Skip to main content
Log in

Anti-EGFR Agents: Current Status, Forecasts and Future Directions

  • Review Article
  • Published:
Targeted Oncology Aims and scope Submit manuscript

Abstract

The epidermal growth factor receptor (EGFR) is one of the most important and attractive targets for specific anticancer therapies. It is a robust regulator of pathways involved in cancer pathogenesis and progression. Thus far, clinical trials have demonstrated the benefits of monoclonal antibodies and synthetic tyrosine kinase inhibitors in targeting this receptor; however, novel strategies are still being developed. This article reviews the current state of efforts in targeting the EGFR in cancer therapy. Following a brief characterization of EGFR, we will present a complete list of anti-EGFR agents that are already approved, and available in clinical practice. Aside from the indications, we will present the sales forecasts and expiry dates of product patents for the selected agents. Finally, we discuss the novel anti-EGFR strategies that are currently in preclinical development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. The Official Web Site of the Nobel Prize. The Nobel Prize in Physiology or Medicine 1986. http://www.nobelprize.org/nobel_prizes/medicine/laureates/1986/.

  2. Normanno N, De Luca A, Bianco C, Strizzi L, Mancino M, Maiello MR, et al. Epidermal growth factor receptor (EGFR) signaling in cancer. Gene. 2006;366:2–16.

    Article  CAS  PubMed  Google Scholar 

  3. Holbro T, Civenni G, Hynes NE. The ErbB receptors and their role in cancer progression. Exp Cell Res. 2003;284:99–110.

    Article  CAS  PubMed  Google Scholar 

  4. Kamath S, Buolamwini JK. Targeting EGFR and HER-2 receptor tyrosine kinases for cancer drug discovery and development. Med Res Rev. 2006;26:569–94.

    Article  CAS  PubMed  Google Scholar 

  5. Normanno N, Bianco C, De Luca A, Maiello MR, Salomon DS. Target-based agents against ErbB receptors and their ligands: a novel approach to cancer treatment. Endocr Relat Cancer. 2003;10:1–21.

    Article  CAS  PubMed  Google Scholar 

  6. Yewale C, Baradia D, Vhora I, Patil S, Misra A. Epidermal growth factor receptor targeting in cancer: a review of trends and strategies. Biomaterials. 2013;34:8690–707.

    Article  CAS  PubMed  Google Scholar 

  7. Mamot C, Rochlitz C. Targeting the epidermal growth factor receptor (EGFR) – a new therapeutic option in oncology? Swiss Med Wkly. 2006;136:4–12.

    CAS  PubMed  Google Scholar 

  8. Nair P. Epidermal growth factor receptor family and its role in cancer progression. Curr Sci India. 2005;88:890–8.

    Google Scholar 

  9. Bianco R, Gelardi T, Damiano V, Ciardiello F, Tortora G. Rational bases for the development of EGFR inhibitors for cancer treatment. Int J Biochem Cell Biol. 2007;39:1416–31.

    Article  CAS  PubMed  Google Scholar 

  10. Huang M, Shen A, Ding J, Geng M. Molecularly targeted cancer therapy: some lessons from the past decade. Trends Pharmacol Sci. 2014;35:41–50.

    Article  PubMed  Google Scholar 

  11. Balak MN, Gong Y, Riely GJ, Somwar R, Li AR, Zakowski MF, et al. Novel D761Y and common secondary T790M mutations in epidermal growth factor receptor-mutant lung adenocarcinomas with acquired resistance to kinase inhibitors. Clin Cancer Res. 2006;12:6494–501.

    Article  CAS  PubMed  Google Scholar 

  12. Montagut C, Dalmases A, Bellosillo B, Crespo M, Pairet S, Iglesias M, et al. Identification of a mutation in the extracellular domain of the epidermal growth factor receptor conferring cetuximab resistance in colorectal cancer. Nat Med. 2012;18:221–3.

    Article  CAS  PubMed  Google Scholar 

  13. Arena S, Bellosillo B, Siravegna G, Martinez A, Canadas I, Lazzari L, et al. Emergence of multiple EGFR extracellular mutations during cetuximab treatment in colorectal cancer. Clin Cancer Res. 2015;21:2157–66.

    Article  CAS  PubMed  Google Scholar 

  14. Wikstrand CJ, Reist CJ, Archer GE, Zalutsky MR, Bigner DD. The class III variant of the epidermal growth factor receptor (EGFRvIII): characterization and utilization as an immunotherapeutic target. J Neurovirol. 1998;4:148–58.

    Article  CAS  PubMed  Google Scholar 

  15. Sogabe S, Kawakita Y, Igaki S, Iwata H, Miki H, Cary DR, et al. Structure-based approach for the discovery of pyrrolo[3,2-d]pyrimidine-based EGFR T790M/L858R mutant inhibitors. ACS Med Chem Lett. 2012;4:201–5.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Wang S, Cang S, Liu D. Third-generation inhibitors targeting EGFR T790M mutation in advanced non-small cell lung cancer. J Hematol Oncol. 2016;9:34.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Goyal S, Jamal S, Shanker A, Grover A. Structural investigations of T854A mutation in EGFR and identification of novel inhibitors using structure activity relationships. BMC Genomics. 2015;16(5):S8.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Lemmon MA, Schlessinger J, Ferguson KM. The EGFR family: not so prototypical receptor tyrosine kinases. Cold Spring Harb Perspect Biol. 2014;6:a020768.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Ferguson KM, Berger MB, Mendrola JM, Cho HS, Leahy DJ, Lemmon MA. EGF activates its receptor by removing interactions that autoinhibit ectodomain dimerization. Mol Cell. 2003;11:507–17.

    Article  CAS  PubMed  Google Scholar 

  20. Bajaj M, Waterfield MD, Schlessinger J, Taylor WR, Blundell T. On the tertiary structure of the extracellular domains of the epidermal growth factor and insulin receptors. Biochim Biophys Acta. 1987;916:220–6.

    Article  CAS  PubMed  Google Scholar 

  21. Ocana A, Pandiella A. Targeting HER receptors in cancer. Curr Pharm Des. 2013;19:808–17.

    Article  CAS  PubMed  Google Scholar 

  22. Patel TB, Bertics PJ. Methods in molecular biology, vol. 327: epidermal growth factor: methods and protocols. Totowa, New Jersey: Humana Press Inc; 2006.

    Google Scholar 

  23. Lemmon MA, Schlessinger J. Cell signaling by receptor tyrosine kinases. Cell. 2010;141:1117–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Garrett TP, McKern NM, Lou M, Elleman TC, Adams TE, Lovrecz GO, et al. Crystal structure of a truncated epidermal growth factor receptor extracellular domain bound to transforming growth factor alpha. Cell. 2002;110:763–73.

    Article  CAS  PubMed  Google Scholar 

  25. Ogiso H, Ishitani R, Nureki O, Fukai S, Yamanaka M, Kim JH, et al. Crystal structure of the complex of human epidermal growth factor and receptor extracellular domains. Cell. 2002;110:775–87.

    Article  CAS  PubMed  Google Scholar 

  26. Ward CW, Garrett TP, McKern NM, Lou M, Cosgrove LJ, Sparrow LG, et al. The three dimensional structure of the type I insulin-like growth factor receptor. Mol Pathol. 2001;54:125–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Dawson JP, Berger MB, Lin CC, Schlessinger J, Lemmon MA, Ferguson KM. Epidermal growth factor receptor dimerization and activation require ligand-induced conformational changes in the dimer interface. Mol Cell Biol. 2005;25:7734–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Lemmon MA, Bu Z, Ladbury JE, Zhou M, Pinchasi D, Lax I, et al. Two EGF molecules contribute additively to stabilization of the EGFR dimer. EMBO J. 1997;16:281–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Lax I, Mitra AK, Ravera C, Hurwitz DR, Rubinstein M, Ullrich A, et al. Epidermal growth factor (EGF) induces oligomerization of soluble, extracellular, ligand-binding domain of EGF receptor. A low resolution projection structure of the ligand-binding domain. J Biol Chem. 1991;266:13828–33.

    CAS  PubMed  Google Scholar 

  30. Zhang X, Gureasko J, Shen K, Cole PA, Kuriyan J. An allosteric mechanism for activation of the kinase domain of epidermal growth factor receptor. Cell. 2006;125:1137–49.

    Article  CAS  PubMed  Google Scholar 

  31. Jeffrey PD, Russo AA, Polyak K, Gibbs E, Hurwitz J, Massagué J, et al. Mechanism of CDK activation revealed by the structure of a cyclinA-CDK2 complex. Nature. 1995;376:313–20.

    Article  CAS  PubMed  Google Scholar 

  32. de Bono JS, Rowinsky EK. The ErbB receptor family: a therapeutic target for cancer. Trends Mol Med. 2002;8:S19–26.

    Article  PubMed  Google Scholar 

  33. Wu DG, Wang LH, Sato GH, West KA, Harris WR, Crabb JW, et al. Human epidermal growth factor (EGF) receptor sequence recognized by EGF competitive monoclonal antibodies. Evidence for the localization of the EGF-binding site. J Biol Chem. 1989;264:17469–75.

    CAS  PubMed  Google Scholar 

  34. Li S, Schmitz KR, Jeffrey PD, Wiltzius JJ, Kussie P, Ferguson KM. Structural basis for inhibition of the epidermal growth factor receptor by cetuximab. Cancer Cell. 2005;7:301–11.

    Article  CAS  PubMed  Google Scholar 

  35. Voigt M, Braig F, Göthel M, Schulte A, Lamszus K, Bokemeyer C, et al. Functional dissection of the epidermal growth factor receptor epitopes targeted by panitumumab and cetuximab. Neoplasia. 2012;14:1023–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Mateo C, Moreno E, Amour K, Lombardero J, Harris W, Pérez R. Humanization of a mouse monoclonal antibody that blocks the epidermal growth factor receptor: recovery of antagonistic activity. Immunotechnology. 1997;3:71–81.

    Article  CAS  PubMed  Google Scholar 

  37. Ramakrishnan MS, Eswaraiah A, Crombet T, Piedra P, Saurez G, Iyer H, et al. Nimotuzumab, a promising therapeutic monoclonal for treatment of tumors of epithelial origin. MAbs. 2009;1:41–8.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Kamat V, Donaldson JM, Kari C, Quadros MR, Lelkes PI, Chaiken I, et al. Enhanced EGFR inhibition and distinct epitope recognition by EGFR antagonistic mAbs C225 and 425. Cancer Biol Ther. 2008;7:726–33.

    Article  CAS  PubMed  Google Scholar 

  39. Schmiedel J, Blaukat A, Li S, Knöchel T, Ferguson KM. Matuzumab binding to EGFR prevents the conformational rearrangement required for dimerization. Cancer Cell. 2008;13:365–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Kollmannsberger C, Schittenhelm M, Honecker F, Tillner J, Weber D, Oechsle K, et al. A phase I study of the humanized monoclonal anti-epidermal growth factor receptor (EGFR) antibody EMD 72000 (matuzumab) in combination with paclitaxel in patients with EGFR-positive advanced non-small-cell lung cancer (NSCLC). Ann Oncol. 2006;17:1007–13.

    Article  CAS  PubMed  Google Scholar 

  41. van Bueren JJ L, Bleeker WK, Brännström A, von Euler A, Jansson M, Peipp M, et al. The antibody zalutumumab inhibits epidermal growth factor receptor signaling by limiting intra- and intermolecular flexibility. Proc Natl Acad Sci U S A. 2008;105:6109–14.

    Article  Google Scholar 

  42. Ahsan A. Mechanisms of resistance to EGFR tyrosine kinase inhibitors and therapeutic approaches: an update. Adv Exp Med Biol. 2016;893:137–53.

    Article  PubMed  Google Scholar 

  43. Steward EL, Tan SZ, Liu G, Tsao M-S. Known and putative mechanisms of resistance to EGFR targeted therapies in NSCLC patients with EGFR mutations – a review. Transl Lung Cancer Res. 2015;4:67–81.

    Google Scholar 

  44. Hopper-Borge EA, Nasto RE, Ratushny V, Weiner LM, Golemis EA, Astsaturov I. Mechanisms of tumor resistance to EGFR-targeted therapies. Expert Opin Ther Targets. 2009;13:339–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Jiang N, Saba NF, Chen ZG. Advances in targeting HER3 as an anticancer therapy. Chemother Res Pract. 2012;2012:817304.

    PubMed  PubMed Central  Google Scholar 

  46. Alaoui-Jamali MA, Morand GB, da Silva SD. ErbB polymorphisms: insights and implications for response to targeted cancer therapeutics. Front Genet. 2015;6:17.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Liao B-C, Lin C-C, Yang JC-H. Second and third-generation epidermal growth factor receptor tyrosine kinase inhibitors in advanced nonsmall cell lung cancer. Curr Opin Oncol. 2015;27:94–101.

    Article  CAS  PubMed  Google Scholar 

  48. U.S. Food and Drug Administration webpage. FDA Approves Erlotinib, 2013. http://www.fda.gov/Drugs/InformationOnDrugs/ApprovedDrugs/ucm352317.htm/

  49. Kelly K, Chansky K, Gaspar LE, Albain KS, Jett J, Ung YC, et al. Phase III trial of maintenance gefitinib or placebo after concurrent chemoradiotherapy and docetaxel consolidation in inoperable stage III non-small-cell lung cancer: SWOG S0023. J Clin Oncol. 2008;26:2450–6.

    Article  CAS  PubMed  Google Scholar 

  50. Lynch TJ, Bell DW, Sordella R, Gurubhagavatula S, Okimoto RA, Brannigan BW, et al. Activating mutations in the epidermal growth factor receptor underlying responsiveness of non-small-cell lung cancer to gefitinib. N Engl J Med. 2004;350:2129–39.

    Article  CAS  PubMed  Google Scholar 

  51. Song X, Fan P-D, Bantikassegn A, Guha U, Threadgill DW, Varmus H. ERBB3 independent activation of the PI3K pathway in EGFR mutant lung adenocarcinomas. Cancer Res. 2015;75:1035–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Engelman JA, Zejnullahu K, Mitsudomi T, Song Y, Hyland C, Park JO, et al. MET amplification leads to gefitinib resistance in lung cancer by activating ERBB3 signaling. Science. 2007;316:1039–43.

    Article  CAS  PubMed  Google Scholar 

  53. Wissner A, Mansour TS. The development of HKI-272 and related compounds for the treatment of cancer. Arch Pharm (Weinheim). 2008;341:465–77.

    Article  CAS  Google Scholar 

  54. Park K, Tan EH, O’Byrne K, Zhang L, Boyer M, Mok T, et al. Afatinib versus gefitinib as first-line treatment of patients with EGFR mutation-positive non-small-cell lung cancer (LUX-Lung 7): a phase 2B, open-label, randomised controlled trial. Lancet Oncol. 2016;17:577–89.

    Article  CAS  PubMed  Google Scholar 

  55. AstraZeneca webpage. Tagrisso™ (osimertinib) approved in Japan for patients with EGFR T790M mutation-positive metastatic non-small cell lung cancer, 2016. https://www.astrazeneca.com/media-centre/press-releases/2016/tagrisso-approved-in-japan-for-patients-with-egfr-t790m-mutation-positive-metastatic-non-small-cell-lung-cancer-29032016.html.

  56. Lung Cancer Canada webpage. News Release: TAGRISSO™ (osimertinib) approved by Health Canada as treatment for patients with locally advanced or metastatic EGFR T790M mutation-positive non-small cell lung cancer, 2016. http://www.lungcancercanada.ca/LungCancerCanada/media/Documents/News/Tagrisso-NOCc-News-Release-_FINAL_July-8-2016.pdf.

  57. Chu CT, Sada YH, Kim ES. Vandetanib for the treatment of lung cancer. Expert Opin Investig Drugs. 2012;21:1211–21.

    Article  CAS  PubMed  Google Scholar 

  58. Sugawara S, Oizumi S, Minato K, Harada T, Inoue A, Fujita Y, et al. Randomized phase II study of concurrent versus sequential alternating gefitinib and chemotherapy in previously untreated non-small cell lung cancer with sensitive EGFR mutations: NEJ005/TCOG0902. Ann Oncol. 2015;26:888–94.

    Article  CAS  PubMed  Google Scholar 

  59. Seto T, Kato T, Nishio M, Goto K, Atagi S, Hosomi Y, et al. Erlotinib alone or with bevacizumab as first-line therapy in patients with advanced non-squamous non-small-cell lung cancer harbouring EGFR mutations (JO25567): an open-label, randomised, multicentre, phase 2 study. Lancet Oncol. 2014;15:1236–44.

    Article  CAS  PubMed  Google Scholar 

  60. F. Hoffmann-La Roche Ltd webpage. Media release: Roche receives EU approval of Avastin in combination with Tarceva for patients with a specific type of advanced lung cancer, 8 Jun 2016. http://www.roche.com/media/store/releases/med-cor-2016-06-08.htm.

  61. Padfield E, Ellis HP, Kurian KM. Current therapeutic advances targeting EGFR and EGFRvIII in glioblastoma. Front Oncol. 2015;5:5.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Taylor TE, Furnari FB, Cavenee WK. Targeting EGFR for treatment of glioblastoma: molecular basis to overcome resistance. Curr Cancer Drug Targets. 2012;12:197–209.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Mass RD. The HER, receptor family: a rich target for therapeutic development. Int J Radiat Oncol Biol Phys. 2004;58:932–40.

    Article  CAS  PubMed  Google Scholar 

  64. National Cancer Institute webpage. http://www.cancer.gov/.

  65. GlobalData Healthcare service. https://healthcare.globaldata.com/.

  66. Medtrack service. https://www.medtrack.com/.

  67. Service of the U.S. National Institutes of Health: ClinicalTrials.gov. https://clinicaltrials.gov/.

  68. Johns TG, Adams TE, Cochran JR, Hall NE, Hoyne PA, Olsen MJ, et al. Identification of the epitope for the epidermal growth factor receptor-specific monoclonal antibody 806 reveals that it preferentially recognizes an untethered form of the receptor. J Biol Chem. 2004;279:30375–84.

    Article  CAS  PubMed  Google Scholar 

  69. Sivasubramanian A, Chao G, Pressler HM, Wittrup KD, Gray JJ. Structural model of the mAb 806-EGFR complex using computational docking followed by computational and experimental mutagenesis. Structure. 2006;14:401–14.

    Article  CAS  PubMed  Google Scholar 

  70. Scott AM, Lee FT, Tebbutt N, Herbertson R, Gill SS, Liu Z, et al. A phase I clinical trial with monoclonal antibody ch806 targeting transitional state and mutant epidermal growth factor receptors. Proc Natl Acad Sci U S A. 2007;104:4071–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Reilly EB, Phillips AC, Buchanan FG, Kingsbury G, Zhang Y, Meulbroek JA, et al. Characterization of ABT-806, a humanized tumor-specific anti-EGFR monoclonal antibody. Mol Cancer Ther. 2015;14:1141–51.

    Article  CAS  PubMed  Google Scholar 

  72. Li C, Huang S, Armstrong EA, Francis DM, Werner LR, Sliwkowski MX, et al. Antitumor effects of MEHD7945A, a dual-specific antibody against EGFR and HER3, in combination with radiation in lung and head and neck cancers. Mol Cancer Ther. 2015;14(9):2049–59.

    Article  CAS  PubMed  Google Scholar 

  73. Service of the U.S. National Institutes of Health: ClinicalTrials.gov. A study of MEHD7945A versus cetuximab in patients with recurrent/metastatic squamous cell carcinoma of the head and neck, 2012. https://clinicaltrials.gov/ct2/show/NCT01577173.

  74. Sachdev E, Gong J, Rimel B, Mita M. Adnectin-targeted inhibitors: rationale and results. Curr Oncol Rep. 2015;17:35.

    Article  PubMed  Google Scholar 

  75. Arena S, Siravegna G, Mussolin B, Kearns JD, Wolf BB, Misale S, et al. MM-151 overcomes acquired resistance to cetuximab and panitumumab in colorectal cancers harboring EGFR extracellular domain mutations. Sci Transl Med. 2016;8:324ra14.

    Article  PubMed  Google Scholar 

  76. Gerdes CA, Nicolini VG, Herter S, van Puijenbroek E, Lang S, Roemmele M, et al. GA201 (RG7160): a novel, humanized, glycoengineered anti-EGFR antibody with enhanced ADCC and superior in vivo efficacy compared with cetuximab. Clin Cancer Res. 2013;19:1126–38.

    Article  CAS  PubMed  Google Scholar 

  77. Fury MG, Lipton A, Smith KM, Winston CB, Pfister DG. A phase-I trial of the epidermal growth factor receptor directed bispecific antibody MDX-447 without and with recombinant human granulocyte-colony stimulating factor in patients with advanced solid tumors. Cancer Immunol Immunother. 2008;57:155–63.

    Article  CAS  PubMed  Google Scholar 

  78. Muyldermans S. Single domain camel antibodies: current status. J Biotechnol. 2001;74:277–302.

    CAS  PubMed  Google Scholar 

  79. Nygren PA. Alternative binding proteins: affibody binding proteins developed from a small three-helix bundle scaffold. FEBS J. 2008;275:2668–76.

    Article  CAS  PubMed  Google Scholar 

  80. Ding L, Tian C, Feng S, Fida G, Zhang C, Ma Y, et al. Small sized EGFR1 and HER2 specific bifunctional antibody for targeted cancer therapy. Theranostics. 2015;5:378–98.

    Article  PubMed  PubMed Central  Google Scholar 

  81. Tian R, Li Y, Gao M. Shikonin causes cell-cycle arrest and induces apoptosis by regulating the EGFR-NF-kB signalling pathway in human epidermoid carcinoma A431 cells. Biosci Rep. 2015;35:e00189.

    Article  PubMed  PubMed Central  Google Scholar 

  82. Calonghi N, Pagnotta E, Parolin C, Mangano C, Bolognesi ML, Melchiorre C, et al. A new EGFR inhibitor induces apoptosis in colon cancer cells. Biochem Biophys Res Commun. 2007;354:409–13.

    Article  CAS  PubMed  Google Scholar 

  83. Azizi E, Namazi A, Haririan I, Fouladdel S, Khoshayand MR, Shotorbani PY, et al. Release profile and stability evaluation of optimized chitosan/alginate nanoparticles as EGFR antisense vector. Int J Nanomedicine. 2010;5:455–61.

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Lu Y, Liu L, Wang Y, Li F, Zhang J, Ye M, et al. siRNA delivered by EGFR-specific scFv sensitizes EGFR-TKI-resistant human lung cancer cells. Biomaterials. 2016;76:196–207.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Radoslaw Kwapiszewski.

Ethics declarations

Funding

The article is related to a project supported by the National Centre for Research and Development under the INNOMED programme (INNOMED/I/8/NCBR/2014).

Conflict of Interest

Radoslaw Kwapiszewski, Sebastian D. Pawlak, and Karolina Adamkiewicz declare no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kwapiszewski, R., Pawlak, S.D. & Adamkiewicz, K. Anti-EGFR Agents: Current Status, Forecasts and Future Directions. Targ Oncol 11, 739–752 (2016). https://doi.org/10.1007/s11523-016-0456-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11523-016-0456-3

Keywords

Navigation