Skip to main content
Log in

Electrospinning of the hydrophilic poly (2-hydroxyethyl methacrylate) and its copolymers with 2-ethoxyethyl methacrylate

  • Research Article
  • Published:
Central European Journal of Chemistry

Abstract

The goal was to electrospin 2-hydroxyethyl methacrylate — based biocompatible polymers and prepare submicron fibres (nanofibers) for biomedicinal applications. Syntheses of poly(2-hydroxyethyl methacrylate) (HEMA) and its copolymer with 2-ethoxyethyl methacrylate (EOEMA), and their characterization by viscometry and molecular weight are described. Their relation to electrospinning is discussed. Electrospinning of HEMA homopolymer from water-ethanol is successful for molecular weights 6.31 × 105 and 1.80 × 106 g/mol. Electrospinning of HEMA/EOEMA copolymers is feasible from ethanol.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Zeleny: “The electrical discharge from liquid points, and a hydrostatic method of measuring the electric intensity at thin surfaces”, Phys. Rev., Vol.3, (1914), pp.69–91.

    Article  Google Scholar 

  2. G. Taylor: “Disintegration of water drops in an electrical field”, Proc. R. Soc. Lon. Ser-A, Vol. 280, (1964), pp. 383–397.

    Google Scholar 

  3. A. Formhals: Process and apparatus for preparing artificial threads, US 1,975,504.

  4. P. Gupta, S.R. Trenor, E.T. Long and G.L. Wilkes: “In Situ Photo-Cross-Linking of Cinnamate Functionalized Poly(methyl methacrylate-co-2-hydroxyethyl acrylate) Fibers during Electrospinning”, Macromolecules, Vol. 37, (2005), pp. 9211–9218.

    Article  CAS  Google Scholar 

  5. J. Ayutsede, M. Gandhi, S. Sukigara, M. Micklus, H.E. Chen and F. Ko: “Regeneration of Bombyx mori silk by electrospinning. Part 3: characterization of electrospun nonwoven materials”, Polymer, Vol. 46, (2005), pp. 1625–1634.

    Article  CAS  Google Scholar 

  6. D.H. Reneker, A.L. Yarin H. Fong and S. Koombhongse: “Bending instability of electrically charged liquid jets of polymer solutions in electrospinning”, J. Appl. Phys., Vol. 87, (2000), pp. 4531–4547.

    Article  CAS  Google Scholar 

  7. S. Koombhongse, W.X. Liu and D.H. Reneker: “Flat polymer ribbons and other shapes by electrospinning”, J. Polym. Sci. Pol. Phys., Vol. 39, (2001), pp. 2598–2606.

    Article  CAS  Google Scholar 

  8. S.A. Angadjivand, M.G. Schwartz, P.D. Eitzman and M.E. Jones: Method and apparatus for making a nonwoven fibrous electret web from free-fiber and polar liquid, US 6375886.

  9. E.D. Boland, G.E. Wnek, D.G. Simpson, K.J. Palowski and G.L. Bowlin: “Tailoring Tissue Engineering Scaffolds by Employing Electrostatic Processing Techniques: A Study of Poly (Glycolic Acid)”, J. Macromol. Sci. Pur., Vol. A38, (2001), pp. 1231–1238.

    Article  CAS  Google Scholar 

  10. L. Larondo and R.St. John Manley: “Electrostatic fiber spinning from polymer melts. I. Experimental observations on fiber formation and properties”, J. Polym. Sci. Pol. Phys., Vol. 19, (1981), pp. 909–920.

    Article  Google Scholar 

  11. O. Jirsák, F. Sanetrník, D. Lukáš, V. Kotek, L. Martinová and J. Chaloupek: Způsob výroby nanovláken z polymerního roztoku elektrostatickým zvlákňováním a zařízení k provádění způsobu, CZ 294274 (B6), WO 2005024101.

  12. B. Dvořánková, Z. Holíková, J. Vacík, R. Konigová, Z. Kapounková, J. Michálek, M. Přádný and K. Smetana: “Reconstruction of epidermis by grafting of keratinocytes cultured on polymer support — clinical study”, Int. J. Dermatol., Vol. 42, (2003), pp. 219–223.

    Article  Google Scholar 

  13. J. Vacík, B. Dvořánková, J. Michálek, M. Přádný, E. Krumbholcová, T. Fenclová and K. Smetana: “Cultivation of human keratinocytes without feeder cells on polymer carriers containing ethoxyethyl methacrylate — in vitro study”, J. Mater. Sci-Mater. M., in press.

  14. M. Přádný, P. Lesný, J. Fiala, J. Vacík, M. Šlouf, J. Michálek and E. Syková: “Macroporous hydrogels based on 2-hydroxyethyl methacrylate. Part 1. Copolymers of 2-hydroxyethyl methacrylate with methacrylic acid”, Collect. Czech. Chem. C., Vol. 68, (2003), pp. 812–822.

    Article  CAS  Google Scholar 

  15. M. Přádný, P. Lesný, K. Smetana, J. Vacík, M. Šlouf, J. Michálek and E. Syková: “Macroporous hydrogels based on 2-hydroxyethyl methacrylate. Part 2. Copolymers with positive and negative charges, polyelectrolyte complexes”, J. Mater. Sci-Mater. M., Vol. 16, (2005), pp. 767–773.

    Article  CAS  Google Scholar 

  16. J. Michálek, M. Přádný, A. Artyukhov, M. Šlouf, J. Vacík and K. Smetana Jr.: “Macroporous hydrogels based on 2-hydroxyethyl methacrylate. Part 3. Hydrogels as carriers for immobilization of proteins”, J. Mater. Sci-Mater. M., Vol. 16, (2005), pp. 783–786.

    Article  CAS  Google Scholar 

  17. M. Přádný, J. Michálek, P. Lesný, A. Hejčl, J. Vacík, M. Šlouf and E. Syková: “Macroporous hydrogels based on 2-hydroxyethyl methacrylate. Part 5: Hydrolytically degradable materials”, J. Mater. Sci-Mater. M., Vol. 17, (2006), pp. 1357–1364.

    Article  CAS  Google Scholar 

  18. X. Wang, S. Yang, C. Drew, L. A. Samuelson and J. Kumar: “Reactive electrospinning of hydrogel nanofibers”, Polymer Preprints No. 2, Vol. 44, (2003), pp. 108–109.

    CAS  Google Scholar 

  19. S.H. Kim, R.E. Green and S.H. Kim: “Reactive electrospinning of 2-hydroxyethyl methacrylate”, PMSE preprints, Vol. 91, (2004), pp. 527–528.

    CAS  Google Scholar 

  20. S.H. Kim, S.H. Kim, S. Nair and E. Moore: “Reactive Electrospinning of Cross-Linked Poly(2-hydroxyethyl methacrylate) Nanofibers and Elastic Properties of Individual Hydrogel Nanofibers in Aqueous Solutions”, Macromolecules, Vol. 38, (2005), pp. 3719–3723.

    Article  CAS  Google Scholar 

  21. J. Ma, B. Liang, P. Cui, H. Dai and R. Huang: “Dilute solution properties of hydrophobically associating polyacrylamide: fitted by different equations”, Polymer, Vol. 44, (2003), pp. 1281–1286.

    Article  CAS  Google Scholar 

  22. B. L. Hager and G. C. Berry: “Moderately concentrated solutions of polystyrene. I. Viscosity as a function of concentration, temperature, and molecular weight”, J. Polym. Sci. Pol. Phys., Vol. 20, (1982), pp. 911–928.

    Article  CAS  Google Scholar 

  23. P. Gupta, C. Elkins, T.E. Long and G.L. Wilkes: “Electrospinning of linear homopolymers of poly(methyl methacrylate): exploring relationships between fiber formation, viscosity, molecular weight and concentration in a good solvent”, Polymer, Vol. 46, (2005), pp. 4799–4810.

    CAS  Google Scholar 

  24. B. Vollmert: Grundriss der makromolekularen Chemie, Springer-Verlag, Berlin, 1962, pp. 390–410.

    Google Scholar 

  25. Y. Fang, C.X. Ma, Q. Chen and X.B. Lu: “Radiation-induced graft copolymerization of 2-hydroxyethyl methacrylate onto chloroprene rubber membrane. II. Characterization of grafting copolymer”, J. Appl. Polym. Sci., Vol. 68B, (1998), pp. 1745–1750.

    Article  Google Scholar 

  26. L. Martinová: “10th International Conference STRUTEX”, Liberec, Czech Republic 2003.

    Google Scholar 

  27. P. Lesný, M. Přádný, L. Martinová, J. Michálek, O. Jirsák and E. Syková: Biomaterial on the base of nanofibers, Patent application PV 2007-54.

  28. S.L. Shenoy, W.D. Bates, H.L. Frisch and G.E. Wnek: “Role of chain entanglements on fiber formation during electrospinning of polymer solutions: good solvent, nonspecific polymer-polymer interaction limit”, Polymer, Vol. 46, (2005), pp. 3372–3384.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

About this article

Cite this article

Přádný, M., Martinová, L., Michálek, J. et al. Electrospinning of the hydrophilic poly (2-hydroxyethyl methacrylate) and its copolymers with 2-ethoxyethyl methacrylate. cent.eur.j.chem. 5, 779–792 (2007). https://doi.org/10.2478/s11532-007-0021-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11532-007-0021-0

Keywords

Navigation