Skip to main content
Log in

Biological properties of novel chitosan-based composites for medical application as bone substitute

  • Research Article
  • Published:
Central European Journal of Biology

Abstract

Hydroxyapatite is the main inorganic component of bones and teeth. In order to improve mechanical properties and surgical handiness of bioceramics, a plasticizing agent e.g. polysaccharide can be added. Chitosan is a polysaccharide with biological properties that make it an ideal component of bioceramics-based composites for medical application as bone substitute. In this study, biocompatibility of two types of novel krill chitosan-based composites was evaluated. In vitro experiments were carried out using human foetal osteoblast cell line. Cytotoxicity, cell adhesion, and bone ALP activity tests were performed to assess biocompatibility of the composites. Osteoblast growth on composites was observed using confocal microscope. Our results demonstrated that fabricated novel composites are non-toxic, are favorable to cell adhesion and growth, and provoke increase in b-ALP activity with time, thus inducing osteoblast differentiation. Based on this data composites have promising clinical potential as a bone defect filler in regenerative medicine. It is worth emphasizing that our work resulted in fabrication of flexible and surgical handy, bone substitutes that possess absolute biocompatibility with structural and mechanical properties similar to trabecular bone.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aronov D., Karlov A., Rosenman G., Hydroxyapatite nanoceramics: Basic physical properties and biointerface modification, J. Eur. Ceram. Soc., 2007, 27, 4181–4186

    Article  CAS  Google Scholar 

  2. Belcarz A., Ginalska G., Zalewska J., Rzeski W., Ślósarczyk A., Kowalczuk D., Godlewski P., Niedźwiadek J., Covalent coating of hydroxyapatite by keratin stabilizes gentamicin release, J. Biomed. Mater. Res. B Appl. Biomater., 2009, 89, 102–113

    Article  CAS  PubMed  Google Scholar 

  3. Sopyan Y.I., Mel M., Ramesh S., Khalid K.A., Porous hydroxyapatite for artificial bone applications, Sci. Technol. Adv. Mater., 2007, 8, 116–123

    Article  CAS  Google Scholar 

  4. Belcarz A., Ginalska G., Pycka T., Zima A., Slósarczyk A., Polkowska I., Paszkiewicz Z., Piekarczyk W., Application of β-1,3-glucan in production of ceramics-based elastic composite for bone repair, Cent. Eur. J. Biol., 2013, 8(6), 534–548

    Article  CAS  Google Scholar 

  5. Tsioptsias C., Panayiotou C., Preparation of cellulose-nanohydoxyapatite composite scaffolds from ionic liquid solutions, Carbohydr. Polym., 2008, 74, 99–105

    Article  CAS  Google Scholar 

  6. Mecwan M.M., Rapalo E.G., Mishra R.S., Haggard O.W., Bumgardner D.J., Effect of molecular weight of chitosan degradated by microwave irradiation on lyophilized scaffold for bone tissue engineering applications, J. Biomed. Mater. Res. A, 2011, 97(1), 66–73

    Article  CAS  Google Scholar 

  7. Mellegård H., Strand P.S., Christensen E.B., Granum E.P., Hardy P.S., Antibacterial activity of chemically defined chitosans: Influence of molecular weight, degree of acetylation and test organism, Int. J. Food Microbiol., 2011, 148, 48–54

    Article  CAS  PubMed  Google Scholar 

  8. Kim E.S., Cho W.Y., Kang J.E., Kwon C.I., Lee B.E., Kim H.J., Chung H., Jeong Y.S., Three-dimensional porous collagen/chitosan complex sponge for tissue engineering, Fibers and Polymers, 2001, 2(2), 64–70

    Article  CAS  Google Scholar 

  9. Malafaya B.P., Reis L.R., Bilayered chitosanubased scaffolds for osteochondral tissue engineering: Influence of hydroxyapatite on in vitro cytotoxicity and dynamic bioactivity studies in a specific double-chamber bioreactor, Acta Biomater., 2009, 5, 644–660

    Article  CAS  PubMed  Google Scholar 

  10. Muzzarelli A.A.R., Chitins and chitosans for the repair of wounded skin, nerve, cartilage and bone, Carbohydr. Polym., 2009, 76, 167–182

    Article  CAS  Google Scholar 

  11. Chun J.H., Kim W.-G., Kim H.-C., Fabrication of porous chitosan scaffold in order to improve biocompatibility, J. Phys. Chem. Solids, 2008, 69, 1573–1576

    Article  CAS  Google Scholar 

  12. Madihally V.S., Matthew T.W.H., Porous chitosan scaffolds for tissue engineering, Biomaterials, 1999, 20, 1133–1142

    Article  CAS  PubMed  Google Scholar 

  13. Hannink G., Arts C.J.J., Bioresorbability, porosity and mechanical strength of bone substitutes: What is optimal for bone regeneration?, Injury, 2011, 42, S22–S25

    Article  PubMed  Google Scholar 

  14. Schliephake H., Neukam F.W., Klosa D., Influence of pore dimensions on bone ingrowth into porous hydroxylapatite blocks used as bone graft substitutes. Ahistometric study, Int. J. Oral Maxillofac. Surg., 1991, 20, 53–58

    Article  CAS  PubMed  Google Scholar 

  15. Otsuki B., Takemoto M., Fujibayashi S., Neo M., Kokubo T., Nakamura T., Novel Micro-CT based 3-dimentional structural analyses of porous biomaterials, Key Eng. Mater., 2007, 330-332, 967–970

    Article  CAS  Google Scholar 

  16. Przekora A., Pałka K., Macherzyńska B., Ginalska G., Structural properties, Young’s modulus and cytotoxicity assessment of chitosan-based composites, Engineering of Biomaterials, 2012, 114(XV), 52–58

    Google Scholar 

  17. Wojtasz-Pajak A., Bykowski P.J., Production of chitosan with specified physicochemical properties by means of controlling the time and temperature of the reaction of deacetylation, Bul. of the Sea Fish. Inst., 1998, 1, 75–81

    Google Scholar 

  18. Wojtasz-Pajak A., Kolodziejska I., Debogorska A., Malesa-Ciecwierz M., Enzymatic, physical and chemical modifications of krill chitin, Bul. of the Sea Fish. Inst., 1998, 1, 29–39

    Google Scholar 

  19. ISO 10993-5:2009 (E) Biological evaluation of medical devices-Part5: Tests for in vitro cytotoxicity. International Organization for Standardization 2009

  20. Przekora A., Kołodyńska D., Ginalska G., Ślósarczyk A., The effect of biomaterials ion reactivity on cell viability in vitro, Engineering of Biomaterials, 2012, 114(XV), 59–65

    Google Scholar 

  21. Sun Y., Liu Y., Li Y., Lv M., Li P., Xu H., Wang L., Preparation and characterization of novel curdlan/chitosan blending membranes for antibacterial applications, Carbohydr. Polym., 2011, 84, 952–959

    Article  CAS  Google Scholar 

  22. Gustavsson J., Ginebra P.M., Engel E., Planell J., Ion reactivity of calcium deficient hydroxyapatite in standard cell culture media, Acta Biomat., 2011, 7, 4242–4252

    Article  CAS  Google Scholar 

  23. An S., Gao Y., Ling J., Wei X., Xiao Y., Calcium ions promote osteogenic differentiation and mineralization of human dental pulp cells: implications for pulp capping materials, J. Mater. Sci. Mater. Med., 2012, 23, 789–795

    Article  CAS  PubMed  Google Scholar 

  24. Cao N., Chen B.X., Schreyer J.D., Influence of calcium ions on cell survival and proliferation in the context of an alginate hydrogel, ISRN Chemical Engineering, 2012, 516461, 1–9

    Article  CAS  Google Scholar 

  25. Kucharska M., Walenko K., Butruk B., Brynk T., Heljak M., Ciach T., Fabrication and characterization of chitosan microsphers agglomerated scaffolds for bone tissue engineering, Mater. Lett., 2010, 64, 1059–1062

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Agata Przekora.

About this article

Cite this article

Przekora, A., Ginalska, G. Biological properties of novel chitosan-based composites for medical application as bone substitute. cent.eur.j.biol. 9, 634–641 (2014). https://doi.org/10.2478/s11535-014-0297-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11535-014-0297-y

Keywords

Navigation