO and CH4 were the main gaseous products with the H2:CO2 ratio at roughly 2.00. The increase in the temperature and W cat/F AO ratio caused the expected increase in the glycerol conversion and H2 yield. All the kinetic parameters for the GSR were obtained in the kinetically controlled reaction regime. The experimental data using the power-law method indicate that the reaction order with respect to glycerol and the activation energy were 0.06 and 32.9 kJ/mol, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. A. Ebshish, Z. Yaakob, B. Narayanan, A. Bshish, W.R.W. Daud, Energy Procedia 18, 552 (2012)

    Article  CAS  Google Scholar 

  2. N.C.O. Tapanes, D.A.G. Aranda, J.W.M. Carneiro, O.A.C. Antunes, Fuel 87, 2286 (2008)

    Article  Google Scholar 

  3. S.H. Kim, Y.J. Go, N.C. Park, J.H. Kim, Y.C. Kim, D.J. Moon, J. Nanosci. Nanotechnol. 15, 527 (2015)

    Article  Google Scholar 

  4. V. Nichele, M. Singoretto, F. Menegazzo, A. Gallo, V.D. Santo, G. Cruciani, G. Cerrato, Appl. Catal. B 111-112, 225 (2012)

    Article  CAS  Google Scholar 

  5. A. Iriondo, V.L. Barrio, J.F. Cambra, P.L. Arias, M.B. Güemez, R.M. Navarro, M.C. Sanchez-sanchez, J.L.G. Fierro, Catal. Commun. 10, 1275 (2009)

    Article  CAS  Google Scholar 

  6. A. Iriondo, V.L. Barrio, J.F. Cambra, P.L. Arias, M.B. Guemez, M.C. Sanchez-Sanchez, R.M. Navarro, J.L.G. Fierro, Int. J. Hydrogen Energy 35, 11622 (2010)

    Article  CAS  Google Scholar 

  7. A. Iriondo, J.F. Cambra, M.B. Güemez, V.L. Barrio, J. Requies, M.C. Sanchez-Sanchez, R.M. Navarro, Int. J. Hydrogen Energy 37, 7084 (2012)

    Article  CAS  Google Scholar 

  8. C.K. Cheng, S.Y. Foo, A.A. Adesina, Catal. Commun. 12, 292 (2010)

    Article  CAS  Google Scholar 

  9. S. Adhikari, S.D. Fernando, A. Haryanto, Chem. Eng. Technol. 32, 541 (2009)

    Article  CAS  Google Scholar 

  10. R. Sundari, P.D. Vaidya, Energy Fuels 26, 4195 (2012)

    Article  CAS  Google Scholar 

  11. C.K. Cheng, S.Y. Foo, A.A. Adesina, Catal. Today 164, 268 (2011)

    Article  CAS  Google Scholar 

  12. C. Wang, B. Dou, H. Chen, Y. Song, Y. Xu, X. Du, L. Zhang, T. Luo, C. Tan, Int. J. Hydrogen Energy 38, 3562 (2013)

    Article  CAS  Google Scholar 

  13. B.S. Liu, C.T. Au, Appl. Catal. A 244, 181 (2003)

    Article  CAS  Google Scholar 

  14. N. Srisiriwat, S. Therdthianwong, A. Therdthianwong, Int. J. Hydrogen Energy 34, 2224 (2009)

    Article  CAS  Google Scholar 

  15. I. Suelves, M.J. Lazaro, R. Moliner, B.M. Corbella, J.M. Palacios, Int. J. Hydrogen Energy 30, 1555 (2005)

    Article  CAS  Google Scholar 

  16. R. Molina, G. Poncelet, J. Catal. 173, 275 (1998)

    Article  Google Scholar 

  17. V.V. Thyssen, T.A. Maia, E.M. Assaf, Fuel 105, 358 (2013)

    Article  CAS  Google Scholar 

  18. T. Huang, W. Huang, J. Huang, P. Ji, Fuel Process. Technol. 92, 1868 (2011)

    Article  CAS  Google Scholar 

  19. B.K. Choi, H.J. Ok, D.J. Moon, J.H. Kim, N.C. Park, Y.C. Kim, J. Nanosci. Nanotechnol. 15, 391 (2015)

    Article  CAS  Google Scholar 

  20. X. Zhai, S. Ding, Z. Liu, Y. Jin, Y. Cheng, Int. J. Hydrogen Energy 36, 482 (2011)

    Article  CAS  Google Scholar 

  21. Y. Cui, V. Galvita, L. Rihko-Struckmann, H. Lorenz, K. Sundmacher, Appl. Catal. B 90, 29 (2009)

    Article  CAS  Google Scholar 

  22. K.K. Pant, R. Jain, S. Jain, Korean J. Chem. Eng. 28, 1859 (2011)

    Article  CAS  Google Scholar 

  23. G. Wen, Y. Xu, H. Ma, Z. Xu, Z. Tian, Int. J. Hydrogen Energy 33, 6657 (2008)

    Article  CAS  Google Scholar 

  24. E.A. Sanchez, R.A. Comelli, Int. J. Hydrogen Energy 37, 14740 (2012)

    Article  CAS  Google Scholar 

  25. I.N. Buffoni, F. Pompeo, G.F. Santori, N.N. Nichio, Catal. Commun. 10, 1656 (2009)

    Article  CAS  Google Scholar 

  26. K.Y. Koo, H.S. Roh, Y.T. Seo, D.J. Seo, W.L. Yoon, S.B. Park, Appl. Catal. A 340, 183 (2008)

    Article  CAS  Google Scholar 

  27. S. Wang, G. Lu, J. Chem. Technol. Biotechnol. 75, 589 (2000)

    Article  CAS  Google Scholar 

  28. L. Xiancai, W. Min, L. Zhihua, H. Fei, Appl. Catal. A 290, 81 (2005)

    Article  Google Scholar 

  29. B. Valle, A. Remiro, A.T. Aguayo, J. Bilbao, A.G. Gayubo, Int. J. Hydrogen Energy 38, 1307 (2012)

    Article  Google Scholar 

  30. F. Pompeo, G. Santori, N.N. Nichio, Int. J. Hydrogen Energy 35, 8912 (2010)

    Article  CAS  Google Scholar 

  31. J.M. Silva, M.A. Soria, L.M. Madeira, Renew. Sustain. Energy Rev. 42, 1187 (2015)

    Article  CAS  Google Scholar 

  32. C. Wang, B. Dou, H. Chen, Y. Song, Y. Xu, X. Du, T. Luo, C. Tan, Chem. Eng. J. 220, 133 (2013)

    Article  CAS  Google Scholar 

  33. B. Dou, V. Dupont, G. Rickett, N. Blakeman, P.T. Williams, H. Chen, Y. Ding, M. Ghadiri, Bioresour. Technol. 100, 3540 (2009)

    Article  CAS  Google Scholar 

  34. C.K. Cheng, S.Y. Foo, A.A. Adesina, Catal. Today 178, 25 (2011)

    Article  CAS  Google Scholar 

  35. C.K. Cheng, S.Y. Foo, A.A. Adesina, Ind. Eng. Chem. Res. 49, 10804 (2010)

    Article  CAS  Google Scholar 

Download references

Acknowledgment

This research was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2009-0094055) and supported partly by the Ministry of Knowledge Economy of Korea and the Korea Institute of Science and Technology (KIST Grant Nos. 2E24834 & 2MR2190).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Young Chul Kim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Go, G.S., Lee, H.J., Moon, D.J. et al. Glycerol steam reforming over Ni–Fe–Ce/Al2O3 catalyst for hydrogen production. Res Chem Intermed 42, 289–304 (2016). https://doi.org/10.1007/s11164-015-2324-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11164-015-2324-7

Keywords

Navigation