Skip to main content
Log in

Pure H2 Production by Decomposition of Methane Over Ni Supported on Hydroxyapatite Catalysts

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

The catalytic decomposition of CH4 for the production of pure H2 is carried out over Ni supported on hydroxyapatite [Ca5(PO4)3(OH)] catalysts at 650 °C and atmospheric pressure. CH4 decomposition activity is decreased with time on stream and finally deactivated completely. The physicochemical properties of the fresh catalysts are characterized by XRD, DTA/TG, TPR and SEM techniques along with CHNS analyses of the used samples. It is found that the 30 wt% Ni/HAp displayed higher H2 production rates over the other Ni loadings, which is correlated with Ni metal surface area measured by O2 pulse chemisorption.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Thomas CE, James BD, Lomax FD, Kuhn IF (1998) Int J Hydrogen Energy 25:551

    Article  Google Scholar 

  2. De Jong KP, Geus JW (2000) Catal Rev Sci Eng 42:481

    Article  Google Scholar 

  3. Ebbesen TW (1997) Carbon nanotubes: preparation and properties. CAPLUS, USA

    Google Scholar 

  4. Bahome MC, Jewell LL, Hildebrandt D, Glasser D, Coville NJ (2005) Appl Catal A 287:60

    Article  CAS  Google Scholar 

  5. Serp P, Corrias M, Kalck P (2003) Appl Catal A 253:337

    Article  CAS  Google Scholar 

  6. Chambers A, Park C, Baker RTK, Rodriguez NM (1998) J Phys Chem B 102:4253

    Article  CAS  Google Scholar 

  7. Ashok J, Naveen Kumar S, Venugopal A, Durga Kumari V, Subrahmanyam M (2007) J Power Sources 164:809

    Article  CAS  Google Scholar 

  8. Ashok J, Naveen Kumar S, Subrahmanyam M, Venugopal A (2007) Catal Lett 118:139

    Article  CAS  Google Scholar 

  9. Venugopal A, Naveen Kumar S, Ashok J, Hari Prasad D, Durga Kumari V, Prasad KBS, Subrahmanyam M (2007) Int J Hydrogen Energy 32:1782

    Article  CAS  Google Scholar 

  10. Ashok J, Naveen Kumar S, Venugopal A, Tripathi S, Durga Kumari V, Subrahmanyam M (2007) Catal Commun 9:164

    Article  Google Scholar 

  11. Serban M, Lewis MA, Marshall CL, Doctor RD (2003) Energy Fuels 17:705

    Article  CAS  Google Scholar 

  12. Muradov N (1998) Energy Fuels 12:41

    Article  CAS  Google Scholar 

  13. Choudhary TV, Aksoylu E, Goodman DW (2003) Catal Rev 45:151

    Article  CAS  Google Scholar 

  14. Takenaka S, Shigeta Y, Tanabe E, Otsuka K (2003) J Catal 220:468

    Article  CAS  Google Scholar 

  15. Ermakova MA, Ermakova DY, Kuvshinov GG, Plyasova LM (1999) J Catal 187:77

    Article  CAS  Google Scholar 

  16. Shaikhutdinov SK, Avdeeva LB, Novgorodov BN, Zaikovskii VI, Kochubey DI (1997) Catal Lett 47:35

    Article  CAS  Google Scholar 

  17. Li J, Lu G, Li K, Wang W (2004) J Mol Catal A 221:105

    Article  CAS  Google Scholar 

  18. Avdeeva LB, Goncharova OV, Kochubey DI, Zaikovskii VI, Plyasova LM, Novgorodov BN, Shaikhutdinov SK (1996) Appl Catal A 141:117

    Article  CAS  Google Scholar 

  19. Reshetenko TV, Avdeeva LB, Ismagilov ZR, Chuvilin AL, Ushakov VA (2003) Appl Catal A 247:51

    Article  CAS  Google Scholar 

  20. Choudhary TV, Sivadinarayana C, Chusuei CC, Klinghoffer A, Goodman DW (2001) J Catal 199:9

    Article  CAS  Google Scholar 

  21. Venugopal A, Scurrell MS. (2003) Appl Catal A: 245:137

    Google Scholar 

  22. Bett JAS, Christner LG, Hall WK (1967) J Am Chem Soc 89:5535

    Article  CAS  Google Scholar 

  23. Pratap Reddy M, Venugopal A, Subrahmanyam M (2007) Water Res 41:379

    Article  CAS  Google Scholar 

  24. Pratap Reddy M, Venugopal A, Subrahmanyam M (2006) Appl Catal B 69:164

    Article  Google Scholar 

  25. Otsuka K, Takenaka S (2004) Appl Catal A 273:113

    Article  CAS  Google Scholar 

  26. Bond GC (1987) Heterogeneous catalysis: principles and applications. Oxford University Press, New York, p 81

    Google Scholar 

  27. Muradov NZ (1993) Int J Hydrogen Energy 18:211

    Article  CAS  Google Scholar 

  28. Poncelet G, Centeno MA, Molina R (2005) Appl Catal A 288:232

    Article  CAS  Google Scholar 

  29. Stytsenko VD (1995) Appl Catal A 126:1

    Article  CAS  Google Scholar 

  30. Ishihara T, Miyashita Y, Iseda H, Takita Y (1995) Chem Lett 24:93

    Article  Google Scholar 

  31. Delannay F, Delmon B (1984) In: Delannay F (ed) Characterization of heterogeneous catalysts, Marcel Dekker Inc., New York, p 1

    Google Scholar 

  32. Mile B, Stirling D, Zammitt MA, Lovell A, Webb M (1988) J Catal 114:217

    Article  CAS  Google Scholar 

Download references

Acknowledgment

The authors thank CSIR, New Delhi for funding this project under NMITLI program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Venugopal.

Additional information

IICT communication number: 051211.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ashok, J., Kumar, S.N., Subrahmanyam, M. et al. Pure H2 Production by Decomposition of Methane Over Ni Supported on Hydroxyapatite Catalysts. Catal Lett 121, 283–290 (2008). https://doi.org/10.1007/s10562-007-9334-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-007-9334-z

Keywords

Navigation