Skip to main content

Chitosan and Its Potential Use for the Delivery of Bioactive Molecules in Bone Tissue Engineering

  • Chapter
  • First Online:
Chitosan for Biomaterials IV

Part of the book series: Advances in Polymer Science ((POLYMER,volume 288))

Abstract

Bone tissue engineering (BTE) is a transitional research field that focuses on material science and biology to construct novel biocomposites proficient in treating impaired bone. Bioactive molecules are unique therapeutic agents that have prompted rapid advances in the field of tissue engineering. Polymers of natural sources play a crucial role in the fabrication of biocompatible delivery systems that facilitate bioactive agents’ efficient delivery. Chitosan (CS) is known for its distinct pharmacological properties, and its function in regenerative medicine is well recorded. The versatility of CS enables the formulation of a wide range of drug carriers. This chapter highlights various scientific findings concerning different forms of nanomaterials produced from CS. CS-based composites’ utility as effective delivery systems for the potent bioactive compounds such as growth factors, nucleic acids, and phytocompounds in treating bone defects is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Florencio-Silva R, Sasso GRDS, Sasso-Cerri E, Simões MJ, Cerri PS (2015) Biology of bone tissue: structure, function, and factors that influence bone cells. Biomed Res Int 2015:421746

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Osterhoff G, Morgan EF, Shefelbine SJ, Karim L, McNamara LM, Augat P (2016) Bone mechanical properties and changes with osteoporosis. Injury 47:S11–S20

    Article  PubMed  PubMed Central  Google Scholar 

  3. Gilbert SF (2017) Developmental biology, the stem cell of biological disciplines. PLoS Biol 15(12):e2003691

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Wiese A, Pape HC (2010) Bone defects caused by high-energy injuries, bone loss, infected nonunions, and nonunions. Orthop Clin N Am 41:1

    Article  Google Scholar 

  5. Amini AR, Laurencin CT, Nukavarapu SP (2012) Bone tissue engineering: recent advances and challenges. Crit Rev Biomed Eng 40

    Google Scholar 

  6. Winkler T, Sass FA, Duda GN, Schmidt-Bleek K (2018) A review of biomaterials in bone defect healing, remaining shortcomings and future opportunities for bone tissue engineering: the unsolved challenge. Bone Joint Res 7:232–243

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Qu H, Fu H, Han Z, Sun Y (2019) Biomaterials for bone tissue engineering scaffolds: a review. RSC Adv 9:26252–26262

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Chocholata P, Kulda V, Babuska V (2019) Fabrication of scaffolds for bone-tissue regeneration. Materials 12:568

    Article  CAS  PubMed Central  Google Scholar 

  9. Sughanthy AP, Ansari MNMNM, Siva APS, Ansari MNMNM (2015) A review on bone scaffold fabrication methods. Int Res J Eng Technol 2:1232–1238

    Google Scholar 

  10. Koons GL, Diba M, Mikos AG (2020) Materials design for bone-tissue engineering. Nat Rev Mater:1–20

    Google Scholar 

  11. Guaadaoui A, Benaicha S, Elmajdoub N, Bellaoui M, Hamal A (2014) What is a bioactive compound? A combined definition for a preliminary consensus. Int J Food Sci Nutr 3:174–179

    Article  Google Scholar 

  12. Biesalski HK, Dragsted LO, Elmadfa I, Grossklaus R, Müller M, Schrenk D, Weber P (2009) Bioactive compounds: definition and assessment of activity. Nutr J 25:1202–1205

    Article  Google Scholar 

  13. Mitchell AC, Briquez PS, Hubbell JA, Cochran JR (2016) Engineering growth factors for regenerative medicine applications. Acta Biomater 30:1–12

    Article  CAS  PubMed  Google Scholar 

  14. De Witte TM, Fratila-Apachitei LE, Zadpoor AA, Peppas NA (2018) Bone tissue engineering via growth factor delivery: from scaffolds to complex matrices. Regen Biomater 5:197–211

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Farokhi M, Mottaghitalab F, Shokrgozar MA, Ou KL, Mao C, Hosseinkhani H (2016) Importance of dual delivery systems for bone tissue engineering. J Control Release 225:152–169

    Article  CAS  PubMed  Google Scholar 

  16. Sahoo S, Ang LT, Goh JCH, Toh SL (2010) Growth factor delivery through electrospun nanofibers in scaffolds for tissue engineering applications. J Biomed Mater Res A 93:1539–1550

    PubMed  Google Scholar 

  17. Kempen DH, Lu L, Heijink A, Hefferan TE, Creemers LB, Maran A, Dhert WJ (2009) Effect of local sequential VEGF and BMP-2 delivery on ectopic and orthotopic bone regeneration. Biomaterials 30:2816–2825

    Article  CAS  PubMed  Google Scholar 

  18. Lienemann PS, Lutolf MP, Ehrbar M (2012) Biomimetic hydrogels for controlled biomolecule delivery to augment bone regeneration. Adv Drug Deliv Rev 64:1078–1089

    Article  CAS  PubMed  Google Scholar 

  19. Potts JT (2005) Parathyroid hormone: past and present. J Endocrinol 187:311–325

    Article  CAS  PubMed  Google Scholar 

  20. Wojda SJ, Donahue SW (2018) Parathyroid hormone for bone regeneration. J Orthop 36:2586–2594

    CAS  Google Scholar 

  21. Arrighi I, Mark S, Alvisi M, von Rechenberg B, Hubbell JA, Schense JC (2009) Bone healing induced by local delivery of an engineered parathyroid hormone prodrug. Biomaterials 30:1763–1771

    Article  CAS  PubMed  Google Scholar 

  22. Arisawa EAL, Brandão AAH, Almeida JD, da Rocha RF (2008) Calcitonin in bone-guided regeneration of mandibles in ovariectomized rats: densitometric, histologic and histomorphometric analysis. Int J Oral Maxillofac Surg 37:47–53

    Article  CAS  PubMed  Google Scholar 

  23. Nascimento SB, Cardoso CA, Ribeiro TP, Almeida JD, Albertini R, Munin E, Arisawa EAL (2010) Effect of low-level laser therapy and calcitonin on bone repair in castrated rats: a densitometric study. Photomed Laser Surg 28:45–49

    Article  PubMed  Google Scholar 

  24. Yoon SJ, Park KS, Kim MS, Rhee JM, Khang G, Lee HB (2007) Repair of diaphyseal bone defects with calcitriol-loaded PLGA scaffolds and marrow stromal cells. Tissue Eng 13:1125–1133

    Article  CAS  PubMed  Google Scholar 

  25. Balagangadharan K, Trivedi R, Vairamani M, Selvamurugan N (2019) Sinapic acid-loaded chitosan nanoparticles in polycaprolactone electrospun fibers for bone regeneration in vitro and in vivo. Carbohydr Polym 216:1–16

    Article  CAS  PubMed  Google Scholar 

  26. Sruthi R, Balagangadharan K, Selvamurugan N (2020) Polycaprolactone/polyvinylpyrrolidone coaxial electrospun fibers containing veratric acid-loaded chitosan nanoparticles for bone regeneration. Colloids Surf B Biointerfaces 193:111110

    Article  CAS  PubMed  Google Scholar 

  27. Srinaath N, Balagangadharan K, Pooja V, Paarkavi U, Trishla A, Selvamurugan N (2019) Osteogenic potential of zingerone, a phenolic compound in mouse mesenchymal stem cells. Biofactors 45:575–582

    CAS  PubMed  Google Scholar 

  28. Shadamarshan RP, Balaji H, Rao HS, Balagangadharan K, Chandran SV, Selvamurugan N (2018) Fabrication of PCL/PVP electrospun fibers loaded with trans-anethole for bone regeneration in vitro. Colloids Surf B Biointerfaces 171:698–706

    Article  CAS  Google Scholar 

  29. Chandran SV, Vairamani M, Selvamurugan N (2019) Osteostimulatory effect of biocomposite scaffold containing phytomolecule diosmin by Integrin/FAK/ERK signaling pathway in mouse mesenchymal stem cells. Sci Rep 9:1–13

    Article  Google Scholar 

  30. Menon AH, Soundarya SP, Sanjay V, Chandran SV, Balagangadharan K, Selvamurugan N (2018) Sustained release of chrysin from chitosan-based scaffolds promotes mesenchymal stem cell proliferation and osteoblast differentiation. Carbohydr Polym 195:356–367

    Article  CAS  PubMed  Google Scholar 

  31. Akshaya N, Prasith P, Abinaya B, Ashwin B, Chandran SV, Selvamurugan N (2021) Valproic acid, a potential inducer of osteogenesis in mouse mesenchymal stem cells. Curr Mol Pharmacol 14(1):27–35

    Article  CAS  PubMed  Google Scholar 

  32. Ganesh S, Sidharthan DS, Pranavkrishna S, Pranavadithya S, Abhinandan R, Akshaya RL, Balagangadharan K, Siddabathuni N, Srinivasan S, Selvamurugan N (2020) An osteoinductive effect of phytol on mouse mesenchymal stem cells (C3H10T1/2) towards osteoblasts. Bioorg Med Chem Lett:127137

    Google Scholar 

  33. Ketonis C, Barr S, Shapiro IM, Parvizi J, Adams CS, Hickok NJ (2011) Antibacterial activity of bone allografts: comparison of a new vancomycin-tethered allograft with allograft loaded with adsorbed vancomycin. Bone 48:631–638

    Article  CAS  PubMed  Google Scholar 

  34. Zhang Y, Ma W, Zhan Y, Mao C, Shao X, Xie X, Lin Y (2018) Nucleic acids and analogs for bone regeneration. Bone Res 6:1–9

    Article  CAS  Google Scholar 

  35. Wei G, Ma PX (2004) Structure and properties of nano-hydroxyapatite/polymer composite scaffolds for bone tissue engineering. Biomaterials 25:4749–4757

    Article  CAS  PubMed  Google Scholar 

  36. Sonia TA, Sharma CP (2011) Chitosan and its derivatives for drug delivery perspective. In: Chitosan for biomaterials I. Springer, Berlin, pp 23–53

    Chapter  Google Scholar 

  37. Dutta PK, Dutta J, Tripathi VS (2004) Chitin and chitosan: chemistry, properties and applications. J Sci Ind Res 63:20–31

    CAS  Google Scholar 

  38. Ruiz GAM, Corrales HFZ (2017) Chitosan, chitosan derivatives and their biomedical applications. Biological activities and application of marine polysaccharides. IntechOpen, 87

    Google Scholar 

  39. Muxika A, Etxabide A, Uranga J, Guerrero P, De La Caba K (2017) Chitosan as a bioactive polymer: processing, properties and applications. Int J Biol Macromol 105:1358–1368

    Article  CAS  PubMed  Google Scholar 

  40. Balagangadharan K, Rao H, Shadamarshan P, Balaji H, Selvamurugan N (2019) Composites containing marine biomaterials for bone tissue repair. In: Marine-derived biomaterials for tissue engineering applications. Springer, Singapore, pp 357–382

    Chapter  Google Scholar 

  41. Khaleda Firdous Swati Chakraborty (2017) A review: naturally available sources of chitosan and analysis of chitosan derivatives for its antimicrobial activity. Int J Recent Sci Res 8:15773–15776

    Google Scholar 

  42. Al Sagheer FA, Al-Sughayer MA, Muslim S, Elsabee MZ (2009) Extraction and characterization of chitin and chitosan from marine sources in Arabian gulf. Carbohydr Polym 77:410–419

    Article  CAS  Google Scholar 

  43. Venkatesan J, Kim SK (2010) Chitosan composites for bone tissue engineering an overview. Mar Drugs 8:2252–2266

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Muley AB, Chaudhari SA, Mulchandani KH, Singhal RS (2018) Extraction and characterization of chitosan from prawn shell waste and its conjugation with cutinase for enhanced thermo-stability. Int J Biol Macromol 111:1047–1058

    Article  CAS  PubMed  Google Scholar 

  45. Paul S, Jayan A, Sasikumar CS, Cherian SM (2014) Extraction and purification of chitosan from chitin isolated from sea prawn Fenneropenaeus indicus. Extraction 7

    Google Scholar 

  46. Acosta N, Jiménez C, Borau V, Heras A (1993) Extraction and characterization of chitin from crustaceans. Biomass Bioenergy 5:145–153

    Article  CAS  Google Scholar 

  47. De Queiroz Antonino RSCM, Lia Fook BRP, De Oliveira Lima VA, De Farias Rached RĂŤ, Lima EPN, Da Silva Lima RJ, Lia Fook MV (2017) Preparation and characterization of chitosan obtained from shells of shrimp (Litopenaeus vannamei Boone). Mar Drugs 15:141

    Article  PubMed Central  CAS  Google Scholar 

  48. Zhu KY, Merzendorfer H, Zhang W, Zhang J, Muthukrishnan S (2016) Biosynthesis, turnover, and functions of chitin in insects. Annu Rev Entomol 61:177–196

    Article  CAS  PubMed  Google Scholar 

  49. Kaya M, Baran T (2015) Description of a new surface morphology for chitin extracted from wings of cockroach (Periplaneta americana). Int J Biol Macromol 75:7–12

    Article  CAS  PubMed  Google Scholar 

  50. Kaya M, Baran T, Asan-Ozusaglam M, Cakmak YS, Tozak KO, Mol A, Sezen G (2015) Extraction and characterization of chitin and chitosan with antimicrobial and antioxidant activities from cosmopolitan Orthoptera species (Insecta). Biotechnol Bioproc E 20:168–179

    Article  CAS  Google Scholar 

  51. Hou L, Shi Y, Zhai P, Le G (2007) Antibacterial activity and in vitro anti-tumor activity of the extract of the larvae of the housefly (Musca domestica). J Ethnopharmacol 111:227–231

    Article  PubMed  Google Scholar 

  52. Ai H, Wang F, Yang Q, Zhu F, Lei C (2008) Preparation and biological activities of chitosan from the larvae of housefly, Musca domestica. Carbohydr Polym 72:419–423

    Article  CAS  Google Scholar 

  53. Rane KD, Hoover DG (1993) Production of chitosan by fungi. Food Biotechnol 7:11–33

    Article  CAS  Google Scholar 

  54. Ghormade V, Pathan EK, Deshpande MV (2017) Can fungi compete with marine sources for chitosan production? Int J Biol Macromol 104:1415–1421

    Article  CAS  PubMed  Google Scholar 

  55. Synowiecki J, Al-Khateeb NAAQ (1997) Mycelia of Mucor rouxii as a source of chitin and chitosan. Food Chem 60:605–610

    Article  CAS  Google Scholar 

  56. White SA, Farina PR, Fulton I (1979) Production and isolation of chitosan from Mucor rouxii. Appl Environ Microbiol 38:323–328

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Dhillon GS, Kaur S, Brar SK, Verma M (2013) Green synthesis approach: extraction of chitosan from fungus mycelia. Crit Rev Biochem Mol Biol 33:379–403

    CAS  Google Scholar 

  58. Amorim RVDS, Pedrosa RP, Fukushima K, MartĂ­nez CR, Ledingham WM, Campos-Takaki D, Maria G (2006) Alternative carbon sources from sugar cane process for submerged cultivation of Cunninghamella bertholletiae to produce chitosan. Food Technol Biotechnol 44

    Google Scholar 

  59. Cardoso A, Lins CIM, Dos Santos ER, Silva MCF, Campos-Takaki GM (2012) Microbial enhance of chitosan production by Rhizopus arrhizus using agroindustrial substrates. Molecules 17:4904–4914

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Rinaudo M, Domard A (1989) Chitin and chitosan. In: Solution properties of chitosan. Elsevier, London, pp 71–86

    Google Scholar 

  61. El Knidri H, Belaabed R, Addaou A, Laajeb A, Lahsini A (2018) Extraction, chemical modification and characterization of chitin and chitosan. Int J Biol Macromol 120:1181–1189

    Article  PubMed  CAS  Google Scholar 

  62. Hamed I, Özogul F, Regenstein JM (2016) Industrial applications of crustacean by-products (chitin, chitosan, and chitooligosaccharides): a review. Trends Food Sci Technol 48:40–50

    Article  CAS  Google Scholar 

  63. Yuan Y, Chesnutt BM, Haggard WO, Bumgardner JD (2011) Deacetylation of chitosan: material characterization and in vitro evaluation via albumin adsorption and pre-osteoblastic cell cultures. Materials 4:1399–1416

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Arbia W, Arbia L, Adour L, Amrane A (2013) Chitin extraction from crustacean shells using biological methods – a review. Food Technol Biotechnol 51:12–25

    Google Scholar 

  65. Rinaudo M (2006) Chitin and chitosan: properties and applications. Prog Polym Sci 31:603–632

    Article  CAS  Google Scholar 

  66. Croisier F, Jerome C (2013) Chitosan-based biomaterials for tissue engineering. Eur Polym J 49:780–792

    Article  CAS  Google Scholar 

  67. Ibrahim HM, El-Zairy EMR (2015) Chitosan as a biomaterial – structure, properties, and electrospun nanofibers. Concepts, compounds and the alternatives of antibacterials. IntechOpen, pp 81–101

    Google Scholar 

  68. Power KA, Fitzgerald KT, Gallagher WM (2010) Examination of cell–host–biomaterial interactions via high-throughput technologies: a re-appraisal. Biomaterials 31:6667–6674

    Article  CAS  PubMed  Google Scholar 

  69. Rodrigues S, Dionísio M, López CR, Grenha A (2012) Biocompatibility of chitosan carriers with application in drug delivery. J Funct Biomater 3:615–641

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Funkhouser JD, Aronson NN (2007) Chitinase family GH18: evolutionary insights from the genomic history of a diverse protein family. BMC Evol Biol 7:96

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  71. Punitha S, Girish Y (2010) Polymers in mucoadhesive buccal drug delivery system – a review. Int J Pharm Sci Res 1

    Google Scholar 

  72. Boddupalli BM, Mohammed ZN, Nath RA, Banji D (2010) Mucoadhesive drug delivery system: an overview. J Adv Pharm Technol Res 1:381

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Bertoni FA, González JC, García SI, Sala LF, Bellú SE (2018) Application of chitosan in removal of molybdate ions from contaminated water and groundwater. Carbohydr Polym 180:55–62

    Article  CAS  PubMed  Google Scholar 

  74. Sarode S, Upadhyay P, Khosa MA, Mak T, Shakir A, Song S, Ullah A (2019) Overview of wastewater treatment methods with special focus on biopolymer chitin-chitosan. Int J Biol Macromol 121:1086–1100

    Article  CAS  PubMed  Google Scholar 

  75. Vakili M, Rafatullah M, Salamatinia B, Abdullah AZ, Ibrahim MH, Tan KB, Amouzgar P (2014) Application of chitosan and its derivatives as adsorbents for dye removal from water and wastewater: a review. Carbohydr Polym 113:115–130

    Article  CAS  PubMed  Google Scholar 

  76. Park JU, Song EH, Jeong SH, Song J, Kim HE, Kim S (2018) Chitosan-based dressing materials for problematic wound management. In: Novel biomaterials for regenerative medicine. Springer, Singapore, pp 527–537

    Chapter  Google Scholar 

  77. Singh R, Shitiz K, Singh A (2017) Chitin and chitosan: biopolymers for wound management. Int Wound J 14:1276–1289

    Article  PubMed  PubMed Central  Google Scholar 

  78. Balagangadharan K, Dhivya S, Selvamurugan N (2017) Chitosan based nanofibers in bone tissue engineering. Int J Biol Macromol 104:1372–1382

    Article  CAS  PubMed  Google Scholar 

  79. Anitha A, Rani VD, Krishna R, Sreeja V, Selvamurugan N, Nair SV, Jayakumar R (2009) Synthesis, characterization, cytotoxicity and antibacterial studies of chitosan, O-carboxymethyl and N, O-carboxymethyl chitosan nanoparticles. Carbohydr Polym 78:672–677

    Article  CAS  Google Scholar 

  80. Soundarya SP, Menon AH, Chandran SV, Selvamurugan N (2018) Bone tissue engineering: scaffold preparation using chitosan and other biomaterials with different design and fabrication techniques. Int J Biol Macromol 119:1228–1239

    Article  CAS  Google Scholar 

  81. Banerjee R (2018) Nanotechnology in drug delivery: present status and a glimpse into the future. Ther Deliv 9(4):231–232

    Article  CAS  PubMed  Google Scholar 

  82. Deshpande AA, Rhodes CT, Shah NH, Malick AW (1996) Controlled-release drug delivery systems for prolonged gastric residence: an overview. Drug Dev Ind Pharm 22:531–539

    Article  CAS  Google Scholar 

  83. Tibbitt MW, Dahlman JE, Langer R (2016) Emerging frontiers in drug delivery. J Am Chem Soc 138:704–717

    Article  CAS  PubMed  Google Scholar 

  84. Moritera T, Ogura Y, Honda Y, Wada R, Hyon SH, Ikada Y (1991) Microspheres of biodegradable polymers as a drug-delivery system in the vitreous. Invest Ophthalmol Vis Sci 32:1785–1790

    CAS  PubMed  Google Scholar 

  85. Napper DH (1983) Polymeric stabilization of colloidal dispersions, vol 3. Academic Press, Cambridge

    Google Scholar 

  86. Patil YP, Jadhav S (2014) Novel methods for liposome preparation. Chem Phys Lipids 177:8–18

    Article  CAS  PubMed  Google Scholar 

  87. Akbarzadeh A, Rezaei Sadabady R, Davaran S, Joo SW, Zarghami N, Hanifehpour Y, Nejati Koshki K (2013) Liposome: classification, preparation, and applications. Nanoscale Res Lett 8:102

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  88. Lee Y, Thompson DH (2017) Stimuli-responsive liposomes for drug delivery. Wiley Interdiscip Rev Nanomed Nanobiotechnol 9:e1450

    Article  CAS  Google Scholar 

  89. Li SP, Kowarski CR, Feld KM, Grim WM (1988) Recent advances in microencapsulation technology and equipment. Drug Dev Ind Pharm 14:353–376

    Article  CAS  Google Scholar 

  90. Dai C, Wang B, Zhao H (2005) Microencapsulation peptide and protein drugs delivery system. Colloids Surf B Biointerfaces 41:117–120

    Article  CAS  PubMed  Google Scholar 

  91. Burke PA, Klumb LA, Herberger JD, Nguyen XC, Harrell RA, Zordich M (2004) Poly (lactide-co-glycolide) microsphere formulations of darbepoetin alfa: spray drying is an alternative to encapsulation by spray-freeze drying. Pharm Res 21:500–506

    Article  CAS  PubMed  Google Scholar 

  92. Okochi H, Nakano M (2000) Preparation and evaluation of w/o/w type emulsions containing vancomycin. Adv Drug Deliv Rev 45:5–26

    Article  CAS  PubMed  Google Scholar 

  93. Sinha VR, Trehan A (2003) Biodegradable microspheres for protein delivery. J Control Release 90:261–280

    Article  CAS  PubMed  Google Scholar 

  94. Rathore KS, Nema RK (2009) An insight into ophthalmic drug delivery system. Int J Pharm Sci Drug Res 1:1–5

    CAS  Google Scholar 

  95. Amreddy N, Babu A, Muralidharan R, Panneerselvam J, Srivastava A, Ahmed R, Ramesh R (2018) Recent advances in nanoparticle-based cancer drug and gene delivery. Advances cancer research, vol 137. Academic Press, Cambridge, pp 115–170

    Google Scholar 

  96. Wang J, Hu X, Xiang D (2018) Nanoparticle drug delivery systems: an excellent carrier for tumor peptide vaccines. Drug Deliv 25:1319–1327

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Ashfaq UA, Riaz M, Yasmeen E, Yousaf MZ (2017) Recent advances in nanoparticle-based targeted drug-delivery systems against cancer and role of tumor microenvironment. Crit Rev Ther Drug 34

    Google Scholar 

  98. Nagpal K, Singh SK, Mishra DN (2010) Chitosan nanoparticles: a promising system in novel drug delivery. Chem Pharm Bull 58:1423–1430

    Article  CAS  Google Scholar 

  99. Severino P, da Silva CF, Andrade LN, de Lima Oliveira D, Campos J, Souto EB (2019) Alginate nanoparticles for drug delivery and targeting. Curr Pharm Des 25:1312–1334

    Article  CAS  PubMed  Google Scholar 

  100. Danafar H (2016) Applications of copolymeric nanoparticles in drug delivery systems. Drug Dev Res 66:506–519

    CAS  Google Scholar 

  101. Ulbrich K, Hola K, Subr V, Bakandritsos A, Tucek J, Zboril R (2016) Targeted drug delivery with polymers and magnetic nanoparticles: covalent and noncovalent approaches, release control, and clinical studies. Chem Rev 116:5338–5431

    Article  CAS  PubMed  Google Scholar 

  102. Manjunath K, Reddy JS, Venkateswarlu V (2005) Solid lipid nanoparticles as drug delivery systems. Methods Find Exp Clin Pharmacol 27:127–144

    Article  CAS  PubMed  Google Scholar 

  103. Sripriyalakshmi S, Jose P, Ravindran A, Anjali CH (2014) Recent trends in drug delivery system using protein nanoparticles. Cell Biochem Biophys 70:17–26

    Article  CAS  PubMed  Google Scholar 

  104. Aliabadi HM, Lavasanifar A (2006) Polymeric micelles for drug delivery. Expert Opin Drug Deliv 3:139–162

    Article  CAS  PubMed  Google Scholar 

  105. Tanbour R, Martins MA, Pitt GW, Husseini AG (2016) Drug delivery systems based on polymeric micelles and ultrasound: a review. Curr Pharm Des 22:2796–2807

    Article  CAS  PubMed  Google Scholar 

  106. Jones MC, Leroux JC (1999) Polymeric micelles–a new generation of colloidal drug carriers. Eur J Pharm Biopharm 48:101–111

    Article  CAS  PubMed  Google Scholar 

  107. Biswas S, Kumari P, Lakhani PM, Ghosh B (2016) Recent advances in polymeric micelles for anti-cancer drug delivery. Eur J Pharm Sci 83:184–202

    Article  CAS  PubMed  Google Scholar 

  108. Zhou Q, Zhang L, Yang T, Wu H (2018) Stimuli-responsive polymeric micelles for drug delivery and cancer therapy. Int J Nanomedicine 13:2921

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Gupta KC, Haider A, Choi YR, Kang IK (2014) Nanofibrous scaffolds in biomedical applications. Biomater Res 18:1–11

    Article  Google Scholar 

  110. Miguel SP, Figueira DR, Simões D, Ribeiro MP, Coutinho P, Ferreira P, Correia IJ (2018) Electrospun polymeric nanofibres as wound dressings: a review. Colloids Surf B Biointerfaces 169:60–71

    Article  CAS  PubMed  Google Scholar 

  111. Zhang Z, Hu J, Ma PX (2012) Nanofiber-based delivery of bioactive agents and stem cells to bone sites. Adv Drug Deliv Rev 64:1129–1141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Ranganathan S, Balagangadharan K, Selvamurugan N (2019) Chitosan and gelatin-based electrospun fibers for bone tissue engineering. Int J Biol Macromol 133:354–364

    Article  CAS  PubMed  Google Scholar 

  113. Ye K, Kuang H, You Z, Morsi Y, Mo X (2019) Electrospun nanofibers for tissue engineering with drug loading and release. Pharmaceutics 11:182

    Article  CAS  PubMed Central  Google Scholar 

  114. Goonoo N, Bhaw-Luximon A, Jhurry D (2014) Drug loading and release from electrospun biodegradable nanofibers. J Biomed Nanotechnol 10:2173–2199

    Article  CAS  PubMed  Google Scholar 

  115. Fréchet JM, Tomalia DA (eds) (2001) Dendrimers and other dendritic polymers. Wiley, New York, p 647

    Google Scholar 

  116. Sherje AP, Jadhav M, Dravyakar BR, Kadam D (2018) Dendrimers: a versatile nanocarrier for drug delivery and targeting. Int J Pharm 548:707–720

    Article  CAS  PubMed  Google Scholar 

  117. De Brabander-Van Den Berg EM, Meijer EW (1993) Poly (propylenimin)-dendrimere: Synthese in größerem Maßstab durch heterogen katalysierte Hydrierungen. Angew Chem Int Ed 105:1370–1372

    Article  Google Scholar 

  118. Lothian-Tomalia MK, Hedstrand DM, Tomalia DA, Padias AB, Hall Jr HK (1997) A contemporary survey of covalent connectivity and complexity. The divergent synthesis of poly (thioether) dendrimers. Amplified, genealogically directed synthesis leading to the de Gennes dense packed state. Tetrahedron 53:15495–15513

    Article  CAS  Google Scholar 

  119. Seebach D, Herrmann GF, Lengweiler UD, Bachmann BM, Amrein W (1996) Synthesis and enzymatic degradation of dendrimers from (R)-3-hydroxybutanoic acid and trimesic acid. Angew Chem Int Ed Engl 35:2795–2797

    Article  CAS  Google Scholar 

  120. Lim J, Kostiainen M, Maly J, da Costa VC, Annunziata O, Pavan GM, Simanek EE (2013) Synthesis of large dendrimers with the dimensions of small viruses. J Am Chem Soc 135:4660–4663

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Kambhampati SP, Kannan RM (2013) Dendrimer nanoparticles for ocular drug delivery. J Ocul Pharmacol Ther 29:151–165

    Article  CAS  PubMed  Google Scholar 

  122. Akbarzadeh A, Khalilov R, Mostafavi E, Annabi N, Abasi E, Kafshdooz T, Davaran S (2018) Role of dendrimers in advanced drug delivery and biomedical applications: a review. Exp Oncol 40:178–183

    Article  CAS  PubMed  Google Scholar 

  123. Bunggulawa EJ, Wang W, Yin T, Wang N, Durkan C, Wang Y, Wang G (2018) Recent advancements in the use of exosomes as drug delivery systems. J Nanobiotechnol 16:1–13

    Article  CAS  Google Scholar 

  124. Ha D, Yang N, Nadithe V (2016) Exosomes as therapeutic drug carriers and delivery vehicles across biological membranes: current perspectives and future challenges. Acta Pharm Sin B 6:287–296

    Article  PubMed  PubMed Central  Google Scholar 

  125. Hessvik NP, Llorente A (2018) Current knowledge on exosome biogenesis and release. Cell Mol Life Sci 75:193–208

    Article  CAS  PubMed  Google Scholar 

  126. Rani S, Ryan AE, Griffin MD, Ritter T (2015) Mesenchymal stem cell-derived extracellular vesicles: toward cell-free therapeutic applications. Mol Ther 23:812–823

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Batrakova EV, Kim MS (2015) Using exosomes, naturally-equipped nanocarriers, for drug delivery. J Control Release 219:396–405

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Rosen Y, Elman NM (2009) Carbon nanotubes in drug delivery: focus on infectious diseases. Expert Opin Drug Deliv 6:517–530

    Article  CAS  PubMed  Google Scholar 

  129. Wong BS, Yoong SL, Jagusiak A, Panczyk T, Ho HK, Ang WH, Pastorin G (2013) Carbon nanotubes for delivery of small molecule drugs. Adv Drug Deliv Rev 65(15):1964–2015

    Article  CAS  PubMed  Google Scholar 

  130. Singh RP, Sharma G, Singh S, Patne SC, Pandey BL, Koch B, Muthu MS (2016) Effects of transferrin conjugated multi-walled carbon nanotubes in lung cancer delivery. Mater Sci Eng C 67:313–325

    Article  CAS  Google Scholar 

  131. Ali-Boucetta H, Al-Jamal KT, McCarthy D, Prato M, Bianco A, Kostarelos K (2008) Multiwalled carbon nanotube–doxorubicin supramolecular complexes for cancer therapeutics. Chem Commun (Camp) 4:459–461

    Article  Google Scholar 

  132. McDevitt MR, Chattopadhyay D, Kappel BJ, Jaggi JS, Schiffman SR, Antczak C, Scheinberg DA (2007) Tumor targeting with antibody-functionalized, radiolabeled carbon nanotubes. J Nucl Med 48:1180–1189

    Article  CAS  PubMed  Google Scholar 

  133. Adithya SP, Sidharthan DS, Abhinandan R, Balagangadharan K, Selvamurugan N (2020) Nanosheets-incorporated bio-composites containing natural and synthetic polymers/ceramics for bone tissue engineering. Int J Biol Macromol 164:1960–1972

    Article  CAS  PubMed  Google Scholar 

  134. Zhang F, Peng F, Qin L, Yang D, Li R, Jiang S, Zhang P (2019) pH/near infrared dual-triggered drug delivery system based black phosphorus nanosheets for targeted cancer chemo-photothermal therapy. Colloids Surf B Biointerfaces 180:353–361

    Article  CAS  PubMed  Google Scholar 

  135. Hatanaka T, Saito T, Fukushima T, Todo H, Sugibayashi K, Umehara S, Okamura Y (2019) Potential of biocompatible polymeric ultra-thin films, nanosheets, as topical and transdermal drug delivery devices. Int J Pharm 565:41–49

    Article  CAS  PubMed  Google Scholar 

  136. Peng L, Mei X, He J, Xu J, Zhang W, Liang R, Duan X (2018) Monolayer nanosheets with an extremely high drug loading toward controlled delivery and cancer theranostics. Adv Mater 30:1707389

    Article  CAS  Google Scholar 

  137. Suhail M, Rosenholm JM, Minhas MU, Badshah SF, Naeem A, Khan KU, Fahad M (2019) Nanogels as drug-delivery systems: a comprehensive overview. Ther Deliv 10:697–717

    Article  CAS  PubMed  Google Scholar 

  138. Hamidi M, Rafiei P, Azadi A, Mohammadi-Samani S (2011) Encapsulation of valproate-loaded hydrogel nanoparticles in intact human erythrocytes: a novel nano-cell composite for drug delivery. J Pharm Sci 100:1702–1711

    Article  CAS  PubMed  Google Scholar 

  139. Sultana F, Manirujjaman M, Imran-Ul-Haque MA, Sharmin S (2013) An overview of nanogel drug delivery system. J Appl Pharm Sci 3:95–105

    Google Scholar 

  140. Kazakov S, Levon K (2006) Liposome-nanogel structures for future pharmaceutical applications. Curr Pharm Des 12:4713–4728

    Article  CAS  PubMed  Google Scholar 

  141. Nguyen MH, Tran TT, Hadinoto K (2016) Controlling the burst release of amorphous drug–polysaccharide nanoparticle complex via crosslinking of the polysaccharide chains. Eur J Pharm Biopharm 104:156–163

    Article  CAS  PubMed  Google Scholar 

  142. Kaban K, Salva E, Akbuga J (2017) In vitro dose studies on chitosan nanoplexes for microRNA delivery in breast cancer cells. Nucleic Acids Ther 27:45–55

    Article  CAS  Google Scholar 

  143. Kalhapure RS, Suleman N, Mocktar C, Seedat N, Govender T (2015) Nanoengineered drug delivery systems for enhancing antibiotic therapy. J Pharm Sci 104:872–905

    Article  CAS  PubMed  Google Scholar 

  144. Nakamura M, Tahara Y, Ikehara Y, Murakami T, Tsuchida K, Iijima S, Yudasaka M (2011) Single-walled carbon nanohorns as drug carriers: adsorption of prednisolone and anti-inflammatory effects on arthritis. Nanotechnology 22:465102

    Article  PubMed  CAS  Google Scholar 

  145. Zhu S, Xu G (2010) Single-walled carbon nanohorns and their applications. Nanoscale 2:2538–2549

    Article  CAS  PubMed  Google Scholar 

  146. Murakami T, Ajima K, Miyawaki J, Yudasaka M, Iijima S, Shiba K (2004) Drug-loaded carbon nanohorns: adsorption and release of dexamethasone in vitro. Mol Pharm 1:399–405

    Article  CAS  PubMed  Google Scholar 

  147. Felt O, Buri P, Gurny R (1998) Chitosan: a unique polysaccharide for drug delivery. Drug Dev Ind Pharm 24:979–993

    Article  CAS  PubMed  Google Scholar 

  148. Bernkop-Schnürch A, Dünnhaupt S (2012) Chitosan-based drug delivery systems. Eur J Pharm Biopharm 81:463–469

    Article  PubMed  CAS  Google Scholar 

  149. Salomon C, Goycoolea FM, Moerschbacher B (2017) Recent trends in the development of chitosan-based drug delivery systems. AAPS PharmSciTech 18(4):933–935

    Article  PubMed  Google Scholar 

  150. Prabaharan M, Mano JF (2004) Chitosan-based particles as controlled drug delivery systems. Drug Deliv 12:41–57

    Article  CAS  Google Scholar 

  151. Li J, Cai C, Li J, Li J, Li J, Sun T, Yu G (2018) Chitosan-based nanomaterials for drug delivery. Molecules 23:2661

    Article  PubMed Central  CAS  Google Scholar 

  152. Kajdič S, Planinšek O, Gašperlin M, Kocbek P (2019) Electrospun nanofibers for customized drug-delivery systems. J Drug Deliv Sci Technol 51:672–681

    Article  CAS  Google Scholar 

  153. Kosaraju SL, D'ath L, Lawrence A (2006) Preparation and characterisation of chitosan microspheres for antioxidant delivery. Carbohydr Polym 64:163–116

    Article  CAS  Google Scholar 

  154. Zhao LM, Shi LE, Zhang ZL, Chen JM, Shi DD, Yang J, Tang ZX (2011) Preparation and application of chitosan nanoparticles and nanofibers. Abbreviated as Braz. J Chem Eng 28:353–362

    CAS  Google Scholar 

  155. Chandra Hembram K, Prabha S, Chandra R, Ahmed B, Nimesh S (2016) Advances in preparation and characterization of chitosan nanoparticles for therapeutics. Artif Cells Nanomed Biotechnol 44:305–314

    Article  CAS  PubMed  Google Scholar 

  156. Gomathi T, Sudha PN, Florence JAK, Venkatesan J, Anil S (2017) Fabrication of letrozole formulation using chitosan nanoparticles through ionic gelation method. Int J Biol Macromol 104:1820–1832

    Article  CAS  PubMed  Google Scholar 

  157. Divya K, Jisha MS (2018) Chitosan nanoparticles preparation and applications. Environ Chem Lett 16:101–112

    Article  CAS  Google Scholar 

  158. Shukla SK, Mishra AK, Arotiba OA, Mamba BB (2013) Chitosan-based nanomaterials: a state-of-the-art review. Int J Biol Macromol 59:46–58

    Article  CAS  PubMed  Google Scholar 

  159. Lang X, Wang T, Sun M, Chen X, Liu Y (2020) Advances and applications of chitosan-based nanomaterials as oral delivery carriers: a review. Int J Biol Macromol 154:433–445

    Article  CAS  PubMed  Google Scholar 

  160. Kalantari K, Afifi AM, Jahangirian H, Webster TJ (2019) Biomedical applications of chitosan electrospun nanofibers as a green polymer – review. Carbohydr Polym 207:588–600

    Article  CAS  PubMed  Google Scholar 

  161. Moreno MA, Gómez-Mascaraque LG, Arias M, Zampini IC, Sayago JE, Ramos LLP, Isla MI (2018) Electrosprayed chitosan microcapsules as delivery vehicles for vaginal phytoformulations. Carbohydr Polym 201:425–437

    Article  CAS  PubMed  Google Scholar 

  162. Ifuku S (2014) Chitin and chitosan nanofibers: preparation and chemical modifications. Molecules 19:18367–18380

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  163. Sedghi R, Shaabani A, Mohammadi Z, Samadi FY, Isaei E (2017) Biocompatible electrospinning chitosan nanofibers: a novel delivery system with superior local cancer therapy. Carbohydr Polym 159:1–10

    Article  CAS  PubMed  Google Scholar 

  164. Hamedi H, Moradi S, Hudson SM, Tonelli AE (2018) Chitosan based hydrogels and their applications for drug delivery in wound dressings: a review. Carbohydr Polym 199:445–460

    Article  CAS  PubMed  Google Scholar 

  165. Bhattarai N, Gunn J, Zhang M (2010) Chitosan-based hydrogels for controlled, localized drug delivery. Adv Drug Deliv Rev 62:83–99

    Article  CAS  PubMed  Google Scholar 

  166. Martínez-Martínez M, Rodríguez-Berna G, Bermejo M, Gonzalez-Alvarez I, Gonzalez-Alvarez M, Merino V (2019) Covalently crosslinked organophosphorous derivatives-chitosan hydrogel as a drug delivery system for oral administration of camptothecin. Eur J Pharm Biopharm 136:174–183

    Article  PubMed  CAS  Google Scholar 

  167. Jeddi MK, Mahkam M (2019) Magnetic nano carboxymethyl cellulose-alginate/chitosan hydrogel beads as biodegradable devices for controlled drug delivery. Int J Biol Macromol 135:829–838

    Article  CAS  Google Scholar 

  168. Hanna DH, Lotfy VF, Basta AH, Saad GR (2020) Comparative evaluation for controlling release of niacin from protein-and cellulose-chitosan based hydrogels. Int J Biol Macromol 150:228–237

    Article  CAS  PubMed  Google Scholar 

  169. George D, Maheswari PU, Begum KMS (2020) Cysteine conjugated chitosan based green nanohybrid hydrogel embedded with zinc oxide nanoparticles towards enhanced therapeutic potential of naringenin. React Funct Polym 148:104480

    Article  CAS  Google Scholar 

  170. Dehghan-Baniani D, Chen Y, Wang D, Bagheri R, Solouk A, Wu H (2020) Injectable in situ forming kartogenin-loaded chitosan hydrogel with tunable rheological properties for cartilage tissue engineering. Colloids Surf B:111059

    Google Scholar 

  171. Eicher AC, Dobler D, Kiselmann C, Schmidts T, Runkel F (2019) Dermal delivery of therapeutic DNAzymes via chitosan hydrogels. Int J Pharmaceut 563:208–216

    Article  CAS  Google Scholar 

  172. Iftime MM, Tartau LM, Marin L (2020) New formulations based on salicyl-imine-chitosan hydrogels for prolonged drug release. Int J Biol Macromol 160:398–408

    Article  CAS  PubMed  Google Scholar 

  173. Bao Z, Jiang C, Wang Z, Ji Q, Sun G, Bi S, Liu Y, Chen X (2017) The influence of solvent formulations on thermosensitive hydroxybutyl chitosan hydrogel as a potential delivery matrix for cell therapy. Carbohydr Polym 170:80–88

    Article  CAS  PubMed  Google Scholar 

  174. Sami AJ, Khalid M, Jamil T, Aftab S, Mangat SA, Shakoori AR, Iqbal S (2018) Formulation of novel chitosan guargum based hydrogels for sustained drug release of paracetamol. Int J Biol Macromol 108:324–332

    Article  CAS  PubMed  Google Scholar 

  175. Sadeqi A, Nejad HR, Kiaee G, Sonkusale S (2018) Cost-effective fabrication of chitosan microneedles for transdermal drug delivery. In 2018 40th annual international conference of the IEEE engineering in medicine and biology society (EMBC), pp 5737–5740

    Google Scholar 

  176. AbuAmmouneh L, Kaddoura Z, AbuHantash F, Alkhalidi BA, Al-Halhouli A (2019) Fabrication of dissolvable microneedle patches using an innovative laser-cut mould design to shortlist potentially transungual delivery systems: In vitro evaluation. AAPS Pharmscitech 20:215

    Article  PubMed  CAS  Google Scholar 

  177. Indermun S, Luttge R, Choonara YE, Kumar P, Du Toit LC, Modi G, Pillay V (2014) Current advances in the fabrication of microneedles for transdermal delivery. J Control Release 185:130–138

    Article  CAS  PubMed  Google Scholar 

  178. Chen MC, Ling MH, Lai KY, Pramudityo E (2012) Chitosan microneedle patches for sustained transdermal delivery of macromolecules. Biomacromolecules 13:4022–4031

    Article  CAS  PubMed  Google Scholar 

  179. Serrano-Castañeda P, Escobar-Chávez JJ, Rodríguez-Cruz IM, Melgoza LM, Martinez-Hernandez J (2018) Microneedles as enhancer of drug absorption through the skin and applications in medicine and cosmetology. J Pharm Pharm Sci 21:73–93

    Article  PubMed  Google Scholar 

  180. Chen BZ, Ashfaq M, Zhang XP, Zhang JN, Guo XD (2018) In vitro and in vivo assessment of polymer microneedles for controlled transdermal drug delivery. J Drug Target 26:720–729

    Article  CAS  PubMed  Google Scholar 

  181. Al-najjar BY, Hussain SA (2017) Chitosan microspheres for the delivery of chemotherapeutic agents: paclitaxel as a model. Asian J Pharm Clin Res 10:1–5

    Article  CAS  Google Scholar 

  182. Rajawat GS, Shinde UA, Nair HA (2016) Chitosan-N-acetyl cysteine microspheres for ocular delivery of acyclovir: synthesis and in vitro/in vivo evaluation. J Drug Deliv Sci Technol 35:333–342

    Article  CAS  Google Scholar 

  183. Kas HS (1997) Chitosan: properties, preparations and application to microparticulate systems. J Microencapsul 14:689–711

    Article  CAS  PubMed  Google Scholar 

  184. Shanmuganathan S, Shanumugasundaram N, Adhirajan N, Lakshmi TR, Babu M (2008) Preparation and characterization of chitosan microspheres for doxycycline delivery. Carbohydr Polym 73:201–211

    Article  CAS  Google Scholar 

  185. He T, Wang W, Chen B, Wang J, Liang Q, Chen B (2020) 5-Fluorouracil monodispersed chitosan microspheres: microfluidic chip fabrication with crosslinking, characterization, drug release and anticancer activity. Carbohydr Polym:116094

    Google Scholar 

  186. Tayalia P, Mooney DJ (2009) Controlled growth factor delivery for tissue engineering. Adv Mater 21(32–33):3269–3285

    Article  CAS  PubMed  Google Scholar 

  187. Lee SH, Shin H (2007) Matrices and scaffolds for delivery of bioactive molecules in bone and cartilage tissue engineering. Adv Drug Deliv Rev 59:339–359

    Article  CAS  PubMed  Google Scholar 

  188. Dang M, Saunders L, Niu X, Fan Y, Ma PX (2018) Biomimetic delivery of signals for bone tissue engineering. Bone Res 6:1–12

    Article  CAS  Google Scholar 

  189. Kao HJ, Lin HR, Lo YL, Yu SP (2006) Characterization of pilocarpine loaded chitosan/Carbopol nanoparticles. J Pharm Pharmacol 58:179–186

    Article  CAS  PubMed  Google Scholar 

  190. Schmidt-Bleek K, Willie BM, Schwabe P, Seemann P, Duda GN (2016) BMPs in bone regeneration: less is more effective, a paradigm-shift. Cytokine Growth F R 27:141–148

    Article  CAS  Google Scholar 

  191. Arosarena OA, Collins WL (2005) Bone regeneration in the rat mandible with bone morphogenetic protein-2: a comparison of two carriers. Otolaryngol Head Neck Surg 132(4):592–597

    Article  PubMed  Google Scholar 

  192. Issa JPM, do Nascimento C, Bentley MVLB, Del Bel EA, Iyomasa MM, Sebald W, de Albuquerque Jr RF (2008) Bone repair in rat mandible by rhBMP-2 associated with two carriers. Micron 39:373–379

    Article  CAS  PubMed  Google Scholar 

  193. Ferrand A, Eap S, Richert L, Lemoine S, Kalaskar D, Demoustier-Champagne S, Kuhn L (2014) Osteogenetic properties of electrospun nanofibrous PCL scaffolds equipped with chitosan-B ased nanoreservoirs of growth factors. Macromol Biosci 14:45–55

    Article  CAS  PubMed  Google Scholar 

  194. Park YJ, Kim KH, Lee JY, Ku Y, Lee SJ, Min BM, Chung CP (2006) Immobilization of bone morphogenetic protein-2 on a nanofibrous chitosan membrane for enhanced guided bone regeneration. Biotechnol Appl Biochem 43:17–24

    Article  CAS  PubMed  Google Scholar 

  195. Lee EJ, Shin DS, Kim HE, Kim HW, Koh YH, Jang JH (2009) Membrane of hybrid chitosan–silica xerogel for guided bone regeneration. Biomaterials 30:743–750

    Article  CAS  PubMed  Google Scholar 

  196. Lee EJ, Kim HE (2016) Accelerated bony defect healing by chitosan/silica hybrid membrane with localized bone morphogenetic protein-2 delivery. Mater Sci Eng C Mater 59:339–345

    Article  CAS  Google Scholar 

  197. Bae IH, Jeong BC, Kook MS, Kim SH, Koh JT (2013) Evaluation of a thiolated chitosan scaffold for local delivery of BMP-2 for osteogenic differentiation and ectopic bone formation. Biomed Res Int 2013:878930

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  198. Shah P, Keppler L, Rutkowski J (2014) A review of platelet derived growth factor playing pivotal role in bone regeneration. J Oral Implantol 40:330–340

    Article  PubMed  Google Scholar 

  199. Lee YM, Park YJ, Lee SJ, Ku Y, Han SB, Klokkevold PR, Chung CP (2000) The bone regenerative effect of platelet-derived growth factor-BB delivered with a chitosan/tricalcium phosphate sponge carrier. J Periodontol 71:418–424

    Article  CAS  PubMed  Google Scholar 

  200. Park YJ, Lee YM, Park SN, Sheen SY, Chung CP, Lee SJ (2000) Platelet derived growth factor releasing chitosan sponge for periodontal bone regeneration. Biomaterials 21:153–159

    Article  CAS  PubMed  Google Scholar 

  201. Im SY, Cho SH, Hwang JH, Lee SJ (2003) Growth factor releasing porous poly (ɛ-caprolactone)-chitosan matrices for enhanced bone regenerative therapy. Arch Pharm Res 26:76–82

    Article  CAS  PubMed  Google Scholar 

  202. Lee JY, Nam SH, Im SY, Park YJ, Lee YM, Seol YJ, Lee SJ (2002) Enhanced bone formation by controlled growth factor delivery from chitosan-based biomaterials. J Control Release 78:187–197

    Article  CAS  PubMed  Google Scholar 

  203. Dyondi D, Webster TJ, Banerjee R (2013) A nanoparticulate injectable hydrogel as a tissue engineering scaffold for multiple growth factor delivery for bone regeneration. Int J Nanomedicine 8:47

    PubMed  Google Scholar 

  204. Yilgor P, Tuzlakoglu K, Reis RL, Hasirci N, Hasirci V (2009) Incorporation of a sequential BMP-2/BMP-7 delivery system into chitosan-based scaffolds for bone tissue engineering. Biomaterials 21:3551–3559

    Article  CAS  Google Scholar 

  205. Nandi SK, Kundu B, Basu D (2013) Protein growth factors loaded highly porous chitosan scaffold: a comparison of bone healing properties. Mater Sci Eng C Mater 33:1267–1275

    Article  CAS  Google Scholar 

  206. Kim S, Kang Y, Krueger CA, Sen M, Holcomb JB, Chen D, YangY (2012) Sequential delivery of BMP-2 and IGF-1 using a chitosan gel with gelatin microspheres enhances early osteoblastic differentiation. Acta Biomater 8:1768–1777

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  207. Tian M, Yang Z, Kuwahara K, Nimni ME, Wan C, Han B (2012) Delivery of demineralized bone matrix powder using a thermogelling chitosan carrier. Acta Biomater 8:753–762

    Article  CAS  PubMed  Google Scholar 

  208. dos Santos Rodrigues B, Lakkadwala S, Sharma D, Singh J (2019) Chitosan for gene, DNA vaccines, and drug delivery. In: Materials for biomedical engineering. Elsevier, Amsterdam, pp 515–550

    Chapter  Google Scholar 

  209. Buschmann MD, Merzouki A, Lavertu M, Thibault M, Jean M, Darras V (2013) Chitosans for delivery of nucleic acids. Adv Drug Deliv Rev 65:1234–1270

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  210. Raftery R, O'brien FJ, Cryan SA (2013) Chitosan for gene delivery and orthopedic tissue engineering applications. Molecules 18:5611–5647

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  211. Lu CH, Chang YH, Lin SY, Li KC, Hu YC (2013) Recent progresses in gene delivery-based bone tissue engineering. Biotechnol Adv 31:1695–1706

    Article  CAS  PubMed  Google Scholar 

  212. Bez M, Pelled G, Gazit D (2020) BMP gene delivery for skeletal tissue regeneration. Bone:115449

    Google Scholar 

  213. Malek-Khatabi A, Javar HA, Dashtimoghadam E, Ansari S, Hasani-Sadrabadi MM, Moshaverinia A (2020) In situ bone tissue engineering using gene delivery nanocomplexes. Acta Biomater 108:326–336

    Article  CAS  PubMed  Google Scholar 

  214. Raftery RM, Mencía-Castaño I, Sperger S, Chen G, Cavanagh B, Feichtinger GA, Redl H, Hacobian A, O'Brien FJ (2018) Delivery of the improved BMP-2-advanced plasmid DNA within a gene-activated scaffold accelerates mesenchymal stem cell osteogenesis and critical size defect repair. J Control Release 283:20–31

    Article  CAS  PubMed  Google Scholar 

  215. Saengkrit N, Sajomsang W, Tencomnao T (2011) Nano-polyplex as a non-viral gene carrier for the expression of bone morphogenetic protein in osteoblastic cells. Carbohydr Polym 86:587–593

    Article  CAS  Google Scholar 

  216. Li J, Lin J, Yu W, Song X, Hu Q, Xu JH, Wang H, Mehl C (2017) BMP-2 plasmid DNA-loaded chitosan films – a new strategy for bone engineering. J Cranio Maxill Surg 45:2084–2091

    Article  Google Scholar 

  217. Raftery RM, Castaño IM, Chen G, Cavanagh B, Quinn B, Curtin CM, Cryan SA, O'Brien FJ (2017) Translating the role of osteogenic-angiogenic coupling in bone formation: highly efficient chitosan-pDNA activated scaffolds can accelerate bone regeneration in critical-sized bone defects. Biomaterials 149:116–127

    Article  CAS  PubMed  Google Scholar 

  218. Sriram M, Sainitya R, Kalyanaraman V, Dhivya S, Selvamurugan N (2015) Biomaterials mediated microRNA delivery for bone tissue engineering. Int J Biol Macromol 74:404–412

    Article  CAS  PubMed  Google Scholar 

  219. Chen X, Gu S, Chen BF, Shen WL, Yin Z, Xu GW, Hu JJ, Zhu T, Li G, Wan C, Ouyang HW (2015) Nanoparticle delivery of stable miR-199a-5p agomir improves the osteogenesis of human mesenchymal stem cells via the HIF1a pathway. Biomaterials 53:239–250

    Article  CAS  PubMed  Google Scholar 

  220. Balagangadharan K, Chandran SV, Arumugam B, Saravanan S, Venkatasubbu GD, Selvamurugan N (2018) Chitosan/nano-hydroxyapatite/nano-zirconium dioxide scaffolds with miR-590-5p for bone regeneration. Int J Biol Macromol 111:953–958

    Article  CAS  PubMed  Google Scholar 

  221. Wu G, Feng C, Hui G, Wang Z, Tan J, Luo L, Xue P, Wang Q, Chen X (2016) Improving the osteogenesis of rat mesenchymal stem cells by chitosan-based-microRNA nanoparticles. Carbohydr Polym 138:49–58

    Article  CAS  PubMed  Google Scholar 

  222. Wu G, Feng C, Quan J, Wang Z, Wei W, Zang S, Kang S, Hui G, Chen X, Wang Q (2018) In situ controlled release of stromal cell-derived factor-1α and antimiR-138 for on-demand cranial bone regeneration. Carbohydr Polym 182:215–224

    Article  CAS  PubMed  Google Scholar 

  223. Dadashpour M, Pilehvar-Soltanahmadi Y, Zarghami N, Firouzi-Amandi A, Pourhassan-Moghaddam M, Nouri M (2017) Emerging importance of phytochemicals in regulation of stem cells fate via signaling pathways. Phytother Res 31:1651–1668

    Article  PubMed  Google Scholar 

  224. Saxena M, Saxena J, Nema R, Singh D, Gupta A (2013) Phytochemistry of medicinal plants. J Pharmacogn Phytochem 1

    Google Scholar 

  225. Ali A, Ahmed S (2018) A review on chitosan and its nanocomposites in drug delivery. Int J Biol Macromol 109:273–286

    Article  CAS  PubMed  Google Scholar 

  226. Leena RS, Vairamani M, Selvamurugan N (2017) Alginate/gelatin scaffolds incorporated with Silibinin-loaded chitosan nanoparticles for bone formation in vitro. Colloids Surf B 158:308–318

    Article  CAS  Google Scholar 

  227. Li Y, Liu T, Zheng J, Xu X (2013) Glutaraldehyde-crosslinked chitosan/hydroxyapatite bone repair scaffold and its application as drug carrier for icariin. J Appl Polym Sci 130:1539–1547

    Article  CAS  Google Scholar 

  228. Xin BC, Wu QS, Jin S, Luo AH, Sun DG, Wang F (2019) Berberine promotes osteogenic differentiation of human dental pulp stem cells through activating EGFR-MAPK-Runx2 pathways. Pathol Oncol Res:1–9

    Google Scholar 

  229. Cai B, Zou Q, Zuo Y, Mei Q, Ma J, Lin L, Li Y (2018) Injectable gel constructs with regenerative and anti-infective dual effects based on assembled chitosan microspheres. ACS Appl Mater Interfaces 10:25099–25112

    Article  CAS  PubMed  Google Scholar 

  230. Zhang ZR, Leung WN, Li G, Kong SK, Lu X, Wong YM, Chan CW (2017) Osthole enhances osteogenesis in osteoblasts by elevating transcription factor osterix via cAMP/CREB signaling in vitro and in vivo. Nutrients 9:588

    Article  CAS  PubMed Central  Google Scholar 

  231. Wang L, Zheng S, Huang G, Sun J, Pan Y, Si Y, Guo Y (2020) Osthole-loaded N-octyl-O-sulfonyl chitosan micelles (NSC-OST) inhibits RANKL-induced osteoclastogenesis and prevents ovariectomy-induced bone loss in rats. J Cell Mol Med 24:4105–4117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  232. Fan J, Li J, Fan Q (2015) Naringin promotes differentiation of bone marrow stem cells into osteoblasts by upregulating the expression levels of microRNA-20a and downregulating the expression levels of PPARγ. Mol Med Rep 12:4759–4765

    Article  CAS  PubMed  Google Scholar 

  233. Zhang X, Chen Q, Liu J, Fan C, Wei Q, Chen Z, Mao X (2017) Parthenolide promotes differentiation of osteoblasts through the Wnt/β-catenin signaling pathway in inflammatory environments. J Interferon Cytokine Res 37:406–414

    Article  CAS  PubMed  Google Scholar 

  234. Guo Z, Bo D, He P, Li H, Wu G, Li Z, Li Q (2017) Sequential controlled-released dual-drug loaded scaffold for guided bone regeneration in a rat fenestration defect model. J Mater Chem B 5:7701–7710

    Article  CAS  PubMed  Google Scholar 

  235. Xu D, Xu L, Zhou C, Lee WY, Wu T, Cui L, Li G (2014) Salvianolic acid B promotes osteogenesis of human mesenchymal stem cells through activating ERK signaling pathway. Int J Biochem Cell B 51:1–9

    Article  CAS  Google Scholar 

  236. Ji C, Bi L, Li J, Fan J (2019) Salvianolic acid B-loaded chitosan/hydroxyapatite scaffolds promotes the repair of segmental bone defect by angiogenesis and osteogenesis. Int J Nanomedicine 14:8271

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  237. Wu H, Lei P, Liu G, Zhang YS, Yang J, Zhang L, Hu Y (2017) Reconstruction of large-scale defects with a novel hybrid scaffold made from poly (L-lactic acid)/nanohydroxyapatite/alendronate-loaded chitosan microsphere: in vitro and in vivo studies. Sci Rep 7:1–14

    CAS  Google Scholar 

  238. Petit C, Batool F, Stutz C, Anton N, Klymchenko A, Vandamme T, Huck O (2020) Development of a thermosensitive statin loaded chitosan-based hydrogel promoting bone healing. Int J Pharmaceut:119534

    Google Scholar 

  239. Chiang ZC, Yu SH, Chao AC, Dong GC (2012) Preparation and characterization of dexamethasone-immobilized chitosan scaffold. J Biosci Bioeng 113:654–660

    Article  CAS  PubMed  Google Scholar 

  240. Gümüşderelioglu M, Aday S (2011) Heparin-functionalized chitosan scaffolds for bone tissue engineering. Carbohydr Res 346:606–613

    Article  PubMed  CAS  Google Scholar 

  241. Zhu P, Huang G, Zhang B, Zhang W, Dang M, Huang Z (2019) Assessment of fracture healing properties of lovastatin loaded nanoparticles: preclinical study in rat model. Acta Biochim Pol 66:71–76

    CAS  PubMed  Google Scholar 

  242. Zhang ML, Cheng J, Xiao YC, Yin RF, Feng X (2017) Raloxifene microsphere-embedded collagen/chitosan/β-tricalcium phosphate scaffold for effective bone tissue engineering. Int J Pharm 518:80–85

    Article  CAS  PubMed  Google Scholar 

  243. Khajuria DK, Zahra SF, Razdan R (2018) Effect of locally administered novel biodegradable chitosan based risedronate/zinc-hydroxyapatite intra-pocket dental film on alveolar bone density in rat model of periodontitis. J Biomater Sci Polym E 29:74–91

    Article  CAS  Google Scholar 

  244. Rezazadeh M, Parandeh M, Akbari V, Ebrahimi Z, Taheri A (2019) Incorporation of rosuvastatin-loaded chitosan/chondroitin sulfate nanoparticles into a thermosensitive hydrogel for bone tissue engineering: preparation, characterization, and cellular behavior. Pharm Dev Technol 24:357–367

    Article  CAS  PubMed  Google Scholar 

  245. Delan WK, Zakaria M, Elsaadany B, ElMeshad AN, Mamdouh W, Fares AR (2020) Formulation of simvastatin chitosan nanoparticles for controlled delivery in bone regeneration: optimization using Box-Behnken design, stability and in vivo study. Int J Pharmaceut:119038

    Google Scholar 

  246. Lu Y, Li M, Li L, Wei S, Hu X, Wang X, Yin Q (2018) High-activity chitosan/nano hydroxyapatite/zoledronic acid scaffolds for simultaneous tumor inhibition, bone repair and infection eradication. Mater Sci Eng C Mater 82:225–233

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Selvamurugan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sidharthan, D.S., Abhinandan, R., Adithya, S.P., Balagangadharan, K., Selvamurugan, N. (2021). Chitosan and Its Potential Use for the Delivery of Bioactive Molecules in Bone Tissue Engineering. In: Jayakumar, R., Prabaharan, M. (eds) Chitosan for Biomaterials IV. Advances in Polymer Science, vol 288. Springer, Cham. https://doi.org/10.1007/12_2021_99

Download citation

Publish with us

Policies and ethics