Skip to main content
Log in

Targeting the Epidermal Growth Factor Receptor in the Treatment of Colorectal Cancer

State of the Art

  • Review Article
  • Published:
Drugs Aims and scope Submit manuscript

Abstract

The epidermal growth factor receptor (EGFR) is an important mediator of normal cellular processes such as growth, survival, differentiation and morphogenesis. Disturbances in the EGFR pathway have been associated with the development and progression of malignancy, including cellular proliferation, angiogenesis, invasion/metastasis and anti-apoptosis, as well as with resistance to chemotherapy and/or radiation therapy. As a result, this is an excellent rationale for treatment with EGFR-specific therapeutic agents. These agents may be EGFR-targeted antibodies or small molecules that inactivate the receptor tyrosine kinase. While only cetuximab has received US FDA approval for the treatment of colorectal cancer, numerous agents are currently in development and in clinical trials and constitute an area of intensive, ongoing research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Table I
Fig. 1
Table II

Similar content being viewed by others

References

  1. American Cancer Society. Cancer facts and figures 2006 [online]. Available from URL: http://www.cancer.org/downloads/STT/CAFF2006PWSecured.pdf [Accessed 2006 Jul 24]

  2. O’Connell JB, Maggard MA, Liu JH, et al. Rates of colon and rectal cancers are increasing in young adults. Am Surg 2003; 69(10): 866–72

    PubMed  Google Scholar 

  3. Kindler HL, Shulman KL. Metastatic colorectal cancer. Curr Treat Options Oncol 2001; 2(6): 459–71

    Article  PubMed  CAS  Google Scholar 

  4. Pazdur R, Coia LR, Wagman LD, et al. Colorectal and anal cancers. In: Pazdur R, Coia LR, Hoskins WJ, et al., editors. Cancer management: a multidisciplinary approach. Melville (NY): PRR, 1999: 149–75

    Google Scholar 

  5. Saltz LB, Douillard JY, Pirotta N, et al. Irinotecan plus fluorouracil/leucovorin for metastatic colorectal cancer: a new survival standard. Oncologist 2001; 6(1): 81–91

    Article  PubMed  CAS  Google Scholar 

  6. Rothenberg ML, Oza AM, Bigelow RH, et al. Superiority of oxaliplatin and fluorouracil-leucovorin compared with either therapy alone in patients with progressive colorectal cancer after irinotecan and fluorouracil-leucovorin: interim results of a phase III trial. J Clin Oncol 2003; 21(11): 2059–69

    Article  PubMed  CAS  Google Scholar 

  7. Leichman CG, Fleming TR, Muggia FM, et al. Phase II study of fluorouracil and its modulation in advanced colorectal cancer: a Southwest Oncology Group study. J Clin Oncol 1995; 13(6): 1303–11

    PubMed  CAS  Google Scholar 

  8. Cassidy J, Tabernero J, Twelves C, et al. XELOX (capecitabine plus oxaliplatin): active first-line therapy for patients with metastatic colorectal cancer. J Clin Oncol 2004; 22(11): 2084–91

    Article  PubMed  CAS  Google Scholar 

  9. Cassidy J, Scheithauer W, McKendrick J, et al. Capecitabine (X) vs bolus 5-FU/leucovorin (LV) as adjuvant therapy for colon cancer (the X-ACT study): efficacy results of a phase III trial [abstract no. 3509]. Presented at the 40th Annual Meeting of the American Society of Clinical Oncology; 2004 Jun 5–8; New Orleans (LA). J Clin Oncol 2004; 22: 247s

    Google Scholar 

  10. Grothe W, Arnold D, Peinert S, et al. Cetuximab with oxaliplatin and capecitabine (CAPOX) in patients with metastatic colorectal cancer (mCRC) refractory to standard chemotherapy [abstract no. 3669]. Presented at the 41st Annual Meeting of the American Society of Clinical Oncology; 2005 May 13–17; Orlando (FL). J Clin Oncol 2005; 23: 288s

    Google Scholar 

  11. Hoff PM, Pazdur R, Lassere Y, et al. Phase II study of capecitabine in patients with fluorouracil-resistant metastatic colorectal carcinoma. J Clin Oncol 2004; 22(11): 2078–83

    Article  PubMed  CAS  Google Scholar 

  12. Saltz LB, Cox JV, Blanke C, et al. Irinotecan plus fluorouracil and leucovorin for metastatic colorectal cancer. Irinotecan Study Group. N Engl J Med 2000; 343(13): 905–14

    Article  CAS  Google Scholar 

  13. Goldberg RM, Sargent DJ, Morton RF, et al. A randomized controlled trial of fluorouracil plus leucovorin, irinotecan, and oxaliplatin combinations in patients with previously untreated metastatic colorectal cancer. J Clin Oncol 2004; 22(1): 23–30

    Article  PubMed  CAS  Google Scholar 

  14. Tournigand C, Andre T, Achille E, et al. FOLFIRI followed by FOLFOX6 or the reverse sequence in advanced colorectal cancer: a randomized GERCOR study. J Clin Oncol 2004; 22(2): 229–37

    Article  PubMed  CAS  Google Scholar 

  15. Andre T, Boni C, Mounedji-Boudiaf L, et al. Oxaliplatin, fluorouracil, and leucovorin as adjuvant treatment for colon cancer. N Engl J Med 2004; 350(23): 2343–51

    Article  PubMed  CAS  Google Scholar 

  16. Hanahan D, Weinberg RA. The hallmarks of cancer. Cell 2000; 100(1): 57–70

    Article  PubMed  CAS  Google Scholar 

  17. Giantonio BJ, Levy D, O’Dwyer PJ, et al. Bevacizumab (anti-VEGF) plus IFL (irinotecan, fluorouracil, leucovorin) as frontline therapy for advanced colorectal cancer (advCRC): results from the Eastern Cooperative Oncology Group (ECOG) Study E2200 [abstract no. 1024]. Proc Am Soc Clin Oncol 2003; 22: 255

    Google Scholar 

  18. Giantonio BJ, Catalano PJ, Meropol NJ, et al. High-dose bevacizumab in combination with FOLFOX4 improves survival in patients with previously treated advanced colorectal cancer: results from the Eastern Cooperative Oncology Group (ECOG) study E3200 [abstract]. Program and abstracts of the American Society of Clinical Oncology Gastrointestinal Cancers Symposium; 2005 Jan 27–29; Hollywood (FL), 169a

  19. Kabbinavar FF, Schulz J, McCleod M, et al. Addition of bevacizumab to bolus fluorouracil and leucovorin in first-line metastatic colorectal cancer: results of a randomized phase II trial. J Clin Oncol 2005; 23(16): 3697–705

    Article  PubMed  CAS  Google Scholar 

  20. Saltz LB, Meropol NJ, Loehrer PJ, et al. Phase II trial of cetuximab in patients with refractory colorectal cancer that expresses the epidermal growth factor receptor. J Clin Oncol 2004; 22(7): 1201–8

    Article  PubMed  CAS  Google Scholar 

  21. Foon KA, Yang XD, Weiner LM, et al. Preclinical and clinical evaluations of ABX-EGF, a fully human anti-epidermal growth factor receptor antibody. Int J Radiat Oncol Biol Phys 2004; 58(3): 984–90

    Article  PubMed  CAS  Google Scholar 

  22. Vanhoefer U, Tewes M, Rojo F, et al. Phase I study of the humanized antiepidermal growth factor receptor monoclonal antibody EMD72000 in patients with advanced solid tumors that express the epidermal growth factor receptor. J Clin Oncol 2004; 22(1): 175–84

    Article  PubMed  CAS  Google Scholar 

  23. Crombet T, Torres L, Neninger E, et al. Pharmacological evaluation of humanized anti-epidermal growth factor receptor, monoclonal antibody h-R3, in patients with advanced epithelial-derived cancer. J Immunother 2003; 26(2): 139–48

    Article  PubMed  CAS  Google Scholar 

  24. Johns TG, Stockert E, Ritter G, et al. Novel monoclonal antibody specific for the de2–7 epidermal growth factor receptor (EGFR) that also recognizes the EGFR expressed in cells containing amplification of the EGFR gene. Int J Cancer 2002; 98(3): 398–408

    Article  PubMed  CAS  Google Scholar 

  25. Wallace PK, Romet-Lemonne JL, Chokri M, et al. Production of macrophage-activated killer cells for targeting of glioblastoma cells with bispecific antibody to FcgammaRI and the epidermal growth factor receptor. Cancer Immunol Immunother 2000; 49(9): 493–503

    Article  PubMed  CAS  Google Scholar 

  26. Von Pawel J. Gefitinib (Iressa, ZD1839): a novel targeted approach for the treatment of solid tumours. Bull Cancer 2004; 91(5): E70–6

    Google Scholar 

  27. Soulieres D, Senzer NN, Vokes EE, et al. Multicenter phase II study of erlotinib, an oral epidermal growth factor receptor tyrosine kinase inhibitor, in patients with recurrent or metastatic squamous cell cancer of the head and neck. J Clin Oncol 2004; 22(1): 77–85

    Article  PubMed  CAS  Google Scholar 

  28. Park YW, Younes MN, Jasser SA, et al. AEE788, a dual tyrosine kinase receptor inhibitor, induces endothelial cell apoptosis in human cutaneous squamous cell carcinoma xenografts in nude mice. Clin Cancer Res 2005; 11(5): 1963–73

    Article  PubMed  CAS  Google Scholar 

  29. Nunes M, Shi C, Greenberger LM. Phosphorylation of extracellular signal-regulated kinase 1 and 2, protein kinase B, and signal transducer and activator of transcription 3 are differently inhibited by an epidermal growth factor receptor inhibitor, EKB-569, in tumor cells and normal human keratinocytes. Mol Cancer Ther 2004; 3(1): 21–7

    Article  PubMed  CAS  Google Scholar 

  30. Zhou H, Kim YS, Peletier A, et al. Effects of the EGFR/HER2 kinase inhibitor GW572016 on EGFR- and HER2-overexpressing breast cancer cell line proliferation, radiosensitization, and resistance. Int J Radiat Oncol Biol Phys 2004; 58(2): 344–52

    Article  PubMed  CAS  Google Scholar 

  31. Li B, Chang CM, Yuan M, et al. Resistance to small molecule inhibitors of epidermal growth factor receptor in malignant gliomas. Cancer Res 2003; 63(21): 7443–50

    PubMed  CAS  Google Scholar 

  32. Murren JR, Papadimitrakopoulou VA, Sizer K, et al. A phase I dose-escalating study to evaluate the biological activity and pharmacokinetics of PK1166, a novel tyrosine kinase inhibitor, in patients with advanced cancers [abstract no. 377]. Presented at the 38th Annual Meeting of the American Journal of Clinical Oncology; 2002 May 18–21; Orlando (FL). Proc Am Soc Clin Oncol 2002; 21: 95a

    Google Scholar 

  33. Miller KD, Trigo JM, Wheeler C, et al. A multicenter phase II trial of ZD6474, a vascular endothelial growth factor receptor-2 and epidermal growth factor receptor tyrosine kinase inhibitor, in patients with previously treated metastatic breast cancer. Clin Cancer Res 2005; 11(9): 3369–76

    Article  PubMed  CAS  Google Scholar 

  34. Sampson JH, Akabani G, Archer GE, et al. Progress report of a phase I study of the intracerebral microinfusion of a recombinant chimeric protein composed of transforming growth factor (TGF)-alpha and a mutated form of the Pseudomonas exotoxin termed PE-38 (TP-38) for the treatment of malignant brain tumors. J Neurooncol 2003; 65(1): 27–35

    Article  PubMed  Google Scholar 

  35. Grandis JR, Sok JC. Signaling through the epidermal growth factor receptor during the development of malignancy. Pharmacol Ther 2004; 102(1): 37–46

    Article  PubMed  CAS  Google Scholar 

  36. Wells A. EGF receptor. Int J Biochem Cell Biol 1999; 31(6): 637–43

    Article  PubMed  CAS  Google Scholar 

  37. Xu YH, Richert N, Ito S, et al. Characterization of epidermal growth factor receptor gene expression in malignant and normal human cell lines. Proc Natl Acad Sci U S A 1984; 81(23): 7308–12

    Article  PubMed  CAS  Google Scholar 

  38. Bafico A, Aaronson SA. Growth factors signal transduction in cancerau]. In: Kufe DW, Bast RC, Hait WN, et al., editors. Cancer medicine. Hamilton (ON): BC Decker Inc., 2006: 53–67

    Google Scholar 

  39. Carpenter G, Cohen S. Epidermal growth factor. J Biol Chem 1990; 265(14): 7709–12

    PubMed  CAS  Google Scholar 

  40. Ullrich A, Coussens L, Hayflick JS, et al. Human epidermal growth factor receptor cDNA sequence and aberrant expression of the amplified gene in A431 epidermoid carcinoma cells. Nature 1984; 309(5967): 418–25

    Article  PubMed  CAS  Google Scholar 

  41. Salomon DS, Brandt R, Ciardiello F, et al. Epidermal growth factor-related peptides and their receptors in human malignancies. Crit Rev Oncol Hematol 1995; 19(3): 183–232

    Article  PubMed  CAS  Google Scholar 

  42. Jorissen RN, Walker F, Pouliot N, et al. Epidermal growth factor receptor: mechanisms of activation and signalling. Exp Cell Res 2003; 284(1): 31–53

    Article  PubMed  CAS  Google Scholar 

  43. Yarden Y, Sliwkowski MX. Untangling the ErbB signalling network. Nat Rev Mol Cell Biol 2001; 2(2): 127–37

    Article  PubMed  CAS  Google Scholar 

  44. Bray D, Lay S. Computer simulated evolution of a network of cell-signaling molecules. Biophys J 1994; 66(4): 972–7

    Article  PubMed  CAS  Google Scholar 

  45. Carpenter G. Receptors for epidermal growth factor and other polypeptide mitogens. Annu Rev Biochem 1987; 56: 881–914

    Article  PubMed  CAS  Google Scholar 

  46. Kim ES, Khuri FR, Herbst RS. Epidermal growth factor receptor biology (IMC-C225). Curr Opin Oncol 2001; 13(6): 506–13

    Article  PubMed  CAS  Google Scholar 

  47. Pinkas-Kramarski R, Soussan L, Waterman H, et al. Diversification of Neu differentiation factor and epidermal growth factor signaling by combinatorial receptor interactions. EMBO J 1996; 15(10): 2452–67

    PubMed  CAS  Google Scholar 

  48. Riese DJ, van Raaij TM, Plowman GD, et al. The cellular response to neuregulins is governed by complex interactions of the erbB receptor family. Mol Cell Biol 1995; 15(10): 5770–6

    PubMed  CAS  Google Scholar 

  49. Schaeffer L, Duclert N, Huchet-Dymanus M, et al. Implication of a multisubunit Ets-related transcription factor in synaptic expression of the nicotinic acetylcholine receptor. EMBO J 1998; 17(11): 3078–90

    Article  PubMed  CAS  Google Scholar 

  50. Prenzel N, Fischer OM, Streit S, et al. The epidermal growth factor receptor family as a central element for cellular signal transduction and diversification. Endocr Relat Cancer 2001; 8(1): 11–31

    Article  PubMed  CAS  Google Scholar 

  51. Rubin Grandis J, Zeng Q, Drenning SD. Epidermal growth factor receptor: mediated stat3 signaling blocks apoptosis in head and neck cancer. Laryngoscope 2000; 110 (5 Pt 1): 868–74

    Article  Google Scholar 

  52. Grandis JR, Sok JC. Signaling through the epidermal growth factor receptor during the development of malignancy. Pharmacol Ther 2004; 102(1): 37–46

    Article  PubMed  CAS  Google Scholar 

  53. Prenzel N, Zwick E, Daub H, et al. EGF receptor transactivation by G-protein-coupled receptors requires metalloproteinase cleavage of proHB-EGF. Nature 1999; 402(6764): 884–8

    PubMed  CAS  Google Scholar 

  54. Mendelsohn J, Baselga J. Status of epidermal growth factor receptor antagonists in the biology and treatment of cancer. J Clin Oncol 2003; 21(14): 2787–99

    Article  PubMed  CAS  Google Scholar 

  55. Perrotte P, Matsumoto T, Inoue K, et al. Anti-epidermal growth factor receptor antibody C225 inhibits angiogenesis in human transitional cell carcinoma growing orthotopically in nude mice. Clin Cancer Res 1999; 5(2): 257–65

    PubMed  CAS  Google Scholar 

  56. Verbeek BS, Adriaansen-Slot SS, Vroom TM, et al. Overexpression of EGFR and c-erbB2 causes enhanced cell migration in human breast cancer cells and NIH3T3 fibroblasts. FEBS Lett 1998; 425(1): 145–50

    Article  PubMed  CAS  Google Scholar 

  57. Wells A. Tumor invasion: role of growth factor-induced cell motility. Adv Cancer Res 2000; 78: 31–101

    Article  PubMed  CAS  Google Scholar 

  58. Yarden Y. The EGFR family and its ligands in human cancer. signalling mechanisms and therapeutic opportunities. Eur J Cancer 2001; 37 Suppl. 4: S3–8

    Article  PubMed  CAS  Google Scholar 

  59. Fischer-Colbrie J, Witt A, Heinzl H, et al. EGFR and steroid receptors in ovarian carcinoma: comparison with prognostic parameters and outcome of patients. Anticancer Res 1997; 17(1B): 613–9

    PubMed  CAS  Google Scholar 

  60. Barker FG, Simmons ML, Chang SM, et al. EGFR overexpression and radiation response in glioblastoma multiforme. Int J Radiat Oncol Biol Phys 2001; 51(2): 410–8

    Article  PubMed  CAS  Google Scholar 

  61. Masuda M, Toh S, Koike K, et al. The roles of JNK1 and Stat3 in the response of head and neck cancer cell lines to combined treatment with all-trans-retinoic acid and 5-fluorouracil. Jpn J Cancer Res 2002; 93(3): 329–39

    Article  PubMed  CAS  Google Scholar 

  62. Downward J, Yarden Y, Mayes E, et al. Close similarity of epidermal growth factor receptor and v-erb-B oncogene protein sequences. Nature 1984; 307(5951): 521–7

    Article  PubMed  CAS  Google Scholar 

  63. Huang SM, Harari PM. Epidermal growth factor receptor inhibition in cancer therapy: biology, rationale and preliminary clinical results. Invest New Drugs 1999; 17(3): 259–69

    Article  PubMed  CAS  Google Scholar 

  64. Olayioye MA, Neve RM, Lane HA, et al. The ErbB signaling network: receptor heterodimerization in development and cancer. EMBO J 2000; 19(13): 3159–67

    Article  PubMed  CAS  Google Scholar 

  65. Zwick E, Bange J, Ullrich A. Receptor tyrosine kinase signalling as a target for cancer intervention strategies. Endocr Relat Cancer 2001; 8(3): 161–73

    Article  PubMed  CAS  Google Scholar 

  66. Holbro T, Civenni G, Hynes NE. The ErbB receptors and their role in cancer progression. Exp Cell Res 2003; 284(1): 99–110

    Article  PubMed  CAS  Google Scholar 

  67. Layfield LJ, Bernard PS, Goldstein NS. Color multiplex polymerase chain reaction for quantitative analysis of epidermal growth factor receptor genes in colorectal adenocarcinoma. J Surg Oncol 2003; 83(4): 227–31

    Article  PubMed  CAS  Google Scholar 

  68. Kondo Y, Issa JP. Epigenetic changes in colorectal cancer. Cancer Metastasis Rev 2004; 23(1–2): 29–39

    Article  PubMed  CAS  Google Scholar 

  69. Mazelin L, Bernet A, Bonod-Bidaud C, et al. Netrin-1 controls colorectal tumorigenesis by regulating apoptosis. Nature 2004; 431(7004): 80–4

    Article  PubMed  CAS  Google Scholar 

  70. Rubin Grandis J, Tweardy DJ, Melhem MF. Asynchronous modulation of transforming growth factor alpha and epidermal growth factor receptor protein expression in progression of premalignant lesions to head and neck squamous cell carcinoma. Clin Cancer Res 1998; 4(1): 13–20

    PubMed  CAS  Google Scholar 

  71. Rubin Grandis J, Melhem MF, Gooding WE, et al. Levels of TGF-alpha and EGFR protein in head and neck squamous cell carcinoma and patient survival. J Natl Cancer Inst 1998; 90(11): 824–32

    Article  PubMed  CAS  Google Scholar 

  72. Mezo I, Kovacs M, Szoke B, et al. New Gaba-containing analogues of human growth hormone-releasing hormone (l–30)-amide: I. Synthesis and in vitro biological activity. J Endocrinol Invest 1993; 16(10): 793–8

    CAS  Google Scholar 

  73. Miller WE, Earp HS, Raab-Traub N. The Epstein-Barr virus latent membrane protein 1 induces expression of the epidermal growth factor receptor. J Virol 1995; 69(7): 4390–8

    PubMed  CAS  Google Scholar 

  74. Kuan CT, Wikstrand CJ, Bigner DD. EGF mutant receptor vIII as a molecular target in cancer therapy. Endocr Relat Cancer 2001; 8(2): 83–96

    Article  PubMed  CAS  Google Scholar 

  75. Bigner SH, Humphrey PA, Wong AJ, et al. Characterization of the epidermal growth factor receptor in human glioma cell lines and xenografts. Cancer Res 1990; 50(24): 8017–22

    PubMed  CAS  Google Scholar 

  76. Humphrey PA, Gangarosa LM, Wong AJ, et al. Deletion-mutant epidermal growth factor receptor in human gliomas: effects of type II mutation on receptor function. Biochem Biophys Res Commun 1991; 178(3): 1413–20

    Article  PubMed  CAS  Google Scholar 

  77. Pedersen MW, Meltorn M, Damstrup L, et al. The type III epidermal growth factor receptor mutation: biological significance and potential target for anti-cancer therapy. Ann Oncol 2001; 12(6): 745–60

    Article  PubMed  CAS  Google Scholar 

  78. Wikstrand CJ, Hale LP, Batra SK, et al. Monoclonal antibodies against EGFRvIII are tumor specific and react with breast and lung carcinomas and malignant gliomas. Cancer Res 1995; 55(14): 3140–8

    PubMed  CAS  Google Scholar 

  79. Heimberger AB, Hlatky R, Suki D, et al. Prognostic effect of epidermal growth factor recept and EGFRvIII in glioblastoma multiforme patients. Clin Cancer Res 2005; 11(4): 1462–6

    Article  PubMed  CAS  Google Scholar 

  80. Bodey B, Kaiser HE, Siegel SE. Epidermal growth factor receptor (EGFR) expression in childhood brain tumours. In Vivo 2005; 19(5): 931–41

    PubMed  CAS  Google Scholar 

  81. Garcia de Palazzo I, Adams GP, Sundareshan P, et al. Expression of mutated epidermal growth factor receptor by non-small cell lung carcinomas. Cancer Res 1993; 53(14): 3217–20

    Google Scholar 

  82. Moscatello DK, Holgado-Madruga M, Godwin AK, et al. Frequent expression of a mutant epidermal growth factor receptor in multiple human tumors. Cancer Res 1995 Dec; 55(23): 5536–9

    PubMed  CAS  Google Scholar 

  83. Ge H, Gong X, Tang CK. Evidence of high incidence of EGFRvIII expression and coexpression with EGFR in human invasive breast cancer by laser capture microdissection and immunohistochemical analysis. Int J Cancer 2002; 98(3): 357–61

    Article  PubMed  CAS  Google Scholar 

  84. Olapade-Olaopa EO, Moscatello DK, MacKay EH, et al. Evidence for the differential expression of a variant EGF receptor protein in human prostate cancer. Br J Cancer 2000; 82(1): 186–94

    Article  PubMed  CAS  Google Scholar 

  85. Cunningham MP, Essapen S, Thomas H, et al. Coexpression, prognostic significance and predictive value of EGFR, EGFRvIII and phosphorylated EGFR in colorectal cancer. Int J Oncol 2005; 27(2): 317–25

    PubMed  CAS  Google Scholar 

  86. Chu CT, Everiss KD, Wikstrand CJ, et al. Receptor dimerization is not a factor in the signalling activity of a transforming variant epidermal growth factor receptor (EGFRvIII). Biochem J 1997; 324 (Pt 3): 855–61

    PubMed  CAS  Google Scholar 

  87. Lynch TJ, Bell DW, Sordella R, et al. Activating mutations in the epidermal growth factor receptor underlying responsiveness of non-small-cell lung cancer to gefitinib. N Engl J Med 2004; 350(21): 2129–39

    Article  PubMed  CAS  Google Scholar 

  88. Paez JG, Janne PA, Lee JC, et al. EGFR Mutations in lung cancer: correlation with clinical response to gefitinib therapy. Science 2004; 304(5676): 1497–500

    Article  PubMed  CAS  Google Scholar 

  89. Wan CW, McKnight MK, Brattain DE, et al. Different epidermal growth factor growth responses and receptor levels in human colon carcinoma cell lines. Cancer Lett 1988; 43(1–2): 139–43

    Article  PubMed  CAS  Google Scholar 

  90. Khalifa MA, Rowsell CH, Gladdy RA, et al. Expression of epidermal growth factor receptor in primary colorectal adenocarcinoma predicts expression in recurrent disease. Am J Clin Pathol 2006; 125(2): 229–33

    PubMed  CAS  Google Scholar 

  91. Vallbohmer D, Zhang W, Gordon M, et al. Molecular determinants of cetuximab efficacy. J Clin Oncol 2005; 23(15): 3536–44

    Article  PubMed  CAS  Google Scholar 

  92. Yasui W, Sumiyoshi H, Hata J, et al. Expression of epidermal growth factor receptor in human gastric and colonic carcinomas. Cancer Res 1988; 48(1): 137–41

    PubMed  CAS  Google Scholar 

  93. Inada S, Koto T, Futami K, et al. Evaluation of malignancy and the prognosis of esophageal cancer based on an immunohistochemical study (p53, E-cadherin, epidermal growth factor receptor). Surg Today 1999; 29(6): 493–503

    Article  PubMed  CAS  Google Scholar 

  94. Yoshida K, Kuniyasu H, Yasui W, et al. Expression of growth factors and their receptors in human esophageal carcinomas: regulation of expression by epidermal growth factor and transforming growth factor alpha. J Cancer Res Clin Oncol 1993; 119(7): 401–7

    Article  PubMed  CAS  Google Scholar 

  95. Grandis JR, Tweardy DJ. Elevated levels of transforming growth factor alpha and epidermal growth factor receptor messenger RNA are early markers of carcinogenesis in head and neck cancer. Cancer Res 1993; 53(15): 3579–84

    PubMed  CAS  Google Scholar 

  96. Bunn PA. Treatment of advanced non-small-cell lung cancer with two-drug combinations. J Clin Oncol 2002; 20(17): 3565–7

    PubMed  Google Scholar 

  97. Wong AJ, Ruppert JM, Bigner SH, et al. Structural alterations of the epidermal growth factor receptor gene in human gliomas. Proc Natl Acad Sci U S A 1992; 89(7): 2965–9

    Article  PubMed  CAS  Google Scholar 

  98. Rubin Grandis J, Zeng Q, Tweardy DJ. Retinoic acid normalizes the increased gene transcription rate of TGF-alpha and EGFR in head and neck cancer cell lines. Nat Med 1996; 2(2): 237–40

    Article  PubMed  CAS  Google Scholar 

  99. Rubin Grandis J, Melhem MF, Barnes EL, et al. Quantitative immunohistochemical analysis of transforming growth factor-alpha and epidermal growth factor receptor in patients with squamous cell carcinoma of the head and neck. Cancer 1996; 78(6): 1284–92

    Article  PubMed  CAS  Google Scholar 

  100. Nicholson RI, Gee JM, Harper ME. EGFR and cancer prognosis. Eur J Cancer 2001; 37 Suppl. 4: S9–15

    Article  PubMed  CAS  Google Scholar 

  101. Kim GE, Kim YB, Cho NH, et al. Synchronous coexpression of epidermal growth factor receptor and cyclooxygenase-2 in carcinomas of the uterine cervix: a potential predictor of poor survival. Clin Cancer Res 2004; 10(4): 1366–74

    Article  PubMed  CAS  Google Scholar 

  102. Gibault L, Metges JP, Conan-Charlet V, et al. Diffuse EGFR staining is associated with reduced overall survival in locally advanced oesophageal squamous cell cancer. Br J Cancer 2005; 93(1): 107–15

    Article  PubMed  CAS  Google Scholar 

  103. Walker RA, Dearing SJ. Expression of epidermal growth factor receptor mRNA and protein in primary breast carcinomas. Breast Cancer Res Treat 1999; 53(2): 167–76

    Article  PubMed  CAS  Google Scholar 

  104. Gamboa-Dominguez A, Dominguez-Fonseca C, Quintanilla-Martinez L, et al. Epidermal growth factor receptor expression correlates with poor survival in gastric adenocarcinoma from Mexican patients: a multivariate analysis using a standardized immunohistochemical detection system. Mod Pathol 2004; 17(5): 579–87

    Article  PubMed  CAS  Google Scholar 

  105. Trikha M, Yan L, Nakada MT. Monoclonal antibodies as therapeutics in oncology. Curr Opin Biotechnol 2002; 13(6): 609–14

    Article  PubMed  CAS  Google Scholar 

  106. Harris M. Monoclonal antibodies as therapeutic agents for cancer. Lancet Oncol 2004; 5(5): 292–302

    Article  PubMed  CAS  Google Scholar 

  107. Carter P. Improving the efficacy of antibody-based cancer therapies. Nat Rev Cancer 2001; 1(2): 118–29

    Article  PubMed  CAS  Google Scholar 

  108. Burton DR, Woof JM. Human antibody effector function. Adv Immunol 1992; 51: 1–84

    Article  PubMed  CAS  Google Scholar 

  109. Saltz L, Rubin M, Hochster H, et al. Cetuximab (IMC-C225) plus Irinotecan (CPT-11) is active in CPT-11 refractory colorectal cancer (CRC) that expresses epidermal growth factor receptor (EGFR). Presented at the Annual Meeting of the American Society of Clinical Oncology; 2001 May 5–12; San Francisco (CA). Proc Am Soc Clin Oncol 2001; 20: 3a

    Google Scholar 

  110. Chu E. Cetuximab targeted therapy: a new treatment paradigm for advanced colorectal cancer. Clin Colorectal Cancer 2004; 3(4): 205

    Article  PubMed  Google Scholar 

  111. Goldstein NI, Prewett M, Zuklys K, et al. Biological efficacy of a chimeric antibody to the epidermal growth factor receptor in a human tumor xenograft model. Clin Cancer Res 1995; 1(11): 1311–8

    PubMed  CAS  Google Scholar 

  112. Needle MN. Safety experience with IMC-C225, an anti-epidermal growth factor receptor antibody. Semin Oncol 2002; 29 (5 Suppl. 14): 55–60

    Article  PubMed  CAS  Google Scholar 

  113. Prewett M, Rockwell P, Rockwell RF, et al. The biologic effects of C225, a chimeric monoclonal antibody to the EGFR, on human prostate carcinoma. J Immunother Emphasis Tumor Immunol 1996; 19(6): 419–27

    Article  PubMed  CAS  Google Scholar 

  114. Fan Z, Lu Y, Wu X, et al. Antibody-induced epidermal growth factor receptor dimerization mediates inhibition of autocrine proliferation of A431 squamous carcinoma cells. J Biol Chem 1994; 269(44): 27595–602

    PubMed  CAS  Google Scholar 

  115. Prewett M, Rothman M, Waksal H, et al. Mouse-human chimeric anti-epidermal growth factor receptor antibody C225 inhibits the growth of human renal cell carcinoma xenografts in nude mice. Clin Cancer Res 1998; 4(12): 2957–66

    PubMed  CAS  Google Scholar 

  116. Hadari YR, Doody JF, Wang Y, et al. The IgG1 monoclonal antibody cetuximab induces degradation of the epidermal growth factor receptor [abstract]. Program and abstracts of the American Society of Clinical Oncology Gastrointestinal Cancers Symposium; 2004 Jan 22–24; San Francisco (CA), 234

  117. Sunada H, Yu P, Peacock JS, et al. Modulation of tyrosine, serine, and threonine phosphorylation and intracellular processing of the epidermal growth factor receptor by antireceptor monoclonal antibody. J Cell Physiol 1990; 142(2): 284–92

    Article  PubMed  CAS  Google Scholar 

  118. Kang X, Patel D, Shi J, et al. Anti-EGFR monoclonal antibody cetuximab binds the EGFR variant III receptor and internalizes phosphorylated receptor on the cell surface [abstract]. Eur J Cancer 2002; 38(7): 149

    Google Scholar 

  119. Wu X, Rubin M, Fan Z, et al. Involvement of p27KIP1 in G1 arrest mediated by an anti-epidermal growth factor receptor monoclonal antibody. Oncogene 1996; 12(7): 1397–403

    PubMed  CAS  Google Scholar 

  120. Karnes WE, Weller SG, Adjei PN, et al. Inhibition of epidermal growth factor receptor kinase induces protease-dependent apoptosis in human colon cancer cells. Gastroenterology 1998; 114(5): 930–9

    Article  PubMed  CAS  Google Scholar 

  121. Peng D, Fan Z, Lu Y, et al. Anti-epidermal growth factor receptor monoclonal antibody 225 up-regulates p27KIP1 and induces G1 arrest in prostatic cancer cell line DU145. Cancer Res 1996; 56(16): 3666–9

    PubMed  CAS  Google Scholar 

  122. Busse D, Doughty RS, Ramsey TT, et al. Reversible G (1) arrest induced by inhibition of the epidermal growth factor receptor tyrosine kinase requires up-regulation of p27 (KIP1) independent of MAPK activity. J Biol Chem 2000; 275(10): 6987–95

    Article  PubMed  CAS  Google Scholar 

  123. Moyer JD, Barbacci EG, Iwata KK, et al. Induction of apoptosis and cell cycle arrest by CP-358,774, an inhibitor of epidermal growth factor receptor tyrosine kinase. Cancer Res 1997; 57(21): 4838–48

    PubMed  CAS  Google Scholar 

  124. Budillon A, Di Gennaro E, Barbarino M, et al. ZD1839, an epidermal growth factor receptor tyrosine kinase inhibitor, upregulates P27KIP1 inducing G1 arrest and enhancing the antitumor effect of interferon alpha. Proc Am Assoc Cancer Res 2000; 41: 773

    Google Scholar 

  125. Wu X, Fan Z, Masui H, et al. Apoptosis induced by an anti-epidermal growth factor receptor monoclonal antibody in a human colorectal carcinoma cell line and its delay by insulin. J Clin Invest 1995; 95(4): 1897–905

    Article  PubMed  CAS  Google Scholar 

  126. Mandal M, Adam L, Mendelsohn J, et al. Nuclear targeting of Bax during apoptosis in human colorectal cancer cells. Oncogene 1998; 17(8): 999–1007

    Article  PubMed  CAS  Google Scholar 

  127. Liu B, Fang M, Schmidt M, et al. Induction of apoptosis and activation of the caspase cascade by anti-EGF receptor monoclonal antibodies in DiFi human colon cancer cells do not involve the c-jun N-terminal kinase activity. Br J Cancer 2000; 82(12): 1991–9

    Article  PubMed  CAS  Google Scholar 

  128. Petit AM, Rak J, Hung MC, et al. Neutralizing antibodies against epidermal growth factor and ErbB-2/neu receptor tyrosine kinases down-regulate vascular endothelial growth factor production by tumor cells in vitro and in vivo: angiogenic implications for signal transduction therapy of solid tumors. Am J Pathol 1997; 151(6): 1523–30

    PubMed  CAS  Google Scholar 

  129. Bruns CJ, Harbison MT, Davis DW, et al. Epidermal growth factor receptor blockade with C225 plus gemcitabine results in regression of human pancreatic carcinoma growing orthotopically in nude mice by antiangiogenic mechanisms. Clin Cancer Res 2000; 6(5): 1936–48

    PubMed  CAS  Google Scholar 

  130. Ciardiello F, Caputo R, Bianco R, et al. Inhibition of growth factor production and angiogenesis in human cancer cells by ZD1839 (Iressa), a selective epidermal growth factor receptor tyrosine kinase inhibitor. Clin Cancer Res 2001; 7(5): 1459–65

    PubMed  CAS  Google Scholar 

  131. O-charoenrat P, Rhys-Evans P, Modjtahedi H, et al. Vascular endothelial growth factor family members are differentially regulated by c-erbB signaling in head and neck squamous carcinoma cells. Clin Exp Metastasis 2000; 18(2): 155–61

    Article  PubMed  CAS  Google Scholar 

  132. O-charoenrat P, Rhys-Evans P, Court WJ, et al. Differential modulation of proliferation, matrix metalloproteinase expression and invasion of human head and neck squamous carcinoma cells by c-erhB ligands. Clin Exp Metastasis 1999; 17(7): 631–9

    Article  PubMed  CAS  Google Scholar 

  133. Matsumoto T, Perrotte P, Bar-Eli M, et al. Blockade of EGF-R signaling with anti-EGF-R monoclonal antibody (Mab) C225 inhibits matrix metalloproteinase-9 (MMP-9) expression and invasion of human transitional cell carcinoma (TCC) in vitro and in vivo [abstract]. Proc Am Assoc Cancer Res 1998; 39: 83

    CAS  Google Scholar 

  134. Mellstedt H. Monoclonal antibodies in human cancer. Drugs Today (Barc) 2003; 39 Suppl. C: 1–16

    CAS  Google Scholar 

  135. Baselga J, Pfister D, Cooper MR, et al. Phase I studies of anti-epidermal growth factor receptor chimeric antibody C225 alone and in combination with cisplatin. J Clin Oncol 2000; 18(4): 904–14

    PubMed  CAS  Google Scholar 

  136. Robert F, Ezekiel MP, Spencer SA, et al. Phase I study of anti-epidermal growth factor receptor antibody cetuximab in combination with radiation therapy in patients with advanced head and neck cancer. J Clin Oncol 2001; 19(13): 3234–43

    PubMed  CAS  Google Scholar 

  137. Cunningham D, Humblet Y, Siena S, et al. Cetuximab monotherapy and cetuximab plus irinotecan in irinotecan-refractory metastatic colorectal cancer. N Engl J Med 2004; 351(4): 337–45

    Article  PubMed  CAS  Google Scholar 

  138. Saltz J, Lenz H, Hochster H, et al. Randomized phase ii trial of cetuximab/bevacizumab/irinotecan (CBI) versus cetuximab/ bevacizumab (CB) in irinotecan-refractory colorectal cancer [abstract no. 3508]. J Clin Oncol 2005; 23 (16 Suppl.): 248s

    Google Scholar 

  139. Diaz-Rubio E, Tabernero J, Van Cutsem E, et al. Cetuximab in combination with oxaliplatin/5-fluorouracil (5-FU)/folinic acid (FA) (FOLFOX-4) in the first-line treatment of patients with epidermal growth factor receptor (EGFR)-expressing metastatic colorectal cancer: an international phase II study [abstract no. 3535]. Presented at the 41st Annual Meeting of the American Society of Clinical Oncology; 2005 May 13–17; Orlando (FL). J Clin Oncol 2005; 23: 254s

    Google Scholar 

  140. Kim ES, Mauer AM, Tran HT, et al. A phase II study of cetuximab, an epidermal growth factor receptor (EGFR) blocking antibody, in combination with docetaxel in chemotherapy refractory/resistant patients with advanced non-small cell lung cancer: Final report [abstract no. 2581]. Proc Am Soc Clin Oncol 2003; 22: 642

    Google Scholar 

  141. Saltz LB, Lenz H-J, Kindler H, et al. Interim of randomized phase II trial if cetuximab/bevacizumab/irenotecan (CBI) versus cetuximab/bevacizumab (CB) in irinotecan-refractory colorectal cancer [abstract]. Program and abstracts of the American Society of Clinical Oncology Gastrointestinal Cancers Symposium; 2005 Jan 27–29; Hollywood (FL), 169B

  142. Chung KY, Shia J, Kemeny NE, et al. Cetuximab shows activity in colorectal cancer patients with tumors that do not express the epidermal growth factor receptor by immunohistochemistry. J Clin Oncol 2005; 23(9): 1803–10

    Article  PubMed  CAS  Google Scholar 

  143. Lang I, Zaluski J, Changchien CR, et al. Cetuximab with irinotecan in first-line treatment of epidermal growth factor receptor (EGFR)-expressing metastic colorectal cancer (mCRC): preliminary safety results (CRYSTAL) [abstract no. 3555]. Presented at the 42nd Annual Meeting of the American Society of Clinical Oncology; 2006 Jun 2–6; Atlanta (GA). J Clin Oncol 2006; 24: 18S

    Article  CAS  Google Scholar 

  144. Bonner JA, Giralt J, Harari PM, et al.Cetuximab improves locoregional control and survival of locoregionally advanced head and neck cancer: independent review of mature data with a median follow-up of 45 months. 17th AACR-NCI-EORTC International Conference on Molecular Targets and Cancer Therapeutics; 2005 Nov 14; Philadelphia (PA), 153

  145. Herbst RS, Arquette M, Shin DM, et al. Phase II multicenter study of the epidermal growth factor receptor antibody cetuximab and cisplatin for recurrent and refractory squamous cell carcinoma of the head and neck. J Clin Oncol 2005; 23(24): 5578–87

    Article  PubMed  CAS  Google Scholar 

  146. Vermorken J, Bourhis J, Trigo J, et al. Cetuximab (Erbitux®) in recurrent/metastatic (R & M) squamous cell carcinoma of the head and neck (SCCHN) refractory to first-line platinum-based therapies [abstract no. 5505]. Presented at the 41st Annual Meeting of the American Society of Clinical Oncology; 2005 May 13–17; Orlando (FL). J Clin Oncol 2005; 23: 501s

    Google Scholar 

  147. Thomas SM, Grandis JR. Pharmacokinetic and pharmacodynamic properties of EGFR inhibitors under clinical investigation. Cancer Treat Rev 2004; 30(3): 255–68

    Article  PubMed  CAS  Google Scholar 

  148. Cohen RB. Epidermal growth factor receptor as a therapeutic target in colorectal cancer. Clin Colorectal Cancer 2003; 2(4): 246–51

    Article  PubMed  CAS  Google Scholar 

  149. Yang XD, Jia XC, Corvalan JR, et al. Eradication of established tumors by a fully human monoclonal antibody to the epidermal growth factor receptor without concomitant chemotherapy. Cancer Res 1999; 59(6): 1236–43

    PubMed  CAS  Google Scholar 

  150. Yang XD, Jia XC, Corvalan JR, et al. Development of ABX-EGF, a fully human anti-EGF receptor monoclonal antibody, for cancer therapy. Crit Rev Oncol Hematol 2001; 38(1): 17–23

    Article  PubMed  CAS  Google Scholar 

  151. Hecht JR, Patnaik A, Malik I, et al. ABX-EGF monotherapy in patients (pts) with metastatic colorectal cancer (mCRC): an updated analysis [abstract no. 3511]. Presented at the 40th Annual Meeting of the American Society of Clinical Oncology; 2004 Jun 5–8; New Orleans (LA). J Clin Oncol 2004; 22: 247s

    Google Scholar 

  152. Malik I, Hecht JR, Patnaik A, et al. Safety and efficacy of panitumumab monotherapy in patients with metastatic colorectal cancer (mCRC) [abstract no. 3520]. Presented at the 41st Annual Meeting of the American Society of Clinical Oncology; 2005 May 13–17; Orlando (FL). J Clin Oncol 2005; 23 (Pt 1): 251s

    Google Scholar 

  153. Rowinsky EK, Schwartz GH, Gollob JA, et al. Safety, pharmacokinetics, and activity of ABX-EGF, a fully human anti-epidermal growth factor receptor monoclonal antibody in patients with metastatic renal cell cancer. J Clin Oncol 2004; 22(15): 3003–15

    Article  PubMed  CAS  Google Scholar 

  154. Crawford J, Sandler AB, Hammond LA, et al. ABX-EGF in combination with paclitaxel and carboplatin for advanced non-small cell lung cancer (NSCLC) [abstract no. 7083]. Presented at the 41st Annual Meeting of the American Society of Clinical Oncology; 2005 May 13–17; Orlando (FL). J Clin Oncol 2005; 23 (Pt 1): 637s

    Article  Google Scholar 

  155. Bier H, Hoffmann T, Hauser U, et al. Clinical trial with escalating doses of the antiepidermal growth factor receptor humanized monoclonal antibody EMD 72 000 in patients with advanced squamous cell carcinoma of the larynx and hypopharynx. Cancer Chemother Pharmacol 2001; 47(6): 519–24

    Article  PubMed  CAS  Google Scholar 

  156. Crombet T, Torres O, Rodriguez V, et al. Phase I clinical evaluation of a neutralizing monoclonal antibody against epidermal growth factor receptor in advanced brain tumor patients: preliminary study. Hybridoma 2001; 20(2): 131–6

    Article  PubMed  CAS  Google Scholar 

  157. Curnow RT. Clinical experience with CD64-directed immunotherapy: an overview. Cancer Immunol Immunother 1997; 45(3–4): 210–5

    Article  PubMed  CAS  Google Scholar 

  158. Mishima K, Johns TG, Luwor RB, et al. Growth suppression of intracranial xenografted glioblastomas overexpressing mutant epidermal growth factor receptors by systemic administration of monoclonal antibody (mAb) 806, a novel monoclonal antibody directed to the receptor. Cancer Res 2001; 61(14): 5349–54

    PubMed  CAS  Google Scholar 

  159. Fisher GA, Kuo T, Cho CD, et al. A phase II study of gefitinib in combination with FOLFOX-4 (IFOX) in patients with metastatic colorectal cancer [abstract no. 3514].J Clin Oncol 2004; 22: 248s

    Article  CAS  Google Scholar 

  160. Redlinger M, Kramer A, Flaherty K, et al. A phase II trial of gefitinib in combination with 5-FU/LV/irinotecan in patients with colorectal cancer [abstract no. 3767]. J Clin Oncol 2004; 22: 310s

    Google Scholar 

  161. Townsley C, Major P, Siu LL, et al. Phase II study of OSI-774 in patients with metastatic colorectal cancer [abstract no. 179]. Eur J Cancer 2002; 38: S57

    Google Scholar 

  162. Arteaga CL. ErhB-targeted therapeutic approaches in human cancer. Exp Cell Res 2003; 284(1): 122–30

    Article  PubMed  CAS  Google Scholar 

  163. Dittmann K, Mayer C, Fehrenbacher B, et al. Radiation-induced epidermal growth factor receptor nuclear import is linked to activation of DNA-dependent protein kinase. J Biol Chem 2005; 280(35): 31182–9

    Article  PubMed  CAS  Google Scholar 

  164. AstraZeneca. Iressa® (gefitinib) product insert. 2004

  165. Fukuoka M, Yano S, Giaccone G, et al. Multi-institutional randomized phase II trial of gefitinib for previously treated patients with advanced non-small-cell lung cancer. J Clin Oncol 2003; 21: 2237–46

    Article  PubMed  CAS  Google Scholar 

  166. Kris MG, Natale RB, Herbst RS, et al. Efficacy of gefitinib, an inhibitor of the epidermal growth factor receptor tyrosine kinase, in symptomatic patients with non-small cell lung cancer: a randomized trial. JAMA 2003; 290(16): 2149–58

    Article  PubMed  CAS  Google Scholar 

  167. Giaccone G, Johnson D, Scagliotti GV, et al. Results of a multivariate analysis of prognostic factors of overall survival of patients with advanced non-small-cell lung cancer (NSCLC) treated with gefitinib (ZD1839) in combination with platinum-based chemotherapy (CT) in two large phase III trials (INTACT 1 and 2) [abstract no. 2522]. Presented at the 39th Annual Meeting of the American Society of Clinical Oncology; 2003 May 31–Jun 3; Chicago (IL). Proc Am Soc Clin Oncol 2003; 22: 627

    Google Scholar 

  168. Thatcher N, Chang A, Parikh P, et al. Gefitinib plus best supportive care in previously treated patients with refractory advanced non-small-cell lung cancer: results from a randomised, placebo-controlled, multicentre study (Iressa Survival Evaluation in Lung Cancer). Lancet 2005; 366(9496): 1527–37

    Article  PubMed  CAS  Google Scholar 

  169. US Food and Drug Administration. FDA public health advisory: new labeling and distribution program for gefitinib (Iressa) [online]. Available from URL: http://www.fda.gov/cder/foi/label/2005/021339s008lbl.pdf [Accessed 2006 Jul 24]

  170. Woodburn JR, Kendrew J, Fennell M, et al. ZD1839 (‘Iressa’) a selective epidermal growth factor receptor tyrosine kinase inhibitor (EGFR-TKI): inhibition of C-FOS MRNA, an intermediate marker of EGFR activation, correlates with tumor growth inhibition [abstract no. 2552]. Proc Am Assoc Cancer Res 2000; 41: 402

    Google Scholar 

  171. Baselga J, Averbuch SD. ZD1839 (‘Iressa’) as an anticancer agent. Drugs 2000; 60 Suppl. 1: 33–40

    Article  PubMed  CAS  Google Scholar 

  172. Ciardiello F, Caputo R, Bianco R, et al. Antitumor effect and potentiation of cytotoxic drugs activity in human cancer cells by ZD-1839 (Iressa), an epidermal growth factor receptor-selective tyrosine kinase inhibitor. Clin Cancer Res 2000; 6(5): 2053–63

    PubMed  CAS  Google Scholar 

  173. Sirotnak FM, Zakowski MF, Miller VA, et al. Efficacy of cytotoxic agents against human tumor xenografts is markedly enhanced by coadministration of ZD1839 (Iressa), an inhibitor of EGFR tyrosine kinase. Clin Cancer Res 2000; 6(12): 4885–92

    PubMed  CAS  Google Scholar 

  174. Anido J, Matar P, Albaneil J, et al. ZD1839, a specific epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor, induces the formation of inactive EGFR/HER2 and EGFR/ HER3 heterodimers and prevents heregulin signaling in HER2-overexpressing breast cancer cells. Clin Cancer Res 2003; 9(4): 1274–83

    PubMed  CAS  Google Scholar 

  175. Woodburn JR, Barker AJ, Wakeling AE, et al. 6-amino-4-(3-methylphenylamino)-quinazoline: an EGF receptor tyrosine kinase inhibitor with activity in a range of human tumor xenografts [abstracts no. 2665]. Proc Am Assoc Cancer Res 1996; 37: 390

    Google Scholar 

  176. Albaneil J, Rojo F, Averbuch S, et al. Pharmacodynamic studies of the epidermal growth factor receptor inhibitor ZD1839 in skin from cancer patients: histopathologic and molecular consequences of receptor inhibition. J Clin Oncol 2002; 20(1): 110–24

    Article  Google Scholar 

  177. Wakeling AE, Guy SP, Woodburn JR, et al. ZD1839 (Iressa): an orally active inhibitor of epidermal growth factor signaling with potential for cancer therapy. Cancer Res 2002; 62(20): 5749–54

    PubMed  CAS  Google Scholar 

  178. Learn CA, Hartzell TL, Wikstrand CJ, et al. Resistance to tyrosine kinase inhibition by mutant epidermal growth factor receptor variant III contributes to the neoplastic phenotype of glioblastoma multiforme. Clin Cancer Res 2004; 10(9): 3216–24

    Article  PubMed  CAS  Google Scholar 

  179. Nishikawa R, Ji XD, Harmon RC, et al. A mutant epidermal growth factor receptor common in human glioma confers enhanced tumorigenicity. Proc Natl Acad Sci U S A 1994; 91(16): 7727–31

    Article  PubMed  CAS  Google Scholar 

  180. Huang HS, Nagane M, Klingbeil CK, et al. The enhanced tumorigenic activity of a mutant epidermal growth factor receptor common in human cancers is mediated by threshold levels of constitutive tyrosine phosphorylation and unattenuated signaling. J Biol Chem 1997; 272(5): 2927–35

    Article  PubMed  CAS  Google Scholar 

  181. Daneshmand M, Parolin DA, Hirte HW, et al. A pharmacodynamic study of the epidermal growth factor receptor tyrosine kinase inhibitor ZD1839 in metastatic colorectal cancer patients. Clin Cancer Res 2003; 9(7): 2457–64

    PubMed  CAS  Google Scholar 

  182. Cohen EE, Rosen F, Dekker A, et al. Phase II study of ZD1839 (Iressa) in recurrent or metastatic squamous cell carcinoma of the head and neck (SCCHN) [abstract no. 899]. Presented at the 38th Annual Meeting of the American Journal of Clinical Oncology; 2002 May 18–21; Orlando (FL). Proc Am Soc Clin Oncol 2002; 21: 225a

    Google Scholar 

  183. Drucker B, Bacik J, Ginsberg M, et al. Phase II trial of ZD1839 (IRESSA) in patients with advanced renal cell carcinoma. Invest New Drugs 2003; 21(3): 341–5

    Article  PubMed  CAS  Google Scholar 

  184. Dorligschaw O, Kegel T, Jordon K, et al. ZD 1839 (Iressa)-based treatment as last-line therapy in patients with advanced colorectal cancer (ACRC) [abstract no. 1494]. Presented at the 39th Annual Meeting of the American Journal of Clinical Oncology; 2003 May 31–Jun 3; Chicago (IL). Proc Am Soc Clin Oncol 2003; 22: 372

    Google Scholar 

  185. Rich JN, Reardon DA, Peery T, et al. Phase II trial of gefitinib in recurrent glioblastoma. J Clin Oncol 2004; 22(1): 133–42

    Article  PubMed  CAS  Google Scholar 

  186. Herbst RS, Giaccone G, Schiller JH, et al. Gefitinib in combination with paclitaxel and carboplatin in advanced non-small-cell lung cancer: a phase III trial: INTACT 2. J Clin Oncol 2004; 22(5): 785–94

    Article  PubMed  CAS  Google Scholar 

  187. Giaccone G, Herbst RS, Manegold C, et al. Gefitinib in combination with gemcitabine and cisplatin in advanced non-small-cell lung cancer: a phase III trial: INTACT 1. J Clin Oncol 2004; 22(5): 777–84

    Article  PubMed  CAS  Google Scholar 

  188. Blackledge G, Averbuch S. Gefitinib (‘Iressa’, ZD1839) and new epidermal growth factor receptor inhibitors. Br J Cancer 2004; 90(3): 566–72

    Article  PubMed  CAS  Google Scholar 

  189. Inomata S, Takahashi H, Nagata M, et al. Acute lung injury as an adverse event of gefitinib. Anticancer Drugs 2004; 15(5): 461–7

    Article  PubMed  CAS  Google Scholar 

  190. Fisher GA, Kuo T, Cho CD, et al. A phase II study of gefitinib in combination with FOLFOX-4 (IFOX) in patients with metastatic colorectal cancer [abstract no. 3514]. J Clin Oncol 2004; 22: 14S

    Article  CAS  Google Scholar 

  191. Kuo T, Cho CD, Halsey J, et al. Phase II study of gefitinib, fluorouracil, leucovorin, and oxaliplatin therapy in previously treated patients with metastatic colorectal cancer. J Clin Oncol 2005; 23(24): 5613–9

    Article  PubMed  CAS  Google Scholar 

  192. Forero L, Patnaik A, Hammond LA, et al. Phase I, pharmacokinetic (PK) and biologic study of OSI-774, a selective epidermal growth factor receptor (EGFR) tyrosine kinase (TK) inhibitor in combination with paclitaxel and carboplatin [abstract no. 1908]. Presented at the 38th Annual Meeting of the American Journal of Clinical Oncology; 2002 May 18–21; Orlando (FL). Proc Am Soc Clin Oncol 2002; 21: 25b

    Google Scholar 

  193. Malik SN, Siu LL, Rowinsky EK, et al. Pharmacodynamic evaluation of the epidermal growth factor receptor inhibitor OSI-774 in human epidermis of cancer patients. Clin Cancer Res 2003; 9(7): 2478–86

    PubMed  CAS  Google Scholar 

  194. Grunwald V, Hidalgo M. Development of the epidermal growth factor receptor inhibitor Tarceva (OSI-774). Adv Exp Med Biol 2003; 532: 235–46

    Article  PubMed  Google Scholar 

  195. Oza AM, Townsley CA, Siu LL, et al. Phase II study of erlotinib (OSI-774) in patients with metastatic colorectal cancer [abstract no. 785]. Presented at the 39th Annual Meeting of the American Society of Clinical Oncology; 2003 May 31–Jun 3; Chicago (IL). Proc Am Soc Clin Oncol 2003; 22: 196

    Google Scholar 

  196. Meyerhardt JA, Xhu A, Enzinger PC, et al. Phase II study of capecitabine, oxaliplatin and erlotinib in previously treated patients with metastatic colorectal cancer (MCRC) [abstract no. 3580]. Presented at the 40th Annual Meeting of the American Society of Clinical Oncology; 2004 Jun 5–8; New Orleans (LA). J Clin Oncol 2004; 22: 265s

    Google Scholar 

  197. Messersmith WA, Laheru DA, Senzer NN, et al. Phase I trial of irinotecan, infusional 5-fluorouracil, and leucovorin (FOLFIRI) with erlotinib (OSI-774): early termination due to increased toxicities. Clin Cancer Res 2004; 10(19): 6522–7

    Article  PubMed  CAS  Google Scholar 

  198. Shepherd FA, Rodrigues PJ, Ciuleanu T, et al. Erlotinib in previously treated non-small-cell lung cancer. N Engl J Med 2005; 353(2): 123–32

    Article  PubMed  CAS  Google Scholar 

  199. Tsao MS, Sakurada A, Cutz JC, et al. Erlotinib in lung cancer — molecular and clinical predictors of outcome. N Engl J Med 2005; 353(2): 133–44

    Article  PubMed  CAS  Google Scholar 

  200. Casado E, Folprecht G, Paz-Ares L, et al. A phase I/IIA pharmacokinetic (PK) and serial skin and tumor pharmacodynamic (PD) study of the EGFR irreversible tyrosine kinase inhibitor EKB-569 in combination with 5-fluorouracil (5FU), leucovorin (LV) and irinotecan (CPT-11) (FOLFIRI regimen) in patients (pts) with advanced colorectal cancer (ACC) [abstract no. 3543]. Presented at the 40th Annual Meeting of the American Society of Clinical Oncology; 2004 Jun 5–8; New Orleans (LA). J Clin Oncol 2004; 22: 255s

    Google Scholar 

  201. Adams VR, Bence AK, Anderson EB, et al. A phase I pharmacokinetic/pharmacodynamic study evaluating multiple doses of oral GW572016 in healthy patients [abstract no. 374]. Proc ASCO 2002; 21: 94a

    Google Scholar 

  202. DeSimone PA, Bence AK, Anderson EB, et al. A phase I study to investigate the safety, tolerability, and pharmacokinetics of single oral escalating doses of GW572016 in healthy volunteers [abstract no. 375]. Presented at the 38th Annual Meeting of the American Journal of Clinical Oncology; 2002 May 18–21; Orlando (FL). Proc Am Soc Clin Oncol 2002; 21: 94a

    Google Scholar 

  203. Xia W, Mullin RJ, Keith BR, et al. Anti-tumor activity of GW572016: a dual tyrosine kinase inhibitor blocks EGF activation of EGFR/erbB2 and downstream Erk1/2 and AKT pathways. Oncogene 2002; 21(41): 6255–63

    Article  PubMed  CAS  Google Scholar 

  204. Bos M, Mendelsohn J, Kim YM, et al. PD153035, a tyrosine kinase inhibitor, prevents epidermal growth factor receptor activation and inhibits growth of cancer cells in a receptor number-dependent manner. Clin Cancer Res 1997; 3(11): 2099–106

    PubMed  CAS  Google Scholar 

  205. Arteaga CL. Epidermal growth factor receptor dependence in human tumors: more than just expression? Oncologist 2002; 7 Suppl. 4: 31–9

    Article  PubMed  CAS  Google Scholar 

  206. Ciardiello F, Tortora G. Epidermal growth factor receptor (EGFR) as a target in cancer therapy: understanding the role of receptor expression and other molecular determinants that could influence the response to anti-EGFR drugs. Eur J Cancer 2003; 39(10): 1348–54

    Article  PubMed  CAS  Google Scholar 

  207. Imclone Systems Incorporated B-MSC. Erbitux™ (cetuximab). US prescribing information; Princeton (NJ): Imclone Systems Incorporated B-MSC, 2006

  208. DakoCytomation. EGFR pharmDx™ package insert. 2004

  209. Lenz HJ, Mayer RJ, Gold PJ, et al. Activity of cetuximab in patients with colorectal cancer refractory to both irinotecan and oxaliplatin [abstract no. 3510]. Presented at the 40th Annual Meeting of the American Society of Clinical Oncology; 2004 Jun 5–8; New Orleans (LA). J Clin Oncol 2004; 22: 247s

    Google Scholar 

  210. National Comprehensive Cancer Network. NCCN Clinical Practice Guidelines in Oncology. Rectal Cancer. Version 2.2006

  211. National Comprehensive Cancer Network. NCCN Clinical Practice Guidelines in Oncology. Colon Cancer. Version 2.2006

  212. McLeod HL, Yu J. Cancer pharmacogenomics: SNPs, chips, and the individual patient. Cancer Invest 2003; 21(4): 630–40

    Article  PubMed  CAS  Google Scholar 

  213. Cohen EE, Rosen F, Stadler WM, et al. Phase II trial of ZD1839 in recurrent or metastatic squamous cell carcinoma of the head and neck. J Clin Oncol 2003; 21(10): 1980–7

    Article  PubMed  CAS  Google Scholar 

  214. Ervin TJ, Toothaker SR. Community practice experience with gefitinib (ZD1839) as treatment for patients with advanced non-small-cell lung cancer (NSCLC) within an expanded access clinical program [abstract no. 7367]. J Clin Oncol 2004; 22: 14S

    Google Scholar 

  215. Saltz L, Rubin MS, Hochster H, et al. Acne-like rash predicts response in patients treated with cetuximab (IMC-C225) plus irinotecan (CPT-11) in CPT-11-refractory colorectal cancer (CRC) that expresses epidermal growth factor receptor (EGFR) [abstract]. Presented at AACR-NCI-EORTC International Conference on Molecular Targets and Cancer Therapeutics; 2001 Oct 29–Nov 2; Miami Beach (FL), 559

  216. Van Cutsem E, Mayer RJ, Gold P, et al. Correlation of acne rash and tumor response with cetuximab monotherapy in patients with colorectal cancer refractory to both irinotecan and oxaliplatin [abstract]. Presented at the EORTC-NCI-AACR Symposium on Molecular Targets and Cancer Therapeutics; 2004 Sep 28–Oct 1; Geneva, 279

  217. Lenz H, Mayer RJ, Gold P, et al. Activity of erbitux (cetuximab) in patients with colorectal cancer refractory to a fluoropyrimidine, irinotecan, and oxaliplatin [abstract]. Program and abstracts of the American Society of Clinical Oncology Gastrointestinal Cancers Symposium; 2005 Jan 27–9; Hollywood (FL), 225

  218. Chen HX, Mooney M, Boron M, et al. Bevacizumab (BV) plus 5-FU/leucovorin (FU/LV) for advanced colorectal cancer (CRC) that progressed after standard chemotherapies: an NCI Treatment Referral Center trial (TRC-0301) [abstract no. 3515]. Presented at the 40th Annual Meeting of the American Society of Clinical Oncology; 2004 Jun 5–8; New Orleans (LA). J Clin Oncol 2004; 22: 248s

    Google Scholar 

  219. Hurwitz H, Fehrenbacher L, Novotny W, et al. Bevacizumab plus irinotecan, fluorouracil, and leucovorin for metastatic colorectal cancer. N Engl J Med 2004; 350(23): 2335–42

    Article  PubMed  CAS  Google Scholar 

  220. Huang S, Armstrong EA, Benavente S, et al. Dual-agent molecular targeting of the epidermal growth factor receptor (EGFR): combining anti-EGFR antibody with tyrosine kinase inhibitor. Cancer Res 2004; 64(15): 5355–62

    Article  PubMed  CAS  Google Scholar 

  221. Hainsworth JD, Sosman JA, Spigel DR, et al. Treatment of metastatic renal cell carcinoma with a combination of bevacizumab and erlotinib. J Clin Oncol 2005; 23(31): 7889–96

    Article  PubMed  CAS  Google Scholar 

  222. Azzariti A, Xu JM, Porcelli L, et al. The schedule-dependent enhanced cytotoxic activity of 7-ethyl-10-hydroxycamptothecin (SN-38) in combination with Gefitinib (Iressa, ZD1839). Biochem Pharmacol 2004; 68(1): 135–44

    Article  PubMed  CAS  Google Scholar 

  223. Xu JM, Azzariti A, Severino M, et al. Characterization of sequence-dependent synergy between ZD1839 “Iressa” and oxaliplatin. Biochem Pharmacol 2003; 66(4): 551–63

    Article  PubMed  CAS  Google Scholar 

  224. Xu JM, Azzariti A, Colucci G, et al. The effect of gefitinib (Iressa, ZD1839) in combination with oxaliplatin is schedule-dependent in colon cancer cell lines. Cancer Chemother Pharmacol 2003; 52(6): 442–8

    Article  PubMed  CAS  Google Scholar 

  225. Rosenberg AH, Loehrer P, Needle MN, et al. Erbitux (IMC-C255) plus weekly irinotecan (CPT-11), fluorouracil (5FU) and leucovorin (LV) in colorectal cancer (CRC) that expresses the epidermal growth factor receptor (EFGr) [abstract no. 536]. Presented at the 38th Annual Meeting of the American Journal of Clinical Oncology; 2002 May 18–21; Orlando (FL). Proc Am Soc Clin Oncol 2002; 21: 135a

    Google Scholar 

  226. Schoffski P, Lutz MP, Folprecht G, et al. Cetuximab (C225) plus irinotecan (CPT-11) plus infusional 5FU-folinic acid (FA) is safe and active in metastatic colorectal cancer (MCRC), that expresses epidermal growth factor receptor (EGFR) [abstract no. 633]. Presented at the 38th Annual Meeting of the American Journal of Clinical Oncology; 2002 May 18–21; Orlando (FL). Proc Am Soc Clin Oncol 2002; 21: 159a

    Google Scholar 

  227. Saltz LB, Lenz H, Hochster H, et al. Randomized phase II trial of cetuximab/bevacizumab/irinotecan (CBI) versus cetuximab/bevacizumab (CB) in irinotecan-refractory colorectal cancer [abstract no. 3508]. Presented at the 41st Annual Meeting of the American Society of Clinical Oncology; 2005 May 13–17; Orlando (FL). J Clin Oncol 2005; 23: 248s

    Google Scholar 

  228. Harari PM, Huang S, Li J, et al. Combining radiation with molecular blockade of the EGF receptor in cancer therapy [abstract no. 88]. Clin Cancer Res 1999 5 (11 Suppl.): 3747s

    Google Scholar 

  229. Saleh MN, Raisch KP, Stackhouse MA, et al. Combined modality therapy of A431 human epidermoid cancer using anti-EGFr antibody C225 and radiation. Cancer Biother Radiopharm 1999; 14(6): 451–63

    Article  PubMed  CAS  Google Scholar 

  230. Bonner JA, Giralt J, Harari PM, et al. Cetuximab prolongs survival in patients with locoregionally advanced squamous cell carcinoma of head and neck: a phase III study of high dose radiation therapy with or without cetuximab [abstract no. 5507]. Presented at the 40th Annual Meeting of the American Society of Clinical Oncology; 2004 Jun 5–8; New Orleans (LA). J Clin Oncol 2004; 22: 489s

    Google Scholar 

  231. Sinicrope FA, Gill S. Role of cyclooxygenase-2 in colorectal cancer. Cancer Metastasis Rev 2004; 23(1–2): 63–75

    Article  PubMed  CAS  Google Scholar 

  232. Mann JR, Dubois RN. Cyclooxygenase-2 and gastrointestinal cancer. Cancer J 2004; 10(3): 145–52

    Article  PubMed  CAS  Google Scholar 

  233. Smith WL, DeWitt DL, Garavito RM. Cyclooxygenases: structural, cellular, and molecular biology. Annu Rev Biochem 2000; 69: 145–82

    Article  PubMed  CAS  Google Scholar 

  234. Eberhart CE, Coffey RJ, Radhika A, et al. Up-regulation of cyclooxygenase 2 gene expression in human colorectal adenomas and adenocarcinomas. Gastroenterology 1994; 107(4): 1183–8

    PubMed  CAS  Google Scholar 

  235. Sano H, Kawahito Y, Wilder RL, et al. Expression of cyclooxygenase-1 and -2 in human colorectal cancer. Cancer Res 1995; 55(17): 3785–9

    PubMed  CAS  Google Scholar 

  236. Chang SH, Liu CH, Conway R, et al. Role of prostaglandin E2-dependent angiogenic switch in cyclooxygenase 2-induced breast cancer progression. Proc Natl Acad Sci U S A 2004; 101(2): 591–6

    Article  PubMed  CAS  Google Scholar 

  237. Rigas B, Goldman IS, Levine L. Altered eicosanoid levels in human colon cancer. J Lab Clin Med 1993; 122(5): 518–23

    PubMed  CAS  Google Scholar 

  238. Mann M, Sheng H, Shao J, et al. Targeting cyclooxygenase 2 and HER-2/neu pathways inhibits colorectal carcinoma growth. Gastroenterology 2001; 120(7): 1713–9

    Article  PubMed  CAS  Google Scholar 

  239. Zahner G, Wolf G, Ayoub M, et al. Cyclooxygenase-2 overexpression inhibits platelet-derived growth factor-induced mesangial cell proliferation through induction of the tumor suppressor gene p53 and the cyclin-dependent kinase inhibitors p21waf-1/cip-1 and p27kip-1. J Biol Chem 2002; 277(12): 9763–71

    Article  PubMed  CAS  Google Scholar 

  240. Papamichael D. Prognostic role of angiogenesis in colorectal cancer. Anticancer Res 2001; 21(6B): 4349–53

    PubMed  CAS  Google Scholar 

  241. Chen Z, Zhang X, Li M, et al. Simultaneously targeting epidermal growth factor receptor tyrosine kinase and cyclooxygenase-2, an efficient approach to inhibition of squamous cell carcinoma of the head and neck. Clin Cancer Res 2004; 10(17): 5930–9

    Article  PubMed  CAS  Google Scholar 

  242. Solomon SD, McMurray JJ, Pfeffer MA, et al. Cardiovascular risk associated with celecoxib in a clinical trial for colorectal adenoma prevention. N Engl J Med 2005; 352(11): 1071–80

    Article  PubMed  CAS  Google Scholar 

  243. FitzGerald GA, Patrono C. The coxibs, selective inhibitors of cyclooxygenase-2. N Engl J Med 2001; 345(6): 433–42

    Article  PubMed  CAS  Google Scholar 

  244. FitzGerald GA. Coxibs and cardiovascular disease. N Engl J Med 2004; 351(17): 1709–11

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

No sources of funding were used to assist in the preparation of this review. Dr Diasio has acted as a consultant for and received honoraria from Imclone, Bristol-Myers Squibb, Amgen and Genentech.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert B. Diasio.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Diasio, R.B., Fourie, J. Targeting the Epidermal Growth Factor Receptor in the Treatment of Colorectal Cancer. Drugs 66, 1441–1463 (2006). https://doi.org/10.2165/00003495-200666110-00003

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00003495-200666110-00003

Keywords

Navigation