Skip to main content

Advertisement

Log in

Steam pre-reforming of natural gas over nanostructured Ni/12CaO–7Al2O3 catalyst for hydrogen production: effect of support preparation method

  • Published:
Research on Chemical Intermediates Aims and scope Submit manuscript

Abstract

Calcium aluminate (12CaO–7Al2O3) powder was synthesized using three methods, viz. Pechini, coprecipitation, and a new novel facile decomposition route starting from activated alumina and calcium nitrate precursors, then used as a support to prepare a series of 31 wt%Ni/12CaO–7Al2O3 catalysts by deposition–precipitation method. The resultant catalysts were tested in steam pre-reforming of natural gas at 400–550 °C, low steam-to-carbon (S/C) molar ratio of 1.5, and atmospheric pressure. The obtained samples were characterized by Brunauer–Emmett–Teller (BET) analysis, scanning electron microscopy (SEM), X-ray diffraction (XRD) analysis, temperature-programmed reduction (TPR), temperature-programmed oxidation (TPO), hydrogen chemisorption, and CO2–temperature-programmed desorption (TPD). Experimental results showed that the basicity and morphology of the supports depended significantly on the synthesis method. Calcium aluminate synthesized using the new decomposition procedure showed surface area of 6.23 m2 g−1, while the surface area of those prepared by the Pechini and coprecipitation method were 1.38 and 3.76 m2 g−1, respectively. The catalytic properties of the 31 wt%Ni/12CaO–7Al2O3 catalysts were strongly influenced by the support preparation approach. The highest specific surface area (about 230 m2 g−1), smallest Ni particle size (8.86 nm), and highest nickel dispersion (7.48%) were observed for the catalyst whose support was synthesized by the decomposition method. Even at high gas hourly space velocity (GHSV) of 2 × 105 mL \({\text{g}}^{ - 1}_{\text{catalyst}}\) h−1, this catalyst exhibited around 100% C2H6 and C3H8 conversion at temperature above 500 °C. High catalytic stability during 60 h time on-stream was also shown. The TPO profiles of the spent catalyst demonstrated high resistance to carbon formation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. K. Aasberg-Petersen, I. Dybkjær, C.V. Ovesen, N.C. Schjødt, J. Sehested, S.G. Thomsen, J. Nat. Gas Sci. Eng. 3, 2 (2011)

    Article  Google Scholar 

  2. T. Sperle, D. Chen, R. Lødeng, A. Holmen, Appl. Catal. A 282, 1–2 (2005)

    Article  Google Scholar 

  3. N. Abatzoglou, C. Fauteux-Lefebvre, Wiley Interdiscip. Rev. Energy Environ. 5, 2 (2016)

    Article  Google Scholar 

  4. S.-H. Lee, K.Y. Koo, U.H. Jung, Y.-G. Shul, W.L. Yoon, Res. Chem. Intermed. 42, 5 (2016)

    Google Scholar 

  5. F. Meshkani, S.F. Golesorkh, M. Rezaei, M. Andache, Res. Chem. Intermed. 43, 1 (2017)

    Article  Google Scholar 

  6. J. Xu, W. Zhou, Z. Li, J. Wang, J. Ma, Int. J. Hydrog. Energy 34, 16 (2009)

    Google Scholar 

  7. X.X. Gao, C.J. Huang, N.W. Zhang, J.H. Li, W.Z. Weng, H.L. Wan, Catal. Today 131, 1–4 (2008)

    Article  Google Scholar 

  8. P. Xu, Z. Zhou, C. Zhao, Z. Cheng, AIChE J. 60, 10 (2014)

    Google Scholar 

  9. A.L. García-Lario, M. Aznar, I. Martinez, G.S. Grasa, R. Murillo, Int. J. Hydrog. Energy 40, 1 (2015)

    Article  Google Scholar 

  10. R. Mukhopadhyay, D. Kunzru, Ind. Eng. Chem. Res. 32, 9 (1993)

    Google Scholar 

  11. S. Yang, J.N. Kondo, K. Hayashi, M. Hirano, K. Domen, H. Hosono, Appl. Catal. A 277, 1 (2004)

    Article  Google Scholar 

  12. H. Xie, Q. Yu, J. Zhang, J. Liu, Z. Zuo, Q. Qin, Environ. Prog. Sustain. Energy 149, 306–315 (2014)

    Google Scholar 

  13. C. Li, D. Hirabayashi, K. Suzuki, Appl. Catal. B 88, 3–4 (2009)

    Google Scholar 

  14. C.S. Martavaltzi, E.P. Pampaka, E.S. Korkakaki, A.A. Lemonidou, Energy Fuels 24, 4 (2010)

    Article  Google Scholar 

  15. C. Ghoroi, A.K. Suresh, AIChE J. 53, 2 (2007)

    Article  Google Scholar 

  16. L.A. Selyunina, L.N. Mishenina, K.P. Mashkova, Y.G. Slizhov, Russ. J. Appl. Chem. 89, 3 (2016)

    Article  Google Scholar 

  17. G. Voicu, C.D. Ghiţulică, E. Andronescu, Mater. Charact. 73, 89 (2012)

    Article  CAS  Google Scholar 

  18. A. Ranjbar, M. Rezaei, Adv. Powder Technol. 25, 1 (2014)

    Article  Google Scholar 

  19. A.R. Keshavarz, M. Soleimani, RSC Adv. 6, 66 (2016)

    Article  Google Scholar 

  20. R.B. Anderson, J. Catal. 3, 1 (1964)

    Article  Google Scholar 

  21. R. Geyer, J. Hunold, M. Keck, P. Kraak, A. Pachulski, R. Schödel, Chem. Ing. Tech. 84, 1–2 (2012)

    Google Scholar 

  22. H. Özdemir, M.A.F. Öksüzömer, M.A. Gürkaynak, Fuel 116, 63 (2014)

    Article  Google Scholar 

  23. J.B. Condon, Surface Area and Porosity Determinations by Physisorption: Measurements and Theory (Elsevier Science, Amsterdam, 2006)

    Google Scholar 

  24. A.R. Keshavarz, M. Soleimani, Energy Technol. 5, 4 (2017)

    Article  Google Scholar 

  25. Y.-P. Chang, P.-H. Chang, Y.-T. Lee, T.-J. Lee, Y.-H. Lai, S.-Y. Chen, Microporous Mesoporous Mater. 183(Supplement C), 172 (2014)

    Google Scholar 

  26. Y. Ono, H. Hattori, Solid Base Catalysis, ed. Y. Ono, H. Hattori (Springer, Berlin, 2011), pp. 1–9

  27. L. Xu, Z. Miao, H. Song, W. Chen, L. Chou, Catal. Sci. Technol. 4, 6 (2014)

    Google Scholar 

  28. K.Y. Koo, J.H. Lee, U.H. Jung, S.H. Kim, W.L. Yoon, Fuel 153, 303 (2015)

    Article  CAS  Google Scholar 

  29. A. Ranjbar, M. Rezaei, J. Nat. Gas Chem. 21, 2 (2012)

    Article  Google Scholar 

  30. A. Ranjbar, M. Rezaei, Int. J. Hydrog. Energy 37, 8 (2012)

    Article  Google Scholar 

  31. X. Lv, J.-F. Chen, Y. Tan, Y. Zhang, Catal. Commun. 20, 6 (2012)

    Article  CAS  Google Scholar 

  32. L. Li, X. Wang, K. Shen, X. Zou, X. Lu, W. Ding, Chin. J. Catal. 31, 5 (2010)

    Google Scholar 

  33. J. Guo, H. Lou, X. Zheng, Carbon 45, 6 (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mansooreh Soleimani.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Keshavarz, A.R., Soleimani, M. Steam pre-reforming of natural gas over nanostructured Ni/12CaO–7Al2O3 catalyst for hydrogen production: effect of support preparation method. Res Chem Intermed 44, 1485–1503 (2018). https://doi.org/10.1007/s11164-017-3180-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11164-017-3180-4

Keywords

Navigation